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Abstract: We propose a framework for disturbance attenuation in case of nonlinear systems
affine in a multivariable input. Roughly speaking, the underlying idea of our approach exploits
the nature of nonlinear systems with a multivariable input. In particular, we extend the system
under investigation by additional control possibilities, which were formed out by the so-
called mixed Lie brackets. It is shown that this extension is reasonable and may allow to
establish special dissipation inequalities by using a certain type of discontinuous feedback
law. We illustrate this analysis technique by examples and suggest a synthesis framework for
disturbance attenuation which fits very well into this concept.
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1. INTRODUCTION input. In particular, the system under investigation will
be extended by additional control possibilities, which
Since the publication of Brockett's paper (Brockett, were formed out by the so-called mixed Lie brackets.
1983), it is a well known fact that discontinuous feed- |t is shown that this extension is reasonable and may
back laws are more powerful than their continuous allow to establish special dissipation inequalities by
counterpart. Indeed, as it was shown in (Cladte  using a certain type of discontinuous feedback law.
al., 1997), the class of asymptotically controllable sys-
tem of the formx'= f(x,u) can only be stabilized if
the admissible feedback laws are extended to a certai
class of discontinuous feedback laws. In the mean-

time, it has turned out that many important classes . 7 .
Section 3 as well as an application to a special type of

of nonlinear systems with interest in practice, for ex- dissination i litv which f he basis for the di
ample nonholonomic mechanical systems, cannot be2!SSiPation inequality which form the basis for the dis-

stabilized by using smooth time invariant feedback turbgpce attenuation sj[ra.tegy present(_ad in Sectiqn 4
laws since they do not satisfy Brockett's necessaryAdd't'O_na"yz some preliminary synthesis results with
condition for smooth stabilization (Brockett, 1983). a S;Spec!al tilsT:(_)ntllTuotﬁs feedlback law are prezentedd
Additionally, discontinuity plays a dominant role in In Section 4. Finally, the results are summarized an

the classical calculus of variations and therefore also Ctically discussed in Section 5.
in the theory of optimal control. Beside these facts,

discontinuous feedback laws may naturally appear in

the context of nonlinear systems with a multivariable

input as it is shown here.

In this paper an approach is presented that exploits

the nature of nonlinear systems with a multivariable

The paper is organized as follows. In Section 2 we
futline the basic idea of our approach with a first
application to stabilization problems. A formal state-
ment of the underlying analysis technique is given in



2. THE BASIC IDEA AND A FIRST
APPLICATION TO STABILIZATION PROBLEMS

Let us considerthe global stabilizationproblemfor a
nonlinearsystemof theform

X = p(x) + B(x)u (1)

wherex € R" denoteghe state.To simplify matters,
let us assumefor the momentthat the control input
u = [uy up]" is two-dimensionat, B(x) is the matrix
given by the two column vectorsb;(x), bz(x), and
p, b1, b, aresmoothvectorfieldswith p(0) = by (0) =

b,(0) = 0. Onepossibleway to achiese global stabil-
ity is to usecontrol Lyapun« functions(CLF). The
mainideabehindCLF is, to pick a proper?, positive

definite, scalarvaluedfunction V(x) andthentry to

find afeedbackaw u = u(x), whichrenders/ (x, u(x))

negative definite.In the caseof system(1), this means
that

V(%,U(x) = W) (p(X) +B(U(X) <0,  (2)

must be satisfied for all x # 0, where W(x) =
OV /0x)(X). If V(X)b1(X) # 0 or Vyx(X)ba(x) # O or
both, thenwe have won becauseave canalwaysfind
a smoott? u = u(x) on R"\ 0 suchthatV(x,u(x))
becomesnegative definite. If Vx(x)bi(x) = 0 and
Vx(X)b2(x) = 0, thenV(x) is a CLF if and only if
Vi(X) p(X) < 0. To sumup, a proper positive definite
functionV(x) is a (global) CLF for system(1) if, for
allx#0

V(X)bi (x) = 0 Vi = Wx(X) p(x) < 0. (3)

