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Abstract: We propose a framework for disturbance attenuation in case of nonlinear systems
affine in a multivariable input. Roughly speaking, the underlying idea of our approach exploits
the nature of nonlinear systems with a multivariable input. In particular, we extend the system
under investigation by additional control possibilities, which were formed out by the so-
called mixed Lie brackets. It is shown that this extension is reasonable and may allow to
establish special dissipation inequalities by using a certain type of discontinuous feedback
law. We illustrate this analysis technique by examples and suggest a synthesis framework for
disturbance attenuation which fits very well into this concept.
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1. INTRODUCTION

Since the publication of Brockett’s paper (Brockett,
1983), it is a well known fact that discontinuous feed-
back laws are more powerful than their continuous
counterpart. Indeed, as it was shown in (Clarkeet
al., 1997), the class of asymptotically controllable sys-
tem of the form ˙x � f � x � u� can only be stabilized if
the admissible feedback laws are extended to a certain
class of discontinuous feedback laws. In the mean-
time, it has turned out that many important classes
of nonlinear systems with interest in practice, for ex-
ample nonholonomic mechanical systems, cannot be
stabilized by using smooth time invariant feedback
laws since they do not satisfy Brockett’s necessary
condition for smooth stabilization (Brockett, 1983).
Additionally, discontinuity plays a dominant role in
the classical calculus of variations and therefore also
in the theory of optimal control. Beside these facts,
discontinuous feedback laws may naturally appear in
the context of nonlinear systems with a multivariable
input as it is shown here.
In this paper an approach is presented that exploits
the nature of nonlinear systems with a multivariable

input. In particular, the system under investigation will
be extended by additional control possibilities, which
were formed out by the so-called mixed Lie brackets.
It is shown that this extension is reasonable and may
allow to establish special dissipation inequalities by
using a certain type of discontinuous feedback law.

The paper is organized as follows. In Section 2 we
outline the basic idea of our approach with a first
application to stabilization problems. A formal state-
ment of the underlying analysis technique is given in
Section 3 as well as an application to a special type of
dissipation inequality which form the basis for the dis-
turbance attenuation strategy presented in Section 4.
Additionally, some preliminary synthesis results with
a special discontinuous feedback law are presented
in Section 4. Finally, the results are summarized and
critically discussed in Section 5.
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2. THE BASIC IDEA AND A FIRST
APPLICATION TO STABILIZA TION PROBLEMS

Let usconsidertheglobalstabilizationproblemfor a
nonlinearsystemof theform

ẋ � p � x�	� B � x� u (1)

wherex 
�� n denotesthe state.To simplify matters,
let us assumefor the momentthat the control input
u �� u1 u2 � T is two-dimensional1 , B � x� is the matrix
given by the two column vectorsb1 � x� , b2 � x� , and
p � b1 � b2 aresmoothvectorfieldswith p � 0��� b1 � 0���
b2 � 0��� 0. Onepossibleway to achieve globalstabil-
ity is to usecontrol Lyapunov functions(CLF). The
main ideabehindCLF is, to pick a proper2 , positive
definite, scalar-valuedfunction V � x� and then try to
find afeedbacklaw u � u � x� , whichrendersV̇ � x � u � x���
negativedefinite.In thecaseof system(1), thismeans
that

V̇ � x � u � x����� Vx � x��� p � x��� B � x� u � x��� !� 0 � (2)

must be satisfied for all x �� 0, where Vx � x���� ∂V � ∂x��� x� . If Vx � x� b1 � x���� 0 or Vx � x� b2 � x���� 0 or
both, thenwe have won becausewe canalwaysfind
a smooth3 u � u � x� on � n � 0 such that V̇ � x � u � x���
becomesnegative definite. If Vx � x� b1 � x��� 0 and
Vx � x� b2 � x��� 0, then V � x� is a CLF if and only if
Vx � x� p � x� � 0. To sumup, a proper, positive definite
functionV � x� is a (global)CLF for system(1) if, for
all x �� 0

