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Abstract: The iterative nature of state feedback control appoaches based on the addition of
control places (in Petri net models), can give rise to redundancies in the added control. These
redundancies are characterised as implicit places. In this paper we prove that deciding the
implicitness of a place added to a live marked graph is of polynomial complexity.
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1. INTRODUCTION

Petri net models have been extensively used in the syn-
thesis of controllers for discrete event systems arising
from the application domain of flexible manufacturing
systems. The specification of the controller, in the case
of the state feedback controlapproach (Hollowayet
al., 1997), can be given as a set of forbidden states.
The goal of the control is that of constraining the
system behaviour so that a set of forbidden states
cannot be reached. The corresponding control policy
is calledstate feedback. An important class of these
state specifications is related to the liveness enforcing
of a system or the avoidance of (total or partial) dead-
lock states. The controller specification for deadlock
avoidance is the set of deadlock states.

One of the fundamental problems in the computation
of the control is the characterization of the dead-
lock states, because the synthesis of the controller
is strongly dependent on it. For example, some ap-
proaches (Ezpeletaet al., 1995; Xie and Jeng, 1999)
consider a specification of deadlock states based on
the emptyness of the siphons of the net system. That is,
an empty siphon represents a region of the reachability
set with the property that all places belonging to the
siphon are empty. This means that the output transi-
tions of an empty siphon are dead forever. In other
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cases (Banaszak and Krogh, 1990), deadlock states are
specified by other particular substructures. The com-
mon factor to all these approaches (even no related
to the deadlock avoindance control policy) is that the
specification of the forbidden states can be expressed
by means of linear inequalities, which set of integer
solutions are the states to forbid in the behaviour of
the net system. The controller to be sinthesized from
each linear inequality is a place that can be obtained as
a linear combination of a set of places derived from the
places whose marking variables appear in the inequal-
ity, i.e. they arestructurally implicit places. Therefore,
the non-negativity of the marking of the control place
cuts all forbidden states, or, in other words, the region
composed by the markings satisfying the specification
of the forbidden states is characterised by a negative
marking of the control place. This approach has been
generalised in (Park and Reveliotis, 2000) defining the
algebraic livenes enforcing supervisors.

This approach has been shown as a fruitful way to
obtain the controllers, but in general it requires an
iterative method, because new deadlock states can
appear in the system.

The iterative nature of the method means also that
after an iteration we can add a set of control places
that can become redundant with respect to the set of
control places added in other iterations. Therefore, the
detection of these redundancies is interesting in order
to compute a controller as simple as possible. The
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concept that captures the idea of redundant control
placeis theconcept of implicit place.

In thispaperweinvestigatethecomplexity of testingif
a placeis implicit. This testrequires thecomputation
of the minimum initial marking making implicit a
structural implicit place.After thiscomputation,if the
initial marking of the control placeis greaterthanor
equal to the computed marking making it implicit,
then the control place is redundant and it can be
removedto obtaina simplercontroller.

The paperis organisedas follows. In sections2 and
3 the basicdefinitionson implicit placesare given.
The Minimum Initial Marking Problem(MIMP) is
presentedin Section4, aswell as its complexity for
thecaseof freechoicenetsystems.Section5 presents
new resultsconcerning the complexity of the MIMP
for marked graphs and proving that in this casethe
complexity is polynomial. Becauseof the lack of
space,no basicdefinitions andnotationsaboutPetri
netsaregiven. Theusednotationcanbefoundin the
relatedpaper (García-VallésandColom,1999).

2. IMPLICIT PLACES

An implicit placeis a placewhoseremoval doesnot
change the behaviour of the netsystem.Two notions
of behaviour equivalence areusedto defineimplicit
places.The first one considers that two net systems
have thesamebehaviour if they presentthesameoc-
currencesequencesof transitions.Thatis, theseplaces
canbe removed without changing the sequential ob-
servationof thebehaviour of thenetsystem.Implicit
placesunder this equivalence notion are called se-
quential implicit places(SIP). The secondnotion of
equivalenceimposesthat the two net systemsmust
have the sameoccurrencesequences of steps.In this
case,implicit placesare called concurrent implicit
places(CIP)andits removal doesnotchange thepos-
sibilities of simultaneousoccurrencesof transitionsin
theoriginal netsystem.

