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Abstract: Huge financial databases may contain terabytes of data and have truly industrial dimensions. Since

the quality of conclusions drawn using the data depends primarily on the information quality, the data has to be

to monitored using appropriate methods. This paper discusses statistical model-based methods, including process

monitoring approaches, applied with respect to the aggregated data, as well as data-mining methods, operating at the

level of the raw data. Both approaches utilize data redundancy to build statistical models.
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1. INTRODUCTION

Financial databases which belong to banks, insurance,
or telecommunications companies, contain terabytes
of data. The stored information can be invaluable,
e.g., for analytical customer relationship management,
where customer-level models can be estimated using
data mining methods (Weiss and Indurkhya, 1998).
Since information quality is one of the most important
factors determining quality of conclusions drawn us-
ing the data, it is necessary to monitor or even control
the information quality (Block et al., 2000; Milek et
al., 2001). Due to the truly industrial scale, high rele-
vance, and hierarchical structure, huge databases can
be treated similarly to industrial processes. This anal-
ogy help to arrive at useful monitoring approaches.
Moreover, it can be expected that modern statistical
process monitoring methods can be particularly useful
to monitor databases. However, the data in a financial
database are influenced by the following factors: (i)
customer behavior, (ii) market, (iii) seasonal varia-
tions, (iv) data quality issues. Hence, it can be argued
that monitoring of a database at a customer-level re-
sembles monitoring of a chemical reactor at a level
of single molecules. This calls for new monitoring
methods, unprecedented in the classical process mon-
itoring and acting at the micro-economic scale. On the
other hand, aggregation of the customer-level data for
whole customer segments enables getting the macro-
economic effects, which can be monitored using the
classical methods.

Statistical monitoring methods

Statistical database monitoring methods comprise ideas
belonging to econometrics, process monitoring, and
data mining (Wang, 1999). The main assumption of
the monitoring is that certain statistical data properties
do not depend on time (Makridiakis et al., 1998). Usu-
ally, the monitoring procedure comprises two steps: (i)
the selected statistical properties are estimated from
available reference data and constitute the model, and
(ii) the model validates new data. The most general
statistical data description can be given in the form of
multivariate probability density functions (pdf) which
can be used to classify data samples. However, the
later described pdf estimation for raw record-level
data is very difficult due to the curse of dimension-
ality. This problems can be reduced using subopti-
mal methods, also described in the forthcoming sec-
tions. The first approach is to decrease the number
of variables in the estimated pdf. Another possibility
is to aggregate customer-level data in order to sup-
press individual variations. The dimensionality reduc-
tion makes pdf estimation task more feasible but is
offset by an accuracy loss. Simple pdf-related statis-
tical tests for univariate pdf may involve its estima-
tion, analysis of peaks in the estimated distributions,
or outlier detection. Advanced tests may utilize logis-
tic regression-type tests (Weiss and Indurkhya, 1998),
hidden Markov models (Elliott et al., 1995), cluster-
ing techniques, or time series analysis of multivariate
histograms.
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2. DENSITY ESTIMATION

The probability density function is the most complete
description of a random variable. Hence, knowledge
of the ’true’ pdf would be particularly useful for the
data quality monitoring. Unfortunately the pdf of real
data is almost never a priori known and must be
estimated from the data, e.g., using the described here
kernel density estimation method.