Vx � x� bi � x��� 0 � i  Vx � x� p � x� � 0 ! (3)

As we can see from (3), the only real stumbling
block of finding a CLF is thusthesetof stateswhere
Vx � x� bi � x��� 0 � i, becauseonthissettheuncontrolled
systemhasto satisfythepropertyVx � x� p � x� � 0.Now,
if V � x� is not a CLF, thenwe cantry to find a ‘better’
V � x� which is in generalnot an easytask.Here,we
suggestthefollowingapproach.Weextendoursystem
with a certainadditional ‘virtual’ control possibility
given by the mixed Lie bracket, that is  b1 � b2 � � x�"�#

∂b2
∂x b1 $ ∂b1

∂x b2 % � x� , so that a new extendedsystem

canbedefinedasfollows:

ż � p � z��� B̂ � z� û � (4)

where the matrix B̂ � z� is given by the three col-
umn vectors b̂1 � z�&� b1 � z�'� b̂2 � z�(� b2 � z�)� b̂3 � z�(� b1 � b2 � � z� andthe extendedcontrol input is given by
û �* u1 u2 v1 + 2 � T , wherev1 + 2 representsan additional
‘virtual’ controlvariable.To verify thatV � z� is a CLF

1 A generalizationfor the higher dimensionalcaseis straightfor-
ward(seealsoSection3).
2 V , x-/. ∞ as 0 x 01. ∞.
3 See(Sontag,1998b), Proposition5.9.10.

of the extendedsystem(4), we have to checkfor all
z �� 0

Vz � z� b̂i � z��� 0 � i  Vz � z� p � z� � 0 ! (5)

Now, onemayaskthefollowing question:Canweuse
condition � 5� insteadof thewell-known condition � 3�
to verify thatsystem(1) is stabilizable?If theanswer
to this questionis yes, then this would simplify the
processof finding anappropriatefunctionV, because
the additionalcontrol possibility implies that the sig-
nificantsetVx � x� bi � x��� 0 maybereduced,namelyto
the setVz � z� b̂i � z�2� 0. This would then constitutea
new andlessconservativesufficientconditionto verify
stabilizability that containsthe well-known condition
(3) asa subcase.And indeed,asa consequenceof the
resultspresentedin (KnoblochandWagner, 1984),the
answerto the questioncanbe shown to be a condi-
tional “yes, we can!”. Roughly speaking,the results
presentedin (Knobloch and Wagner, 1984) give the
following relationshipbetweensystem(1) and (4):
Any trajectoryof theextended(non-physical)system
(4) can be ‘tracked’ by a trajectory of the original
(physical)system(1) up to an arbitrarysmall error ε
on a given finite time interval. What is essential,is
the fact that this can be achieved by a certain type
of discontinuousfeedbacklaw. A formal statement
of this relationshipis given in Section3. Note that
from the procedureabove, it shouldbeclearthat this
techniquemakesonly sense,if wehaveat leasta two-
dimensionalcontrolinputu andB � x� is not constant.
To sumup,we cansaythatif a CLF for (4) is known,
then, for any ε 3 0, one can drive the stateof (1)
from a giveninitial positioninto a ε-neighborhoodof
the origin and keep it there for all times. This can
be achieved by boundeddiscontinuousfeedback,the
bounddependinguponε. Finally, let us illustratethe
procedureona simpleexample.