Definition1. (Colom, 1989) Let
���������

m0 	 be a
net systemand

��
������
��
m0

 	 the net system

�
with an additional place p. p is a Sequential [Con-
current] Implicit Place(SIP)[CIP] if f L � ����� L � � 
 �
[LS � ����� LS � ��
�� ], i.e., the addition of p preserves
all occurrencesequences[of steps]of

�
.

Note that if p is a SIP (CIP), RS� ����� RS� ��
�� P � ,
becausethe occurrencesequences arepreserved, and
therefore,if m is reachable in

�
by theoccurrencese-

quenceσ , a marking m


suchthatm


��
q� � m

�
q� ��� q ��

p, andm

��

p� � m0

��

p�! C
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p
�
T �#" σ will bereachable

in
��


.

In the rest of the paper, whenever appropiated,we
will use primed variables to denote objectsof

�$


(thenetsystemwith theaddedplace),andnon-primed
variablesfor objectsof

�
(the“original” netsystem).

The relation betweensequentialand concurrent im-
plicit placesis shown in thefollowing result.

Corollary 2. (García-Vallés andColom,1999) 1) If p
is a CIP, thenp is a SIP. 2) If p is self-loop free,then
p is aCIP if andonly if p is aSIP.

The removal of tokens from an implicit place can
make it non-implicit. Thefollowing resultguarantees
that an implicit place remainsimplicit if its initial
marking is increased.Therefore, given an implicit
place,thereexistsa minimuminitial marking for this
placethatmakesit implicit.

Theorem3. (García-VallésandColom,1999) Let
��������

m0 	 be a net systemand p a SIP (CIP) in
�

.
The placep is a SIP (CIP) in all net systems

�&%'������
m0
% 	 , suchthat m0

% �
p��( m0

�
p� andm0

% �
q� �

m0
�
q� for all q �� p. In otherwords,the SIP (CIP) p

remainsimplicit if its initial marking is increased.

Finally, we definethe implicitnessproperty in terms
of reachable markings insteadof sequences.It means
thataSIP(CIP) is never theonly placethatavoidsthe
occurrenceof (stepsconcerning) its output transitions.
This characterisationis very useful becauseit canbe
manipulatedusingalgebraic techniques.

Proposition4. (García-VallésandColom,1999) 1) p
is aSIPof
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3. STRUCTURALLY IMPLICIT PLACES

The implicitnessof a placedepends, in general, on
the initial marking of the net system.If the initial
marking of thenetwithout theplacechanges,in some
casesis alwayspossiblemaketheplaceimplicit again
by changing its initial marking acordingly. Places
that fulfil this property arecalledstructurally implicit
places. Theword“structurally” highlightsthefactthat
thisproperty depends exclusively on thenetstructure.
For structurally implicit places,their implicitnessis
determinedby its initial marking only.

Definition5. (Colom, 1989) A placep is a sequential
structurally implicit place (SSIP) (concurrent struc-
turally implicit place (CSIP)) of

�6

if and only if

for eachnetsystem
�����

m0 	 , thereexistsa
)

IN such
that p is a SIP (CIP) in

���7
��
m0

 	 , with m0


��
q� �

m0
�
q� � q �� p, andm0


��
p� � a.



According to the definition, a structurally implicit
placecanbecome implicit for any initial marking of
therestof places,if we have thefreedom to selectan
adequateinitial marking for it. However it shouldbe
notedthat implicitnessproperty does not implies its
structural counterpart. That is, therecan be implicit
placesthatarenotstructurallyimplicit. Justlike in the
caseof implicit places,somerelationsbetweenSSIPs
andCSIPscanbeestablished.