2.1 Basic idea of kernel density estimation

The density estimator has the following form

f̂
�
x ��� 1

nh

n

∑
i � 1

K
� x 	 Xi

h
��


where h is the window width and K
�
x � a kernel func-

tion. The kernel satisfies the following conditions:

K
�
x �
� 0 for all x,

� ∞� ∞
K
�
x � dx � 1� ∞� ∞

K
�
x � d x � 0,

� ∞� ∞
x2K

�
x � dx � σ 2

K � 0 �
The kernel estimator can be regarded as convolution
of the observations, represented as Dirac pulses, with
the kernel function. Figure 1 shows an example of
estimated pdf. The underlying pdf is a uniform dis-
tribution U � 0 
 1 � and the used kernel is Gaussian. The
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Fig. 1. Example of an estimated univariate probability
density

kernel function determines the shape of the individual
bumps placed at the observations which are summed
up giving to the estimated density function f̂

��� � .
2.2 Multivariate kernel density estimation

It is assumed that X1 
�������
 Xn is a given multivariate
data set in an in d-dimensional space whose underly-
ing pdf is to be estimated. Analogous to the univariate

case, the multivariate kernel density estimator with
kernel K and window width h is defined by

f̂
�
x ��� 1

nhd
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where K
�
x � is defined for d-dimensional x, satisfying�

Rd
K
�
x � dx � 1.

Usually the kernel function K
��� � will be a radi-

ally symmetric unimodal probability density function,
for example the standard multivariate normal density
function
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2
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or the multivariate Epanechnikov kernel
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where cd is the volume of the unit d-dimensional
sphere: c1 � 2 
 c2 � π 
 c1 � 4π

3 
 etc.

3. DATASPHERE METHOD

In case of multivariate pdf estimation two major prob-
lems arise: (i) visualization is almost impossible for
d � 2, and, (ii) the number of partitions k increases ex-
ponentially with d. The DataSphere partitioning tech-
nique (Johnson and Dasu, 2000) allows to cluster the
data in a efficient way. While a kernel method made
out of a d-dimensional data requires O

�
kd � buckets

the DataSphere creates only O
�
d � buckets. Therefore

they can be used for monitoring huge databases. The
DataSphere-technique can be applied on aggregated
data as well as on raw data. The fundamental idea is
to partition the data into homogeneous sections. The
sections are defined using distance layers to capture
distance information, and pyramids to capture direc-
tional information.

3.1 Distance Layers

The first important data characteristics, the distance
from the origin, is captured by the distance layers.
For a set of data Xi � �

xi1 
 xi2 
�������
 xid ��
 i � 1 
�������
 N
in a d-dimensional space, the distance layers can be
computed by performing the following steps (Johnson
and Dasu, 2000):� Define a center of the data (a multivariate mean,

componentwise median or trimmed mean in or-
der to make the center more robust against out-
liers).� Center and normalize the data, obtaining

Yi � � xi1 	 x̄1
σ1


�������
 xid 	 x̄d
σd

��� �
yi1 
�������
 yid �

where x̄j and σ j are the mean and standard

deviation respectively of the jth component.



� Compute the distance di from the center � i:

di � �  ! d

∑
j � 1

� xi j 	 x̄j
σ j

� 2� Sort the data points by distance and define the
layer boundaries to be distance quantiles. There-
fore there is roughly the same number of data
points in each layer.

3.2 Directional Pyramids

The second data characteristics, the distance from the
origin, is captured by directional pyramids. A pyramid
determines the direction of maximum variation. A d-
dimensional data set is partitioned into 2d pyramids
P "i :� p # P $i , if %% yi %% � %%% y j

%%% and yi � 0, where j �
1 
�������
 d, j &� i� p # P

�
i , if %% yi %% � %%% y j

%%% and yi � 0, where j �
1 
�������
 d, j &� i

This means simply searching for the largest compo-
nent in the observation (direction of maximum varia-
tion) and determining whether it belongs to the pos-
itive or the negative pyramid. Figure 2 shows the
complete partition of the data space. This technique
may also be applied to aggregated data and can easily
be updated with new data. A finer partition may be
obtained by subdividing the pyramids into hyperpyra-
mids. The reader is referred to (Johnson and Dasu,
2000) for further details.
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Fig. 2. Data Sectioning with Pyramids and Distance
Layers