Example1. Considerthesystem

ẋ �54 x1x2 $ 2x1$ x2
1 6 �74 2x2$ x1 6 u1 �74 $ x2

0 6 u2 �
(6)

andlet uschoose

V � x��� 1
2 8 x2

1 � x2
2 9 (7)

asaCLF candidate.Thenwegetfor thederivative

V̇ � x��� $ 2x2
1 � x1x2 � u1 $ u2 � (8)

andwecanseethatfor theset
�
x : x1 � 0� condition(3)

is not satisfiedandthereforeV � x� cannot be usedas
CLF for system(6).However, for theextendedsystem
we get

ż �54 z1z2 $ 2z1$ z2
1 6 �;4 2z2$ z1 6 u1 �;4 $ z2

0 6 u2�54 z1$ z2 6 v1 + 2 (9)



andwehave

V̇ � z��� $ 2z2
1 � z1z2 � u1 $ u2 ���<� z2

1 $ z2
2 � v1 + 2 ! (10)

Now, û �5 u1 u2 v1 + 2 � T can be always chosensuch
thatV̇ � z� � 0 for z �� 0. Therefore,V � z� is a CLF for
system(9) whichcanthusbestabilizedwith asuitable
feedbacklaw on the basisof V � z�"� 1

2 8 z2
1 � z2

2 9 . As
a consequenceof the resultspresentedin (Knobloch
andWagner, 1984) (seeSection3), this implies that
thetrajectoriesof theoriginalsystem(6) canbedriven
arbitrarily closeto the origin by applying a suitable
(discontinuous)feedbacklaw. Furthermore,if a local
CLF aroundthe origin of system(1) is known, then
theoriginal system(1) canbestabilizedtoo.

In the samefashionas outlined above for the stabi-
lizationproblem,a formalstatementof theunderlying
techniquein the moregeneralcaseof dissipationin-
equalitiesis givenin thenext section.

3. ESTABLISHING DISSIPATION
INEQUALITIES WITH THE HELP OF MIXED LIE

BRACKETS

3.1 Problemformulation

We consideranaffinecontrolsystem

ẋ � p � x��� B � x� u � G � x� w� (11)

whereu 
=� m1 is the control input, w 
>� m2 is the
disturbance,andx 
(� n is thestate.B � x� is thematrix
givenby m1 columnvectorsbi � x� , G � x� is thematrix
given by m2 column vectorsg j � x� and p � bi � g j are
smoothvectorfields.

We alsoassumethat the disturbancew is a bounded
continuousfunctionof time t satisfying?

w � t � ?"@ ω̄ ! (12)

Basedon this information,we dealwith the problem
of designingcontrol strategies in the generalform
u � u � t � x� suchthataspecialdissipationinequality

V � x � te ��� $ V � x � t0 �A� �CB te

t0
q � x � t ��� dt (13)

holds, along all solutions x � x � t � of (11), where
V � q are scalar-valued,sufficiently smoothfunctions
of the state.The disturbancew is specializedto any
continuousfunction satisfying(12). The feedbacku
may dependuponω̄ but not on w itself andthe time
horizon  t0 � te� is finite.

3.2 Thebasiclemma

Next, wewishto outlineatechniquefor exploiting the
mixedLie bracketsin orderto show thatacertaintype
of discontinuousstatefeedbacklaw for the purpose

of establishingdissipation inequalities in the form
(13) exists.New resultscanbeobtainedonly if these
brackets are not linearly dependentupon the b j � x� ,
hencewe exclude from our considerationsthe case
m1 � 1 (only onecontrolinput)andB � x�D� B � const !
Theideaof our approachis to solve theproblemfor a
new systemwith extendedcontrolpossibilities

ż � p � z��� B̂ � z� û � G � z� w� (14)

whereB̂ � z� û is definedas

B̂ � z� û � m1

∑
r E 1

br � z� ur � ∑
ν F µ
 bν � bµ � � z� vν + µ !

Thefollowing fundamentalrelationbetweentrajecto-
ries of system(11) and (14) is a consequence- not
outspokenthere- of theresultspresentedin (Knobloch
andWagner, 1984).