Theorem6. (García-VallésandColom,1999) 1) If p
is aself-loopfreeplace,thenp is aCSIPif andonly if
p is aSSIP. 2) p is a CSIPif andonly if p is SSIPand8

y
�
k suchthat:

yT " C 9 k " C 
 � p � T �
yT " Pre ( Pre


 �
p
�
T �

k 9 1
y ( 0

(1)

SSIPscan be efficiently characterised according to
the following results.Obviously, the given structural
conditions canbecheckedin polynomial time.

Theorem7. (Colom, 1989) A placep is a SSIPif and
only if thereexistsy ( 0, suchthatyT " C 9 C


��
p
�
T � .

Corollary 8. Let
�

bea structurally boundednet. p
is a SSIPof

�+

if andonly if thereexistsy suchthat

yT " C 9 C

��

p
�
T � .

Thealgebraiccharacterizationmakespossibletoprove
thattheequivalencebetweenSSIPsandCSIPscanbe
extended to placeswith self loops,if the net without
theplaceis structurally bounded,asthenext corollary
proves. Becauselive marked graphs are structurally
bounded,only SSIPshave to beconsidered.

Corollary 9. Let
�

beastruturally boundednet.p is
a CSIPof

��

if andonly if p is a SSIPof

�6

.

Structural implicitnessis not, in general, a necessary
condition for implicitness.However, asthe following
resultestablishes,it turnsto benecessarywhenthenet
without theplacehassomeadditional properties.

Theorem10. (García-Vallés andColom,1999) Let p
beaSIPof

��

. If
�

is structurallyboundedandeach
minimal t-semiflow of

�
canoccur in isolationfrom

somereachable marking, thenp is alsoa SSIP.

4. THE MINIMUM INITI AL MARKING
PROBLEM (MIMP)

Thereexist several well-known subclassesof netsys-
tems,asfor example liveandsafefreechoicenets,and
of courselive markedgraphs, fulfilling theconditions
of Theorem10,andtherefore SSIPnessis a necessary

condition for SIPnessfor them.Moreover, SIPnessis
alsoa necessarycondition for CIPness(Corollary 2).
Taking into account the definition of structurallyim-
plicit place,in suchcasestheimplicitnessproblemcan
bedecomposedin two subproblems:1)Determiningif
theplaceisaSSIP;2)Determinigif theinitial marking
of theplaceunderstudyis enough to make it implicit.
Subproblem 1 is easily decidedin polynomial time
becauseit only requires to find a solutionof a LPP
(Theorem 7 or Corollary 8). Subproblem2 is harder,
and it will be drived in the rest of the paper. Note
alsothatbecausetheincreasingof the initial marking
of an implicit placedoesnot affect its implicitness
(Theorem 3), subproblem 2 can be enunciatedas a
minimum initial markingproblem (making the place
implicit). This problemis formally statedasfollows:

Minimum Initial Marking (of a SSIP)
Given: A netsystem

��

, aSSIPpof

��

, andaninitial

marking m0
�
p� suchthat p is aSIPin

�&

.

To decide: is m0

��

p� theminimuminitial marking that
makesp a SIP(or CIP) in

�
’?

In a previous work (García-Vallés andColom,1999)
thisproblemwasprovedNP-Complete(for SIPs)even
whenthenetsystemwithout p is a live andsafefree-
choicenet system,a very simple and well-behaved
subclass.In the following section,and for the case
of a structurally implicit placeaddedto a live marked
graph, wecharacterisetheMIMP by meansof a linear
programming problem, and thus the implicitness of
theplacecanbedecidedin polynomialtime.