As we can see from (3), the only real stumbling
block of finding a CLF is thusthe setof stateswvhere
Vx(X)bi(X) = 0 Vi, becaus®nthis settheuncontrolled
systerrhasto satisfythepropertyVy(x) p(x) < 0. Now,
if V(x) is nota CLF, thenwe cantry to find a ‘better’
V(x) which is in generalnot an easytask.Here, we
suggesthefollowing approachWe extendour system
with a certainadditional‘virtual’ control possibility
given by the mixed Lie braclet, thatis [by,b2](x) =

(%bl - %bz) (x), sothat a new extendedsystem
canbedefinedasfollows:

z=p(2) +B(2)4, 4)

where the matrix B(2) is given by the three col-
umn vectors by (2) = bi(2),b2(2) = b(2),bs3(2) =
[b1,b2](z) andthe extendedcontrolinput is given by
0=[uu vl72]T, wherevy > representsn additional
‘virtual' controlvariable.To verify thatV(z) isaCLF

1 A generalizatiorfor the higher dimensionalcaseis straightfor
ward (seealsoSection3).

2 V(x) = o as||x]| = «.

3 See(Sontag199%), Propositior5.9.10.

of the extendedsystem(4), we have to checkfor all
z#0
Vy(2)bi(2) = 0Vi = V4(2)p(2) < 0. (5)

Now, onemayaskthefollowing questionCanwe use
condition(5) insteadof thewell-known condition(3)
to verify thatsystem(1) is stabilizabledf the answer
to this questionis yes, then this would simplify the
procesof finding anappropriatdunctionV, because
the additionalcontrol possibility implies that the sig-
nificantsetVy(x)bi(x) = 0 maybereducednamelyto
the setV;(2)bi(z) = 0. This would then constitutea
new andlessconsenrativesuflicientconditionto verify
stabilizability that containsthe well-known condition
(3) asasubcaseAnd indeed,asa consequencef the
resultspresentedh (KnoblochandWagner1984),the
answerto the questioncan be shavn to be a condi-
tional “yes, we can!”. Roughly speaking the results
presentedn (Knobloch and Wagner 1984) give the
following relationshipbetweensystem(1) and (4):
Any trajectoryof the extended(non-physicalsystem
(4) can be ‘tracked’ by a trajectory of the original
(physical)system(1) up to an arbitrarysmall error e
on a given finite time interval. What is essentialjis
the fact that this can be achieved by a certaintype
of discontinuousfeedbacklaw. A formal statement
of this relationshipis given in Section3. Note that
from the procedureabove, it shouldbe clearthatthis
techniquemakesonly senseif we have atleasta two-
dimensionakontrolinputu andB(x) is notconstant.
To sumup, we cansaythatif a CLF for (4) is known,
then, for ary € > 0, one can drive the stateof (1)
from a giveninitial positioninto a e-neighborhoodf
the origin and keepit therefor all times. This can
be achieved by boundeddiscontinuoudeedbackthe
bounddependingupone. Finally, let usillustratethe
procedureon a simpleexample.

Examplel. Considertthesystem

o[ xaxe—2x 2X2 —X2
ol i B e DS I [

andlet uschoose
1
V=35 (X2 +x3) 7)
asaCLF candidateThenwe getfor thederivative
V(X) = —2X2 + x1x2(ug — Up) (8)

andwe canseethatfor theset{x|x; = 0} condition(3)

is not satisfiedandthereforeV (x) cannot be usedas
CLF for system(6). However, for theextendedsystem
we get

. |uzn-27 22 -2
= [+ [ 2] [

+ [ _Zéz] V12 9)



andwe have
V(2) = 24+ a2(u1— W) + (F - Z)V12.  (10)

Now, G = [up Uy V1’2]T can be always chosensuch
thatV (z) < 0 for z# 0. ThereforeV(2) is a CLF for
system(9) which canthusbe stabilizedwith asuitable
feedbacklaw on the basisof V(2) = 1 (Z+Z). As
a consequencef the resultspresentedn (Knobloch
and Wagner 1984) (seeSection3), this implies that
thetrajectorieof the original system(6) canbedriven
arbitrarily closeto the origin by applying a suitable
(discontinuousfeedbacKaw. Furthermorejf alocal
CLF aroundthe origin of system(1) is known, then
theoriginal system(1) canbe stabilizedtoo.