3.3 Transition Analysis

The DataSphere itself can be regarded as a stochas-
tic process X ��� � with the s-dimensional random vari-
able Xi, where s is the number of the states in the
DataSphere, i.e., number of layers times the num-
ber of pyramids. A data point may move from state

X+ 

X− 

Y+ 

Y− 

Fig. 3. A typical DataSphere representation, where the
height indicates the number of points insight each
region

to state over time. The stochastic process X ��� �'�( ������
 Xn 
 Xn $ 1 
�������
 Xn $ i 
�������) shall be regarded as time
discrete and first order Markov, i.e.,

P
�
Xn $ 1 � xn $ 1 * Xn � xn 
�
�������
 X1 � x1 �� P

�
Xn $ 1 � xn $ 1 * Xn � xn � .

The movements of the data points over time among
these states are summarized using the transition matri-
ces. That is, the

�
i 
 j � th element of the transition matrix

contains the probability that a data point (representing
a single customer) will make a transition from state i
to j at time t. The corresponding transition probability
matrix is therefore

Pt �,+--. p1 � 1 p1 � 2 ����� p1 � s
p2 � 1 p2 � 2 ����� p2 � s

: ����� :
ps � 1 �����/����� ps � s

02113 .

The individual elements pi � j of the transition matrix
can be estimated using the sample proportion

pi � j � t �
� ni � j � t �
ni

�
t �

where ni

�
t � is the number of customers in state i at

time t and ni � j � t � is the number of customers that move
from state i at time t to state j at time t � T .

3.4 DataSpheres for model-based monitoring

In this section a simple model is introduced to show
the DataSphere technique when applied to monitor
large data sets in order to find faulty data. The basic
idea is to build a model based on a reference data set.
This DataSphere representation is then used as a foun-
dation to construct a first order Markov process which
is useful to detect low-likelihood state transitions of
single customers.

Building the Model The model is built on a reference
data set and consists of the following elements:



� The DataSphere: Layer bounds and number of
pyramids� The componentwise mean vector or the trimmed
mean as a more robust centre.� The componentwise standard deviation vector
or as a more robust spreading description the
(Median Absolute Deviation from the Median)
scale vector.� The transition probability matrix

Pti
�4+--. p1 � 1 p1 � 2 ����� p1 � d

p2 � 1 p2 � 2 ����� p2 � d
: ����� :

pd � 1 �����/����� pd � d
02113

Figure 4 shows how a model may be built: the tran-
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Fig. 4. Building a DS-model

sition matrices P1 � 2 
������ Pq � 1 � q are calculated from two
consecutive DataSpheres considering the points that
changed. It is not sufficient to regard the changes in a
specific state but instead it is also necessary to track
the points that move from a state i to another state j.

Transition Probabilities in DataSpheres Using the
DataSphere representation of data sets a Markov
model can be constructed which allows us to antici-
pate unlikely changes in the customer behaviour. The
most likely states of a customer in the next time period
are predicted using the transition matrices. Any ob-
served low likelihood transitions are flagged as alerts.
Therefore a threshold pi � j �min for the unlikely tran-
sitions must be defined. All transitions with smaller
probability than pi � j �min are flagged for further investi-
gation. Figure 5 shows the procedure. The low like-
lihood transitions may be allocated to specific data
points, finding changes in the model or faulty data.
The calculated transition matrices P1 � 2 
������ Pq � 1 � q and
the DataSphere parameters are used as the model pa-
rameters.
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Fig. 5. Tracking of unlikely changes

4. MONITORING AGGREGATED DATA

Aggregated customer-level data exhibit stronger re-
dundancy than the original data. The redundancy is
extracted by statistical models which can be identi-
fied directly from the data (Ljung, 1998) and used for
monitoring purposes, see (Gertler, 1998) and (Busatto,
2000). Two types of redundancy exist: spatial (be-
tween variables, segments, partitions, etc.) and tem-
poral (in time). Temporal redundancy relates values of
one variable for different time instants. The appropri-
ate models are time series or lagged-variable models
(AR and ARIMA). Spatial redundancy relates values
of several variables for the same time instant, and the
corresponding models are multivariate static models
like linear (PCA) and nonlinear regression (NNPCA)
models (Milek et al., 2000). Both redundancy types
can appear when values of several variables are re-
lated to each other for different time instants, and can
be handled by multivariate time series models (VAR,
VARMA, ARX and ARMAX).