5. THE MIMP IN LIVE MARKED GRAPHS

In this sectionthe subclassof live marked graphs is
addressed.Recallthat theplaceunder studyis added
to live marked graph

�:�;�����
m0 	 , and possibly

the net with the addedplace,
�<
��=���+
��

m0

 	 , is

not a marked graphany longer. Both sequentialand
concurrent versions of implicitnessare studied.As
it was noted in Section4, SSIPnessis a necessary
condition for both kinds of SIPness,and then only
theMIMP remainsopen. Making useof theimportant
property that the net stateequationof a live marked
graph hasnot spurious solutions,andwith thehelpof
totally unimodular matricestheory, polynomial-time
characterizationsfor bothimplicitnesspropertieswill
beobtained.

Notice that determining livenessfor marked graphs
is of polynomial complexity: A markedgraphis live
if and only if it is conservative, consistent,and all
circuitscontainat leastonetoken.

5.1 Totally Unimodular Matrices

An integer programming problem definedover the
constraint setS

��>
x
)?1 1 n% ;A " x 9 b @ canbe some-

timessolvedasa linearprogrammingproblem(mak-



ing x
)

IRn% ) if the matrix A hascertainproperties.
Totally Unimodular Matrices(TU) area kind of ma-
trices fulfilling the needed properties.As it will be
exposedin thefollowing subsections,andfor thecase
of livemarkedgraphs,thematricesthatdefinethesets
of constraintsassociatedwith the MIMP are totally
unimodular. This fact will allow to relax the domain
of thevariablesfrom integer to real.All theresultsin
thissubsectionhavebeentakenfrom (Nemhauserand
Wolsey, 1988).

Definition11. An m A n integral matrix A is totally
unimodular (TU) if the determinant of eachsquare
submatrix of A is equal to 0, 1, or B 1.

The usefulness of TU matricesis that an IPP can
be solved as a LPP, if the matrix that definesthe
constraints is TU, asthefollowing propositionsstate.

Proposition12. If A is TU, thenP � b ���C> x ) IRn% : A "
x 9 b @ is integral for all b

)'1 1 m for which it is not
empty.

Proposition13. Considerthelinearprogrammingprob-
lemLPoverthepolyhedronPgivenbyzLP

�
max

>
cT "

x : x
)

P @ . Then,the following statementsareequiv-
alent:1) P is integral. 2) LP hasan integral optimal
solution for all c

)
IRn for which it hasan optimal

solution.

The following characterization of TU will be very
fruitful in the proofs of the main results for live
markedgraphs.

Theorem14. A is TU if and only if for every J D>
1
�5EFEFE5�

n @ , thereexistsa partition J1
�
J2 of J suchthat,

for i
�

1
�FE5EFEF�

m:GGGGG ∑j H J1

A
�
i
�
j �#B ∑

j H J2

A
�
i
�
j � GGGGG 9 1

5.2 Sequential Implicit Places

In order to apply the theory of TU matricesto the
minimum initial marking problem, anIPPcharacteri-
zationof SIPnessis needed.Taking asstartingpoint
the characterization given in Proposition 4, the first
step is to substitutesuch a set by the marking so-
lutions of the net stateequation. This substitutionis
possible,basically, because the net stateequation of
live marked graphs have not solutions that are not
reachable (Murata,1977).

Lemma15. p is a SIP of
�&


if and only if for all
t
)

p, , andfor all σ
)'1 1I3T 3% , suchthat m0  C " σ (

Pre
�
P
�
t � , m0


��
p�.(JB C


��
p
�
T �#" σ  Pre


 �
p
�
t � .

Proof:
�LK

Becausep is a SIP, RS� ���4� RS� ��
�� P � .
RS� �&� canbecharacterizedby themarking solutions
of thenetstateequation, because

�
is a live marked

graph (Murata, 1977), that is RS� ���M�$> m �
m
�

m0  C " σ � m ( 0
�

σ
)N1 143T 3% @ . On theotherhand, an

becausep is a SIP, L � ����� L � �&
/� and, if m0
σB�O m,

thenm0

��

p� σB.O m
�
p� . ThereforeRS� �&
/� canbechar-

acterizedasRS� � 
 ���P> m � m 
 � p� � m �
m0  C " σ (

0
�
m

��

p� � m0
�
p�Q C

�
p
�
T �!" σ � σ )R1 1-3T 3% @ . Takinginto

account this fact,theright-handsideof Poposition4.1
canbedirectly rewrittenasstatedin this lemma.S � Thecondition canberewritten as:for all t