In the samefashionas outlined above for the stabi-
lization problem,aformal statemenof theunderlying
techniquein the more generalcaseof dissipationin-
equalitieds givenin the next section.

3. ESTABLISHING DISSIRATION
INEQUALITIES WITH THE HELP OF MIXED LIE
BRACKETS

3.1 Problemformulation

We consideranaffine controlsystem

X= p(x) + BOu+ G, (11)

whereu € R™ is the control input, w € R™ is the
disturbanceandx € R" is the state B(x) is the matrix
givenby my columnvectorsh;(x), G(x) is the matrix
given by mp column vectorsgj(x) and p,b;,g; are
smoothvectorfields.

We also assumehat the disturbancew is a bounded
continuoudunctionof timet satisfying

W)l < oo. (12)

Basedon this information, we dealwith the problem
of designingcontrol stratgjies in the generalform
u = u(t,x) suchthataspecialdissipationinequality

V(x(te)) — Vi(x(to)) < [ "gx)dt  (13)

holds, along all solutionsx = x(t) of (11), where
V,q are scalarvalued, sufficiently smoothfunctions
of the state.The disturbancew is specializedto ary
continuousfunction satisfying (12). The feedbacku
may dependupon w but not on w itself andthe time
horizon([to, te] is finite.

3.2 Thebasiclemma
Next, we wishto outlineatechniqueor exploiting the

mixedLie bracletsin orderto shaw thata certaintype
of discontinuousstatefeedbacklaw for the purpose

of establishingdissipationinequalitiesin the form

(13) exists. New resultscanbe obtainedonly if these
braclets are not linearly dependenupon the b;(x),

hencewe exclude from our considerationghe case
my = 1 (only onecontrolinput)andB(x) = B = cong.

Theideaof our approactis to solve the problemfor a
new systemwith extendedcontrolpossibilities

7=p(2) +B(2)0+ G(2)w, (14)

whereB(2)( is definedas

B()lG= ;lbr(z)ur + 3 [by, bl (@) Vo,

v

The following fundamentatelationbetweertrajecto-
ries of system(11) and (14) is a consequence not
outspolenthere- of theresultspresentedéh (Knobloch
andWagner 1984).

Lemmal. Given a solution z = z(t) of system(14)

for asmoothw = w(t) andd = G(2) on someinterval

[to,te]. Given alsoe > 0. Thenthereexists a certain
type of discontinuousstatefeedbacku(t, ((x)) such
that the solution x = x(t) of (11) for u = u(t,d(x))

andw = w(t) with initial valuex(tp) = z(to) satisfies
[|x(t) — z(t)|| < € for all t € [to, te].

Proof. For a sketchof the proof seeAppendixA.

Remarks(i) u(t,(x)) is in generathigh gain’, i.e. if
€ is small,thantheamplitudeof u(t, G(x)) is large. (ii)
Onewouldliketo have amoresymmetricstatemenin
thesensehati(z) maybetime-varyinganddiscontin-
uous.It would alsobe desirableto admit (piecevise)
continuousspecializationsf w. Thesegeneralizations
of Lemmal still haveto becarriedoutby a morethor-
oughexploitationof (KnoblochandWagner 1984).

3.3 Establishingdissipationinequalities
The applicationof Lemmal to our problemis obvi-
ous:If we have
Vx(2) (P(2 +B(2)04(2) +G(w) <q(2)  (15)
for theextendedsystem(14) alongasolutionz = z(t),
[[w(t)]] € w, andtg <t < te. We havethen
te
V(@te) —V (b)) — | a(D)dt < -5 (16)
0
for somed > 0. Hencetheinequality

V(x(t) V() ~ [ax)d <o @)

holds,if ||x(t) — z(t)|| < € Vt ande is sufficiently small.
This meansthatthe dissipationinequality (13) holds
for ouroriginal system(11)if it holdsfor theextended
system(14). Thefollowing exampleswill demonstrate
theusefulnes®f Lemmal.