4.1 Data aggregation

Analysis of the aggregated data (like asset sums, cus-
tomers counts, service sales) gives an insight into
the database contents. These time series have a clear
meaning and can be compared to reference control-
ling data. Additionally, they can be treated as indi-
cators, useful for decision makers for market mon-
itoring and prediction. Moreover, it is often fair to
suppose that such time series are slow changing and
the relations between variables are almost constant
(consider average assets per customer group). The ag-
gregated data are influenced by seasonality, business
conditions, and data quality issues. The aggregated
data form compact multivariate time series, examples
are: (1) number of accounts per customer segment,
product type, partition, and time unit, and (2) sum of
transactions per customer segment, product, partition,
and time unit. Sensible aggregation operations include
sum, count, mean, variance, minimum, maximum, his-
tograms; such aggregates can be simply further aggre-
gated (Dasu et al., 2000).



4.2 Monitoring via differencing in time

This method is appropriate for exploiting temporal
redundancy and testing if the aggregated variables
change slowly, e.g., in time/partition or time/customer
segment coordinates. Examples of such variables are
record counts, asset sums, number of customers, ac-
counts, etc.. The underlying model is x

�
t �5� x

�
t 	 1 �6�

ε
�
t � , where ε

�
t � is small compared to x

�
t � . Figures
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Fig. 6. Number of records in an example table
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6 and 7 shows simulated results: color-coded record
count and its relative increase in percent, generated via
the following residual generator: e

�
t �7� 100 8 � x � t �5	

x
�
t 	 1 ���:9 x � t � . The monitoring principle is to raise the

alarm if bounds on e
�
t � are violated. The following

effects can be seen in Fig.7: (1) increase in number of
records every 6 time units, (2) the appearance of new
partitions, and (3) a small single outlier, not visible in
the record counts.

4.3 Monitoring of Aggregated Variables via PCA
Algorithm

This method can be used for monitoring an arbitrary
number of variables, e.g., aggregated for specified
product and customer segments. The aggregated data
related to different partitions and time instants are
assumed to be approximately located in some hyper-
space.

The Principal Component Analysis Model The ag-
gregated, centered, and normalized data are stored in
the matrix X # ℜK ; N such that its columns correspond
to N variables and the row x < � k �=# ℜN to k time sam-
ple. The Singular Value Decomposition X � UΣV < ,
where U # ℜK ; K is an orthogonal matrix, Σ # ℜK ; N

is a diagonal matrix Σ �>� diag
�
σi � * 0K ;@? N � K A � 
 i �

1 ����� N with σ1 B σ2 B ����� B σK B 0 , and V # ℜN ; N

is an orthogonal matrix, enables determination of the
model. The coefficient matrix Θ is given as the last
N 	 L column vectors v of V , Θ �C� vL $ 1

�����
vN � ,

where L denotes order of the model. The orthonormal
vectors spanning the model hyperspace are the first L
column vectors of V , P �/� v1

�����
vL � .

PCA Fault Diagnosis Algorithm Fault diagnosis is
performed in the following steps� Fault detection via evaluation and assessment of

the norm of the primary residuals

r �ED Θx D 2 (1)� Fault isolation via evaluation and assessment of
the norm of the structured residuals

ri �GF x < Πi

�
I 	 P

�
P <ΠiP � � 1P < � Πix 
 (2)

where Πi is a diagonal matrix with ones for re-
tained variables and zeros for eliminated vari-
ables. Note that structured residuals are sensitive
to faults in the retained variables and completely
insensitive to faults in the eliminated variables.� Fault-free reconstruction of the data

x̂i �G	 � Θ̂Θ̂ < � � 1Θ̂Θ̄ < x̄i 
 (3)

where x̂i is a vector containing the reconstructed
variable(s). x̄i is a vector containing all variables
except the variable(s) i to be reconstructed. Θ̂
contains only the column(s) i of Θ and Θ̄ con-
tains the remaining columns.

