
A STATISTICAL APPROXIMATION LEARNING
METHOD FOR SIMULTANEOUS RECURRENT

NETWORKS

Masao Sakai � Noriyasu Homma �� Kenichi Abe �

� Department of Electrical and Communication Engineering,
Graduate School of Engineering, Tohoku University

Aoba 05, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
E-mail : {sakai, abe}@abe.ecei.tohoku.ac.jp
�� Department of Radiological Technology

College of Medical Sciences, Tohoku University
2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan

Email: homma@abe.ecei.tohoku.ac.jp

Abstract: In this paper, a statistical approximation learning (SAL) method is proposed for
a new type of neural networks, simultaneous recurrent networks (SRNs). The SRNs have
the capability to approximate non-smooth functions which cannot be approximated by
using conventional multi-layer perceptrons (MLPs). However, the most of the learning
methods for the SRNs are computationally expensive due to their inherent recursive
calculations. To solve this problem, a novel approximation learning method is proposed by
using a statistical relation between the time-series of the network outputs and the network
configuration parameters. Simulation results show that the proposed method can learn a
strongly nonlinear function efficiently. Copyright © 2002 IFAC
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1. INTRODUCTION

In the field of supervised learning, the most popular
form of the feedforward neural networks, the multi-
layer perceptrons (MLPs) (Andrew Barron, 1994),
have been proven to approximate smooth functions
very well, then many application problems use the
MLPs as a model for identifying and controlling
nonlinear complex dynamic systems (Narendra and
Parthasarathy, 1990). However there are many prac-
tical and difficult applications, e.g., a brain-like in-
telligent control and planning, where the functions to
be approximated are not smooth. In these cases, the
MLPs cannot approximate the non-smooth functions
accurately(Werbos, 1994).

In general, since the recurrent neural networks have
some brain-like complex feedback connections, they

can provide very complex dynamics. Indeed, in the
state space of the dynamic neural system, using the
basin which separates the initial state vectors from
each other according to the corresponding final state
vectors, a new type of neural networks, simultaneous
recurrent networks (SRNs), has the capability to ap-
proximate non-smooth functions(Werbos, 1995).

There are several learning methods to train the SRNs.
However, the most of these methods including the
well-known backpropagation through time (BPTT) al-
gorithm are computationally expensive due to cal-
culation of the final state(Werbos, 1994). Also the
recursive calculation of the gradients diverges when
SRNs learns the strongly nonlinear function by these
methods. To solve these problems, an approxima-
tion method, called the truncation method, has been
proposed(Fausett, 1994). In this method, the recursive
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terms are simply truncated (assumed to be 0). There-
fore, this non-recursive method often leads to wrong
learning directions.

In this paper, to improve the approximation accuracy
without much increase of the computational time, a
novel approximation learning method, a statistical ap-
proximation learning (SAL) method, is proposed. The
proposed method can approximate the gradient by us-
ing a statistical relation between the networks dynam-
ics and the parameters of the SRNs. Simulation results
show that the proposed SAL method can efficiently
learn a strongly nonlinear function which cannot be
learned by the conventional methods. Also, due to the
non-recursive formulation of the approximation, it is
shown that the SAL method can provide a practical
computational time compared with that of the conven-
tional BPTT method.

2. SIMULTANEOUS RECURRENT NETWORKS

Fig.1 shows the simultaneous recurrent networks
(SRNs). For this SRN model, the following variables
are introduced:

u : The external neural input vector,
u = [u1 u2 � � � ur]>,
r is the number of external inputs.

si; xi : The input and output of the ith neuron
in the hidden layer.
i = 1; 2; � � � ; n, n is the number of
neurons in the hidden layer.

yk : The output of the kth neuron
in the output layer.
k = 1; 2; � � � ;m, m is the number of
neurons in the output layer.

y : The neural output vector,
y = [y1 y2 � � � ym]

>,
vki : The weight connecting xi to yk.
wi� : The weight connecting u� to xi.
�i� : The feedback weight connecting y� to xi.
�k : The bias of the kth neuron

in the output layer.
�i : The bias of the ith neuron

in the hidden layer.

Let h be discrete time, h = 1; 2; � � �. The neural inputs
and outputs at time h in the hidden layer, s i(h) and
xi(h), i = 1; 2; � � � ; n, are defined as

si(h) =

rX
�=1

wi�u� +

mX
�=1

�i�y�(h � 1) + �i; (1)

xi(h) =
1

1 + exp (��si(h))
; (2)

where, � is a gain coefficient of the sigmoid function.
The neural outputs in the output layer, yk(h), k =

1; 2; � � � ;m, are defined as
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Fig. 1. Simultaneous recurrent networks (SRNs).

yk(h) =

nX
i=1

vkixi(h) + �k: (3)

The network outputs of the SRN are given as

yk = lim
H!1

yk(H); (4)

where, H is the number of iterations. In this paper
let H be 10 instead of 1. Note that the conventional
MLPs are only a special case of the SRNs with a
configurations as H = 1 and y�(0) = 0.