Example2. The example chosenhereis essentially
the systemdiscussedby Brockett (Brockett, 1983),
but with an additionaldrift term [0 0 x3]" aswell as
adisturbancev:

0 X1 B
X=|10|+]a]u+]|0|uw
X3 0 X2

+ G(x)w (18)

wherex = [x1 %2 X3]", u = [u; up]". Let us consider
the casewhere a,3 # 0. Firstly, to showv that this

techniquemakesalsosensef V(x) is indefinite,let us

chooseV (x) = x3. ThenVy(X)B(X)u = xpup vanishes
wheneer x, = 0. Therefore, dissipationinequality
(13) cannotbe satisfied.For the extendedsystemwe

get

0 P4l B -B
z=|10|+]alu+|0Ju+]| O V1,2
23 0 2 o
+ G(2)w, (19)

andwe have

VZ(Z) B(Z)O = 2oUz +0aVy 2. (20)

It is clear that one can find a 0 = G(2) such that
V,(2)B(2)0 # 0 everywhere This is essentiafor our
problem,becauséf V,(z)B(2)d # 0, thenthe dissipa-
tion inequality (15) canbe satisfiedfor every z. Note
that this holds independentlyon the specialform of
G(2). In particular no matchingconditionis required.
Theseconsiderationscan be carried further to treat
the problemof output regulationin the presenceof
disturbancesl et us assumehat G(x) is boundedfor
all x. If we considery =V (2) = z3 asoutput,thenit
can be controlled completelyby vi . To keepzz in
aninterval | aroundthetargetvalue(letssayzz = 0),
one can apply sliding mode control. Furthermorejf
we approximatethe partsof the z-trajectoryby a so-
lution x = x(t) of the original system(18) according
to Lemmal, thenwe arrive at a trajectorywhosexs-
componentemainsfor all time in ané&-neighborhood
of I.

Example3. Let us considerthe samesystemagain,
but now we chooseV (x) = 3(xZ + x3 + x3) positive
definiteandq(x) is anarbitrarynegative definitefunc-
tion. This is a more practically relevant application,
becausehe setupcorrespondso a disturbanceatten-
uationproblem.ThenVx(X)B(X)u = xq(X1u1 + Buz) +

X20lU1 4 X3X2U2 Vanisheson theset{x | x; = xo = 0}

identicallyin u. This setis unboundedso onecannot
male sureby standardstatefeedbackhatatrajectory
remainsfor all timesin a boundedsubsef the state
spaceHowever, for the extendedsystemwe have

Vy(2)B(2)0 = (3 4 Xo0) Uy + (X1 + XoXg) U2

+ (—Bx1 + X301) vy 2. (21)

It canbeverifiedthatall threecoeficientsof thislinear
formin 0= [uz up vl72]T vanishsimultaneouslyn at
mostthreepoints Y, 242, 243 of the statespace So
let us considera ball B = {x| ||x|| < R} which con-
tains z(0)(= initial condition)and 29,22, 2% in its
interior. For ary z € 0B(=boundaryof B) the function
V,(2)B(2)0 of 4 is not identically zero,henceonecan
find 0 suchthatV;(2) timestheright handsideof (19)
is negative for all z and every w boundedby (12).
For reason®f compactnessne canfind positive &;,
i = 1,2, suchthatfor all z(0) € 0B andall w satisfying
(12), the solutionz = z(t) of (19) with 0 = ((z) hasa
decreasingiorm||z(t)||? for 0 < t < & and||z(81)|| <
R—0,. Let € < &, andconsiderthe solutionx = x(t)
of (18)- for thesamew andu = u(t, ((x)) - with initial
value x(0) = z(0) which is constructedwith the help
of Lemmal. This solutionsatisfied|x(t)|| < R+ € for
allt € [0,61] and||x(d1)]| < R. Therebywe succeeded
in finding a controlstrateyy for (18) whichis indepen-
dentuponw andhasthefollowing property:Wheneer
atrajectoryreachesheboundaryof Bt is drivenback
by an appropriatediscontinuousstate feedbackinto
the interior of B and staysin the meantimein an ¢-
neighborhoof B. This of coursemeanghatwe can
keepatrajectorystartingatt = 0 in apointx(0) in the
interior of B for all timesin ane-neighborhoof B.