Lemma1. Given a solution z � z� t � of system(14)
for a smoothw � w � t � andû � û � z� on someinterval t0 � te� . Given also ε 3 0. Then thereexists a certain
type of discontinuousstatefeedbacku � t � û � x��� such
that the solution x � x � t � of (11) for u � u � t � û � x�A�
andw � w � t � with initial valuex � t0 �G� z� t0 � satisfies?
x � t � $ z� t � ?"@ ε for all t 
H t0 � te� .

Proof. For a sketchof theproof seeAppendixA.

Remarks. (i) u � t � û � x�A� is in general‘high gain’, i.e. if
ε is small,thantheamplitudeof u � t � û � x��� is large.(ii)
Onewould liketo haveamoresymmetricstatementin
thesensethatû � z� maybetime-varyinganddiscontin-
uous.It would alsobe desirableto admit (piecewise)
continuousspecializationsof w. Thesegeneralizations
of Lemma1 still haveto becarriedoutby amorethor-
oughexploitationof (KnoblochandWagner, 1984).

3.3 Establishingdissipationinequalities

The applicationof Lemma1 to our problemis obvi-
ous:If we have

Vz � z� 8 p � z��� B̂ � z� û � z��� G � z� w9 � q � z� (15)

for theextendedsystem(14)alongasolutionz � z� t � ,?
w � t � ?I@ ω̄, andt0

@
t
@

te. We havethen

V � z� te ��� $ V � z� t0 �A� $ B te

t0
q � z� t ��� dt � $ δ (16)

for someδ 3 0. Hencetheinequality

V � x � te ��� $ V � x � t0 ��� $ B te

t0
q � x � t ��� dt

� 0 (17)

holds,if
?
x � t � $ z� t � ?G@ ε � t andε is sufficientlysmall.

This means,that thedissipationinequality(13) holds
for ouroriginalsystem(11) if it holdsfor theextended
system(14).Thefollowingexampleswill demonstrate
theusefulnessof Lemma1.



Example2. The example chosenhere is essentially
the systemdiscussedby Brockett (Brockett, 1983),
but with an additionaldrift term  0 0 x3 � T aswell as
a disturbancew:

ẋ �KJL 0
0
x3

MN �OJL x1

α
0

MN
u1 �OJL β

0
x2

MN
u2� G � x� w (18)

wherex �P x1 x2 x3 � T , u �P u1 u2 � T . Let us consider
the casewhere α � β �� 0. Firstly, to show that this
techniquemakesalsosenseif V � x� is indefinite,let us
chooseV � x�Q� x3 ! ThenVx � x� B � x� u � x2u2 vanishes
whenever x2 � 0. Therefore,dissipation inequality
(13) cannotbe satisfied.For the extendedsystemwe
get

ż �KJL 0
0
z3

MN �OJL z1

α
0

MN
u1 �OJL β

0
z2

MN
u2 �RJL $ β

0
α

MN
v1 + 2� G � z� w� (19)

andwehave

Vz � z� B̂ � z� û � z2u2 � αv1 + 2 ! (20)

It is clear that one can find a û � û � z� such that
Vz � z� B̂ � z� û �� 0 everywhere.This is essentialfor our
problem,becauseif Vz � z� B̂ � z� û �� 0, thenthe dissipa-
tion inequality(15) canbe satisfiedfor every z. Note
that this holds independentlyon the specialform of
G � z� . In particular, no matchingconditionis required.
Theseconsiderationscan be carried further to treat
the problemof output regulation in the presenceof
disturbances.Let usassumethatG � x� is boundedfor
all x. If we considery � V � z�Q� z3 asoutput,then it
can be controlledcompletelyby v1 + 2. To keepz3 in
an interval I aroundthetargetvalue(letssayz3 � 0),
one can apply sliding modecontrol. Furthermore,if
we approximatethe partsof the z-trajectoryby a so-
lution x � x � t � of the original system(18) according
to Lemma1, thenwe arrive at a trajectorywhosex3-
componentremainsfor all time in anε-neighborhood
of I .