)
p , ,

and for all σ
)T1 1�3T 3% , such that m

�
m0  C " σ (

Pre
�
P
�
t �.�U( 0

�
andm


��
p� � m0


��
p�! C


��
p
�
T �#" σ , then

m

��

p�V( Pre

 �

p
�
t � . If this condition is met, then it

is also true for the particularcasewhen m

 �

p�I( 0.
But in that casem

�
m

��

p� arethe solutionsof the net
stateequation of

�&

. This set includes RS� ��
/� , and

therefore the condition is also true for RS� �
�� . By
Proposition 4.1, p is aSIP. W
Theresultof Lemma15 asa family of IPPs(onefor
eachoutput transitionof p) canberewriten, searching
for the initial markingof p that fulfils the inequality
for every reachable marking.

Lemma16. Let thefamily of IPPs2,definedfor every
t
)

p, :
z1
t
�

max. B C

 �

p
�
T �#" σ  Pre


 �
p
�
t �

s.t. m0  C " σ ( Pre
�
P
�
t �

σ )X1 1 3T 3%
(2)

p is a SIPof
��


if andonly if for all t
)

p , , its corre-
sponding IPP2 is bounded,andm0


 �
p�Y( max

>
z1
t
�
t
)

p,!@ .
Proof: Theresultis easilydeducedfrom Lemma15,
taking to account thateachIPP 2 computesan initial
marking that fulfils the condition of Lemma 15 in
any case.Note that eachIPP 2 alwayshasa feasible
solution,becausein live net systems,andgiven any
transition,thereexistsat leastareachablemarking that
enablesit, that is, thereexists m

)
RS� ��� suchthat

m ( Pre
�
P
�
t � , for any transitiont. W

Finally themainresult,thecharacterizationof SIPness
in termsof a setof linear programmingproblems,is
obtained taken into account that the incidencematrix
of a marked graphis totally unimodular. Moreover,
theboundednessof thesolutionsof IPPsin Lemma16
will beprovedasequivalentto thecondition of SSIP-
ness.

Theorem17. Let the family of IPPs 3, definedfor
every t

)
p, :

z2
t
�

min. yT "#Z m0 B Pre
�
P
�
t ��[� Pre


 �
p
�
t �

s.t. yT " C 9 C

 �

p
�
T �

y ( 0

(3)



p is a SIP of
��


if and only if p is a SSIP and
m0

��

p�\( max
>
z2
t
�
t
)

p,]@ .
Proof: Thefamily of IPPs2 canberewritten in stan-
dard form as: z1

t
�

max
> B C


��
p
�
T �." σ : σ

)
Pt @V 

Pre

 �

p
�
t � , beingPt

�^>
σ
)X1 143T 3% : C " σ 9PB Pre

�
P
�
t �! 

m0 @ . C is TU becauseit is thenode-incidence matrix
of a bipartitegraph (theincidencematrix of a marked
graph); additionally, the polyhedraP



t
��>

σ
)

IR
3T 3% :

C " σ 9�B Pre
�
P
�
t �_ m0 @ arenot emptybecausethe

netsystemis live (seetheproof of Lemma16).These
two conditions imply that for all t

)
p , , P



t is inte-

gral (Proposition 12). Therefore, for all t
)

p , , z


t
�

max
> B C


��
p
�
T �`" σ : σ

)
P


t @ hasan integral optimal

solution (Proposition 13), andz


t
�

z1
t . Applying the

Alternatives Theorem(NemhauserandWolsey, 1988)
to eachz



t , we obtainthefamily of LPPs3. Becausez



t

hasalwaysafeasiblesolution,its correspondingLPP3
is eitherbounded(if z



t is bounded)or non-feasible(if

z


t is unbounded).