4. AN ALTERNATIVE FORA DISTURBANCE
ATTENUATION STRATEGY

4.1 Localdissipationinequalities

Next, a framework for the designof a disturbance
attenuatiorstratey is proposedWe treatthe problem
formulatedin Section3.1, undercertainhypothesis.
First, we assumehefollowing systemstructure

X1 = p1(X) + B1(X)u+ Gy (x)w

X2 = P2(X) + B2(X)u, (22)

where the state vector x is split up into two parts
X = [x1 %], x1 € R, % € R, n; > 0. Note that
it is assumedthat w does not act directly on x.
Furthermorewe assumehatV (x) satisfies

V() [P1(x) p2(x)]" < a(x)

i.e. the dissipationinequality (13) holds for the un-
perturbedand uncontrolledsystem.From techniques
usedin (Knobloch, to appear),it turns out that this
hypothesesre meaningful.A controllaw whichis a
relevantform from aphysicalpoint of view andwhich
meetshedemand®f Lemmal is givenby

(23)

u = u(t,x(t)). (24)

This feedbackcan be best characterizedas discon-
tinuous‘discretized’statefeedback DSF), wherethe
time interval [to,te] is divided into sufiiciently small
subintenalsd = tj+; —tj. Theideato enforce(13) by



DSFis to satisfyon eachsubinteral [t;, ti+1] its local
analog

tit1
Vi) V@) < [ oot (25)
and by this to satisfy (13). Finally, we arrive to a
problem which fits very well into the demandswe
needand which one may call the local form of the
dissipationinequality: To find, for sufficiently small
0> 0,au=u(t,x(t)) suchthat

tj+0
V(X(t +3)) — V(x(t)) < /t ax(t)dt,  (26)
for x = x(t) beingasolutionof (11)for somecontinu-
ousw satisfying(12).

Therefore,the main problemis to find an open-loop
controlu = u(t,x(t)) suchthatthe local form of the

dissipationinequality (26) is satisfied.Someprelim-

inary resultson solving this problem are presented
below.

4.2 Somepreliminaryresults

First attemptsto meetthe local dissipationinequality
(26) have shown, thatit is meaningfulto usea control
law of the form

u=uy (S,X(ti),(:)) —}—Uo(X(ti),(:)),

where w satisfiesequation(12), and s = %, t e

[ti,ti + O]. Note that all valuesof uj(s,.,.), 0 <s<

1, contribute to the control action regardlesshow

smalld is. Thereforejt is clearthata solutionof the
dissipationinequality cannotbe reachedby passing
from the integral form (13) to a pointwisedissipation
inequality

Vi(¥) (P(¥) + B(x)u+ G(X)w) < a(x). (28)

The analysisleadingto control law (27) is an appli-
cation of the approachto dissipationinequalitiesfor
system®f theform (22) aspresentedh (Knobloch,to
appear),see especiallyChapter1,3,5. Furthermore,
it is clearthat someadditionalconditionson system
(22) are neccessarywhich follow from the approach
presentechereandfrom the resultsin (Knobloch,to
appear) Our ongoingaswell asfuture researctgoal
is focusedon the derivation of anexplicit controllaw
onthebasisof (27) by combiningtheresultspresented
herewith the resultspresentedn (Knobloch,to ap-
pear).Finally, to get a feeling how control law (27)
will look like, it isillustratedin Figurel.

(27)

5. DISCUSSIONAND CONCLUSION

In this paperwe proposea framework for disturbance
attenuatiorwhich exploits the natureof nonlinearsys-
temswith amultivariableinput,in particularaconcept
which fits very well into the demandsf Lemmal,

Control u

8l

| ////////

o .
Time t

4

Fig. 1. An examplefor a controllaw aspresentedn
Section4.2.

the backboneof our framework. Lemmal givesare-
lationshipbetweerthe systemunderinvestigatiorand
anextendedsystemin the sensehatary trajectoryof
the extendedsystemcanbe tracked by a trajectoryof
the original system Furthermorewe have showvn that
Lemmal canbe appliedto other problems,besides
disturbancettenuation.

Of course sereralproblemsareleft openin thiswork.
Themostimportantoneis to derive anexplicit control
law, which exploits the advantagesof the proposed
disturbanceattenuatiorstrateyy. This is our future as
well asongoingresearctyoal.