Example3. Let us considerthe samesystemagain,
but now we chooseV � x�I� 1

2 � x2
1 � x2

2 � x2
3 � positive

definiteandq � x� is anarbitrarynegativedefinitefunc-
tion. This is a more practically relevant application,
becausethesetupcorrespondsto a disturbanceatten-
uationproblem.ThenVx � x� B � x� u � x1 � x1u1 � βu2 ���
x2αu1 � x3x2u2 vanisheson the set

�
x : x1 � x2 � 0�

identically in u. This setis unbounded,soonecannot
make sureby standardstatefeedbackthata trajectory
remainsfor all timesin a boundedsubsetof thestate
space.However, for theextendedsystemwe have

Vz � z� B̂ � z� û �S� x2
1 � x2α � u1 �<� x1β � x2x3 � u2�S� $ βx1 � x3α � v1 + 2 ! (21)

It canbeverifiedthatall threecoefficientsof thislinear
form in û �P u1 u2 v1 + 2 � T vanishsimultaneouslyin at
most threepointszT 1U � zT 2U � zT 3U of the statespace.So
let us considera ball B � � x : ? x ?V@ R� which con-
tains z� 0� (= initial condition)andzT 1U � zT 2U � zT 3U in its
interior. For any z 
 ∂B(=boundaryof B) thefunction
Vz � z� B̂ � z� û of û is not identicallyzero,henceonecan
find û suchthatVz � z� timestheright handsideof (19)
is negative for all z and every w boundedby (12).
For reasonsof compactnessonecanfind positive δi ,
i � 1 � 2, suchthatfor all z� 0�W
 ∂B andall w satisfying
(12), thesolutionz � z� t � of (19) with û � û � z� hasa
decreasingnorm

?
z� t � ? 2 for 0

@
t
@

δ1 and
?
z� δ1 � ? �

R $ δ2. Let ε � δ2 andconsiderthe solutionx � x � t �
of (18)- for thesamew andu � u � t � û � x��� - with initial
valuex � 0�W� z� 0� which is constructedwith the help
of Lemma1. Thissolutionsatisfies

?
x � t � ? � R � ε for

all t 
H 0 � δ1 � and
?
x � δ1 � ? � R. Therebywe succeeded

in findingacontrolstrategy for (18)which is indepen-
dentuponw andhasthefollowingproperty:Whenever
atrajectoryreachestheboundaryof B it is drivenback
by an appropriatediscontinuousstatefeedbackinto
the interior of B andstaysin the meantimein an ε-
neighborhoodof B. This of coursemeansthatwe can
keepa trajectorystartingat t � 0 in apointx � 0� in the
interiorof B for all timesin anε-neighborhoodof B.

4. AN ALTERNATIVE FORA DISTURBANCE
ATTENUATION STRATEGY

4.1 Localdissipationinequalities

Next, a framework for the designof a disturbance
attenuationstrategy is proposed.We treattheproblem
formulatedin Section3.1, undercertainhypothesis.
First,weassumethefollowing systemstructure

ẋ1 � p1 � x�	� B1 � x� u � G1 � x� w
ẋ2 � p2 � x�	� B2 � x� u � (22)

where the statevector x is split up into two parts
x �X x1 x2 � T , x1 
C� n1 � x2 
=� n2 , n2 3 0. Note that
it is assumedthat w does not act directly on x2.
Furthermore,we assumethatV � x� satisfies

Vx � x�Y p1 � x� p2 � x� � T � q � x� (23)

i.e. the dissipationinequality (13) holds for the un-
perturbedanduncontrolledsystem.From techniques
usedin (Knobloch, to appear),it turns out that this
hypothesesaremeaningful.A control law which is a
relevantform from aphysicalpointof view andwhich
meetsthedemandsof Lemma1 is givenby

u � u � t � x � ti �A�)! (24)