Therefore we can establishthat
�
t
)

p , , its corre-
sponding IPP2 is bounded,andm0


��
p�Y( max

>
z1
t
�
t
)

p,!@ if andonly if
�
t
)

p , , its corresponding LPP 3
hasafeasiblesolution, andm0


��
p�a( max

>
z2
t
�
t
)

p,!@ .
Finally, notethat theexistenceof solutions of LPPs3
is equivalent to theSSIPnessof p (Theorem7). W
5.3 ConcurrentImplicit Places

In thecaseof CIPstheprocedureto obtainthedesired
result is similar to that followed for SIPs.However,
in this case,total unimodularity of the matrix corre-
sponding to theMIMP mustbeexplicitly proved.

Lemma18. p is a CIP of
�&


if andonly if for all σ
)1 143T 3% , andfor all sp0 )?1 143 p0 3% , suchthat m0  C " σ (

Pre
�
P
�
p,5�a" sp0 , m0


��
p�b(�B C


��
p
�
T �a" σ  Pre
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p
�
p,c�d"

sp0 .
Proof: Theproof followsthesamestepsthattheproof
of Lemma 15,reasoningwith ocurrencesequencesof
stepsinsteadof transitions. W
Just like for SIPness,the condition for CIPnessin
Lemma18is onlysufficient for netsystemsin general,
becauseof theexistence of spurious solutions.

Lemma19. p is a CIP of
�&


if andonly if IPP 4 is
bounded,andm0


��
p�\( z.

z
�

max. B C

 �

p
�
T �#" σ  Pre


 �
p
�
p, �#" sp0

s.t. m0  C " σ ( Pre
�
P
�
p, �#" sp0

σ )X1 143T 3%
sp0 )X1 143 p0 3%

(4)

Proof: The result is easily deduced from Lemma
18, taking to accountthat IPP 4 computesan initial

marking thatfulfils thecondition of Lemma18 in any
case.Note that IPP 4 alwayshasa feasiblesolution,
becausein live net systems,there exists at least a
reachable marking thatenablesany transition,that is,
thereexists m

)
RS� ��� suchthat m ( Pre

�
P
�
t � , for

any transitiont. W
The most dificult part in this subsectionis to prove
thatthematrix thatdefinesthepolyhedron of IPP4 is
TU. Previously, let usrewrite IPP4 in standardform:
zLP

�
max

>
cT " x : x

)
P @ , P

�<>
x
)e1 1 3T 3 % 3 p0 3% : A "

x 9 m0 @ , where:

A
�gf B C Pre
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�
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c
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�
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x
�li σ

sp0 k
Lemma20. ThematrixA is totally unimodular.

Proof: Let us assume,without loss of generality,
that columns in A areorderedin the following way:
A
�j� B C

�
P
�
p,5� � B C

�
P
�
T m p,5� � Pre


 �
p
�
p,c��� . More-

over, the order taken in the columns of C
�
P
�
T m p , �

is maintainedin thecolumnsof Pre
�
P
�
p ,5� . That is, if

thecolumn with index j of C
�
P
�
p ,5� correspondsto the

transitiont, thenthe column with index j  �T � of A
(the columnwith index j in Pre

�
P
�
p ,F� ) corresponds

alsoto transitiont.

Theresultis provedwith thehelpof Theorem14.Let
J D > 1 �FE5EFEF���T �  � p, � @ , thatis, J is asubsetof indexes
that identify a subsetof columnsof A. Let J1, J2 bea
partitionof J defined in thefollowing way: Let j

)
J;

i) If j
)n>

1
�FE5EFEU���

T
� @ , then j

)
J1; ii) In the caseof
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)

J2 else j
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)q>

1
�FE5EFE5�c�

P
� @ betheindex

of a row of A, andai
� GGG∑ j H J1

A
�
i
�
j �#B ∑ j H J2

A
�
i
�
j � GGG .

The goal is to prove that ai 9 1,
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i
)J>

1
�FE5EFE5�c�

P
� @ .