Application Example This simulated example fol-
lows a real application. The processed data contain
various customer transactions for a given product and
customer segment, aggregated within partitions and
time periods. There are 19 variables in 5 partitions,
collected during 30 samples, additional 5 variables
contain the numbers of the aggregated entries. It is
assumed that a simulated fault may corrupt: (i) single
variable in one partition, or (ii) single variable in all
partitions, or (iii) all variables in one partition. Note
that for each case the Πi matrices in (2) are different.
Figure 8 shows the primary residuals and the norm
of the structured residuals (2) for an example fault
corrupting all variables from the partition 4 (#61-79)
for the time sample 9. The fault causes an increase of
the norm of the primary residuals (Fig.8), and decrease
of the structured residuals (Fig.9) related to partition
4, and is correctly isolated. Hence, the fault-free re-
construction of the corrupted data via (3) is possible.



Figure 10 shows such a reconstruction of the variable
#63 from partition 4, which enables an assessment of
the fault’s magnitude and sign.
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5. CONCLUSIONS

Financial databases can be monitored using statisti-
cal, including the well known process monitoring ap-
proaches, applied with respect to the aggregated data,
as well as data-mining methods, acting at the level
of the original data. The discussed approaches ex-
ploit data redundancy to build statistical models, and
deliver results which are of interest not only for the
data quality monitoring but also for business–relevant
information extraction.

6. REFERENCES

Block, F., J. Milek and M. Reigrotzki (2000).
Datenqualität als basis künftiger business intelli-
gence applikationen. In: SAS Warehousing 2000.
Zürich. Switzerland.

Busatto, R. (2000). Using time series to assess
data quality in telecommunications data ware-
houses. In: International Conference on Informa-
tion Quality, IQ 2000. Cambridge, MA.. pp. 129–
136.

Dasu, T., T. Johnson and E. Koutsofios (2000). Hunt-
ing data glitches in massive time series data. In:
International Conference on Information Qual-
ity, IQ 2000. Cambridge, MA.. pp. 190–199.

Elliott, R., L., L. Aggoun and J. Moore (1995). Hid-
den Markov Models. Estimation and Control.
Springer Verlag.

Gertler, J. (1998). Fault Detection and Diagnosis in
Engineering Systems. Marcel Dekker.

Johnson, T. and T. Dasu (2000). Comparing massive
high-dimensional data sets. American Associa-
tion for Artificial Intelligence.

Ljung, L. (1998). System Identification: Theory for the
User. Prentice Hall. 2nd edition.

Makridiakis, S., S. C. Wheelright and R. Hyndman
(1998). Forecasting: Methods and Applications.
John Wiley and Sons Inc. 3rd edition.

Milek, J., M. Reigrotzki, H. Bosch and F. Block
(2001). Monitoring and data quality control of
financial databases from a process control per-
spective. In: International Conference on Infor-
mation Quality, IQ 2001. Cambridge, MA. To be
presented.

Milek, J., O. Hermann and F. Kraus (2000). Use of
hypersurfaces for fault detection, isolation, and
reconstruction. In: SAFEPROCESS 2000. Bu-
dapest. Hungary. pp. 1199–1204.

Wang, X. Z. (1999). Data Mining and Knowledge
Discovery for Process Monitoring and Control.
Springer Verlag.

Weiss, S. M. and N. Indurkhya (1998). Predictive
Data Mining. Morgan Kaufmann Publishers, Inc.