AppendixA. A SKETCHOF THE PROOFFOR
LEMMA 1.

For simplicity of expositionwe only consideithecase
without disturbance.The more generalresult with
disturbanceanbe shavn alongthe samelines.

Propositionl. Givenasolutionz = z(t) of

z=a(t,2) +B(t,2)q, (A.1)

whereB(t,2)( is definedas

B(t,2)0= % br(t,2)ur + 3 [by, bu](t, v
r=1

v

on somefinite interval [to,te]. Givenalsoe > 0. As-
sumethat the right handside of (A.1) is sufiiciently
smoothasafunctionoft, z. Thenthereexistsadiscon-
tinuousstatefeedbacklaw u = u(t,l(t,x)) suchthat
thesolutionx = x(t) of

x=a(t,x) + B(t,x)u (A.2)

with x(to) = z(to) , satisfied|x(t) —z(t)|| < g th <t <
te.

Proof. Our basictool is the notion of a “control vari-
ation concentratecat somepoint t*” (cf. (Knobloch,
1981),Definition9.1).It combineghe‘needle-shaped’



variationsusedin the proof of the Pontryaginmax-
imum principle with the standardvariationsusedin
classicalcalculusof variationsand exhibits the same
simple superpositiorpropertyasthe Pontryaginvari-
ations.Above all, the effect of sucha variationon the
state- crucial for questionsof local controllability -
can be describedin termsof formal power seriesin
several variables.An example has beenworked out
in (KnoblochandWagner 1984),Sec.2. It concerns
(A.2) in casea(t,x) = 0. Notethatthegeneratasecan
alwaysbereducedo this specialby meansof a time-
dependentstate transformation(see (Knobloch and
Wagner 1984),Sec.4), sowe will assume(t,x) =0
from now on. It is shovn that n-dimensional(n =
dim(x)) vectorsof theform

z+ A\?B(t,2)(+ higherordertermsin A (A.3)

for arbitrary t,z, small scalarA, and G can be in-

terpretedas reachablepointsin the following sense.
Denote for shortnessthe vector (A.3) - including

the remainderterm - by c(t,z (,A). For fixed val-

uest*,z*,0*,\* of thevariablesc(t*,z*,0*,\) canbe

reachedattime t* alongatrajectoryx = x(t) of (A.2)

startingin X(tp) = z* atinitial timetg =t* — kA. Theu

whichis insertedn (A.2) is atime-dependendiscon-
tinuousvectorvaluedfunctiondependingipond. The

explicit constructioris documentedn (Knoblochand
Wagner 1984),(2.18)-(2.21)andTheorem7.1.

This is a ‘small-time-local-controllability’result, the
stepto what one may call ‘tracking’ of z= z(t) on
a given (large) intenval [to,te] is donevia iterations
of the map c. Divide [to,te] into sufiiciently small
subintenals [tj,ti+1] and define recursvely z.q =
c(ti+1,%,0i,A), wherel; = Gi(tj,z) is thecontrolinput
- evaluatedatt =t;, z= z - ontheright handside of
(A.1). Theinitial valueis x(tp) = z(tp). The z's are
essentiallythe cornerpointsof an EulerCauchypoly-
gonapproximatinghe trajectoryz(t) (see(Knobloch
and Wagner 1984), Sec.5). On the otherhandz;
canbereachedttimet;;, alongatrajectoryof (A.2)
(for asuitableu) startingatt =t; in thepointz. Hence
- andthis it the geometricideaof the proof givenin
(KnoblochandWagner 1984)- onearrivesat another
approximatiorof z(t) if onereplacesheline sggments
connecting;,z1 of thestandardeulerCauchypoly-
gonby trajectoriesof (A.2) connectingz, z+1. O
Strictly speaking,the situation discussedhere does
not cover completelythe oneof Lemmal (a(t,x) =
p(x) + G(x)w(t)) sincewe assumehere smoothness
(and not merely continuity) with respectto t and
also full knowledgeof a(t,x) (in orderto construct
u(t,x)). So some supplementaryconsiderationsare
called,whichwill bepresentedater
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