BecauseC is the incidence matrix of a live marked
graph, thereexistsonly two elementsnotequalto zero
in B C

�
i
�
T � , oneof themwith value1 and the otherB 1. Let j1 and j2 betheindexesof thecolumns of A

corresponding to suchelements,respectively. Because
Pre

�
P
�
p,5� correspondsalso to a live marked graph,

there is at most one elementnot equal to zero in
Pre

�
i
�
p,c� (whosevaluewill be1). If suchanelement

doesnot exist, thenai 9 1, becauseif j1, j2 or both
belong to J, thenthey belong to J1, beingA

�
i
�
j1 � � 1

and A
�
i
�
j2 � � B 1. On the contrary, if there exists

an elementnot equal to zero in Pre
�
i
�
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the index of the column of such an element.Then
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�
P
�
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to the samenet, and the sign of C is changed in
A. Threecasesare distinguished: i) If j3 �) J, then
ai 9 1, due to the samereasons than before; ii) If
j3
)

J and j1
)

J then j3
)

J2. In this case,if j2
)

J,
ai
���

A
�
i
�
j1 �_ A

�
i
�
j2 �*B A

�
i
�
j3 � �!��� 1 B 1 B 1

� 9 1. If



j2 �) J, ai
�$�

A
�
i
�
j1 �aB A

�
i
�
j3 � �d�$� 1 B 1

� 9 1. iii) If
j3
)

J and j1 �) J then j3
)

J1. In this case,if j2
)

J,
ai
�;�

A
�
i
�
j2 �d A

�
i
�
j3 � �Y�=� B 1  1

� 9 1. If j2 �) J,
ai
���

A
�
i
�
j3 � �r��� 1 � 9 1. W

Total unimodularity of A allows to prove the main
resultconcerningCIPs,analogousto thepresentedfor
SIPs.

Theorem21. p is a CIP of
�&


if andonly if p is a
SSIPandm0


��
p�\( z.

z
�

min. yT " m0
s.t. yT " C 9 C


 �
p
�
T �

yT " Pre
�
P
�
p, �\( Pre


 �
p
�
p, �

y ( 0

(5)

Proof: BecauseA is TU, the proof follows the same
stepsthan in Theorem 17, except for the last one,
the equivalencebetweenSSIPnessand the existence
of a solutionof LPP 5. Let us prove this last point.
Obviously, theexistenceof asolutionof LPP5 implies
that p is a SSIP(Theorem 7). On the otherhand, if
p is a SSIP, there exists y ( 0 such that yT " C 9
C

��

p
�
T � (Theorem7). If yT " Pre

�
P
�
p,5�L( Pre


 �
p
�
p,5� ,

then y is a solution of LPP 5. On the contrary, let
k
�

max
>
Pre

 �

p
�
q�`B yT " Pre

�
P
�
q� � q ) p ,r@ (k s 0).

Becauselive markedgraphs arestructurally bounded,
thereexistsx ( 1 suchthatxT " C 9 0.Let y1

�
y  k "

x. Theny1
T " C 9 C


��
p
�
T � (becauseyT " C 9 C


��
p
�
T �

andk " xT " C 9 0) andy1
T " Pre

�
P
�
p,c�b( Pre


 �
p
�
p,c� ;

thatis, y1 is a solutionof LPP5. W
Finally, recallthatCorollary2 showedtheequivalence
betweenSIPsandCIPsfor the caseof self-loop free
places.This factmakesthatTheorem21 canbecon-
sideredasaalternativecharacterizationof SIPnessfor
self-loopfreeplaces.

6. CONCLUSIONS

In thestatefeedback control approachby theaddition
of control places,implicitness characterisesredun-
danciesin the control. In this paper we have proved
that for the caseof live marked graphs, checking if
a control placeis implicit is of polynomial complex-
ity. This resultcomplementsa previous work on live
and safefree-choice net systems(García-Vallés and
Colom,1999).
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