This feedbackcan be best characterizedas discon-
tinuous‘discretized’statefeedback(DSF),wherethe
time interval  t0 � te� is divided into sufficiently small
subintervalsδ � ti Z 1 $ ti . The ideato enforce(13) by



DSFis to satisfyon eachsubinterval  ti � ti Z 1 � its local
analog

V � x � ti Z 1 �A� $ V � x � ti ��� �[B ti \ 1

ti
q � x � t ��� dt � (25)

and by this to satisfy (13). Finally, we arrive to a
problem which fits very well into the demandswe
needand which one may call the local form of the
dissipationinequality: To find, for sufficiently small
δ 3 0, a u � u � t � x � ti ��� suchthat

V � x � ti � δ �A� $ V � x � ti ��� �]B ti Z δ

ti
q � x � t ��� dt � (26)

for x � x � t � beingasolutionof (11) for somecontinu-
ousw satisfying(12).

Therefore,the main problemis to find an open-loop
control u � u � t � x � ti ��� suchthat the local form of the
dissipationinequality (26) is satisfied.Someprelim-
inary resultson solving this problem are presented
below.

4.2 Somepreliminaryresults

First attemptsto meetthe local dissipationinequality
(26)haveshown, thatit is meaningfulto usea control
law of theform

u � u1 � s� x � ti �)� ω̄ ��� u0 � x � ti �)� ω̄ �'� (27)

where ω̄ satisfiesequation(12), and s � t ^ ti
δ , t 
 ti � ti � δ � . Note that all valuesof u1 � s�A!_�A!`� , 0
@

s
@

1, contribute to the control action regardlesshow
small δ is. Therefore,it is clearthata solutionof the
dissipationinequality cannotbe reachedby passing
from the integral form (13) to a pointwisedissipation
inequality

Vx � x�1� p � x�	� B � x� u � G � x� w� � q � x�'! (28)

The analysisleadingto control law (27) is an appli-
cationof the approachto dissipationinequalitiesfor
systemsof theform (22)aspresentedin (Knobloch,to
appear),seeespeciallyChapter1,3,5. Furthermore,
it is clear that someadditionalconditionson system
(22) areneccessary, which follow from the approach
presentedhereandfrom the resultsin (Knobloch,to
appear).Our ongoingaswell as future researchgoal
is focusedon thederivationof anexplicit control law
onthebasisof (27)by combiningtheresultspresented
herewith the resultspresentedin (Knobloch, to ap-
pear).Finally, to get a feeling how control law (27)
will look like, it is illustratedin Figure1.

5. DISCUSSIONAND CONCLUSION

In this paperwe proposea framework for disturbance
attenuationwhichexploits thenatureof nonlinearsys-
temswith amultivariableinput,in particularaconcept
which fits very well into the demandsof Lemma1,
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Fig. 1. An examplefor a control law aspresentedin
Section4.2.

thebackboneof our framework. Lemma1 givesa re-
lationshipbetweenthesystemunderinvestigationand
anextendedsystemin thesensethatany trajectoryof
theextendedsystemcanbe trackedby a trajectoryof
theoriginal system.Furthermore,we haveshown that
Lemma1 can be appliedto other problems,besides
disturbanceattenuation.
Of course,severalproblemsareleft openin thiswork.
Themostimportantoneis to deriveanexplicit control
law, which exploits the advantagesof the proposed
disturbanceattenuationstrategy. This is our future as
well asongoingresearchgoal.

AppendixA. A SKETCHOFTHE PROOFFOR
LEMMA 1.

For simplicity of expositionweonly considerthecase
without disturbance.The more general result with
disturbancecanbeshown alongthesamelines.

Proposition1. Givena solutionz � z� t � of

ż � a � t � z��� B̂ � t � z� û � (A.1)

whereB̂ � t � z� û is definedas

B̂ � t � z� û � m1

∑
r E 1

br � t � z� ur � ∑
ν F µ
 bν � bµ � � t � z� vν + µ

on somefinite interval  t0 � te� . Given alsoε 3 0. As-
sumethat the right handsideof (A.1) is sufficiently
smoothasafunctionof t � z. Thenthereexistsadiscon-
tinuousstatefeedbacklaw u � u � t � û � t � x�A� suchthat
thesolutionx � x � t � of

ẋ � a � t � x�	� B � t � x� u (A.2)

with x � t0 ��� z� t0 � , satisfies
?
x � t � $ z� t � ?"@ ε, t0

@
t
@

te.

Proof. Our basictool is the notionof a “control vari-
ation concentratedat somepoint t a ” (cf. (Knobloch,
1981),Definition9.1).It combinesthe‘needle-shaped’



variationsusedin the proof of the Pontryaginmax-
imum principle with the standardvariationsusedin
classicalcalculusof variationsandexhibits the same
simplesuperpositionpropertyasthePontryaginvari-
ations.Aboveall, theeffect of sucha variationon the
state- crucial for questionsof local controllability -
can be describedin termsof formal power seriesin
several variables.An examplehasbeenworked out
in (KnoblochandWagner, 1984),Sec.2. It concerns
(A.2) in casea � t � x�Db 0.Notethatthegeneralcasecan
alwaysbereducedto this specialby meansof a time-
dependentstate transformation(see (Knobloch and
Wagner, 1984),Sec.4), sowe will assumea � t � x�Wb 0
from now on. It is shown that n-dimensional(n �
dim � x� ) vectorsof theform

z � λ2B̂ � t � z� û � higherordertermsin λ (A.3)

for arbitrary t � z, small scalar λ, and û can be in-
terpretedas reachablepoints in the following sense.
Denote for shortnessthe vector (A.3) - including
the remainderterm - by c � t � z� û � λ � . For fixed val-
uest ac� zac� ûac� λ a of thevariables,c � t ac� zac� ûad� λ � canbe
reachedat time t a alonga trajectoryx � x � t � of (A.2)
startingin x � t0 ��� za at initial time t0 � t a $ κλ. Theu
which is insertedin (A.2) is a time-dependentdiscon-
tinuousvector-valuedfunctiondependinguponû. The
explicit constructionis documentedin (Knoblochand
Wagner, 1984),(2.18)-(2.21)andTheorem7.1.

This is a ‘small-time-local-controllability’result, the
step to what one may call ‘tracking’ of z � z� t � on
a given (large) interval  t0 � te� is done via iterations
of the map c. Divide  t0 � te� into sufficiently small
subintervals  ti � ti Z 1 � and define recursively zi Z 1 �
c � ti Z 1 � zi � ûi � λ � , whereûi � ûi � ti � zi � is thecontrolinput
- evaluatedat t � ti , z � zi - on the right handsideof
(A.1). The initial value is x � t0 �e� z� t0 � . The zi ’s are
essentiallythecornerpointsof anEuler-Cauchypoly-
gonapproximatingthe trajectoryz� t � (see(Knobloch
and Wagner, 1984),Sec.5). On the other handzi Z 1

canbereachedat time ti Z 1 alonga trajectoryof (A.2)
(for asuitableu) startingat t � ti in thepointzi . Hence
- andthis it the geometricideaof the proof given in
(KnoblochandWagner, 1984)- onearrivesat another
approximationof z� t � if onereplacestheline segments
connectingzi � zi Z 1 of thestandardEuler-Cauchypoly-
gonby trajectoriesof (A.2) connectingzi � zi Z 1. f
Strictly speaking,the situation discussedhere does
not cover completelythe oneof Lemma1 (a � t � x�G�
p � x�g� G � x� w � t � ) sincewe assumeheresmoothness
(and not merely continuity) with respectto t and
also full knowledgeof a � t � x� (in order to construct
u � t � x� ). So some supplementaryconsiderationsare
called,whichwill bepresentedlater.
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