3. LEARNING METHODS FOR SRN

Supervised learning for the neural networks is the
task of learning a nonlinear function in which several
sample inputs and outputs of the function are given.
Letting

��
u
(t)

;y
d(t)
��
t = 1; 2; � � � ; T

�	
be the set of de-

sired input-output pairs, the changes of parameters,
Æp, are given by the learning methods based on a
backpropagation algorithm as (Rumelhart et al., 1986)

Æp=��
@e

@p
;

=��
TX
t=1

mX
k=1

�
y
(t)

k
� y

d(t)

k

�
@y

(t)

k

@p
; (5)

where e =
PT

t=1

Pm

k=1

�
y
(t)

k
� y

d(t)

k

�2
=2 is a square

error and � is a positive coefficient. If the gradients
@y

(t)

k
=@p are obtained, the change of parameters Æp

can be calculated. In the following, the calculations of
the @yk=@p by conventional methods, i.e., the back-
propagation through time (BPTT) method and the
truncation method are described briefly.



3.1 Backpropagation through time method

The backpropagation through time (BPTT) method
is a general method which calculates the gradients
exactly. From (3) and (4), the gradients @yk=@p and
@yk(h)=@p are given as

@yk

@p
= lim

H!1

@yk(H)

@p
; (6)

@yk(h)

@p
=�p (�k) + �p (vk`) � x`(h)

+

nX
i=1

vki
@xi(h)

@p
; (7)

where �p(v) is defined by

�p(v) =

�
1; (p = v);

0; (p 6= v):
(8)

By (1) and (2), @xi(h)=@p and @si(h)=@p are calcu-
lated as

@xi(h)

@p
=�xi(h) (1� xi(h))

@si(h)

@p
; (9)

@si(h)

@p
=�p (wi�) � u� +�p (�i`) � y`(h� 1)

+

mX
�=1

�i�
@y�(h� 1)

@p
+�p (�i) : (10)

Here letting @y�(0)=@p be 0 as initial values, @si(1)=@p
are given by (10), then @yk(1)=@p are calculated by
(7)� (9). Finally the gradients @y k=@p (� @yi(H)=@p)

are obtained by calculating @yk(h)=@p recursively.

3.2 Truncation method

The truncation method is probably the most popular
method used to adapt SRNs even though the people
who use it mostly just call it ordinary backpropaga-
tion. To calculate the gradients @yk=@p, the method
uses only one simple pass of backpropagation through
the last iteration of the model by truncating @yk(H �
1)=@p = 0. Therefore the method is the simplest
approximation and the least expensive method.

4. STATISTICAL APPROXIMATION LEARNING
METHOD

4.1 Basic strategy for a statistical approximation

The gradients @yk=@p calculated by the truncation
method are not accurate. Therefore it often fails to
learn the strongly nonlinear models. To improve the
accuracy, a statistical approximation learning (SAL)
method is proposed. In the proposed method, the trun-
cation, @yk(H � 1)=@p = 0 are redefined using a

statistical approximation. That is, the recursive gradi-
ents @xi(h)=@p in (7) are approximated by using the
expectation of xi, E[xi], as

@xi(h)

@p
�
@E[xi]

@p
: (11)

Then, from (7)

@yk(H � 1)

@p
��p (�k) + �p (vk`) � x`(H � 1)

+

nX
i=1

vki
@E[xi]

@p
: (12)

To calculate the gradients of the expectation, @E[xi]=@p,
since the SRNs are only a special case of the fully con-
nected recurrent networks, an equivalent notation of
the SRNs to the fully connected recurrent networks is
developed. In the fully connected recurrent networks,
the expectationE[xi] is represented by a function of a
key parameter �2, which implies a variance of the in-
puts si in (1)(Sakai et al., 2001). Using the equivalent
notation and the statistical relation between the expec-
tation E[xi] and the key parameter �2, the gradients
@E[xi]=@p can be approximated by

@E[xi]

@p
�
@E[xi]

@�2
�
@�2

@p
: (13)

Let !ji �
Pm

�=1 �j�v�i, and  j �
Pr

�=1wj�u� +Pm

�=1 �j��k+�j , then the SRNs defined by (1)� (3)
are equivalent to networks contained fully connected
recurrent networks given as

yk(h) =

nX
j=1

vkjxj(h) + �k; (14)

xj(h) =
1

1 + exp(��sj(h))
; (15)

sj(h) =

nX
i=1

!jixi(h� 1) +  j : (16)

To apply the statistical relation to the equivalent SRNs,
let !ji and  j be uniformly distributed random vari-
ables whose expected value is zero. The inputs are
given by sj =

P
i
sji +  j , where sji � !jixi.

Supposing that xi; !ji and  j are independent of each
other, and that the outputs xi are uniformly random
numbers between 0 to 1 when networks dynamics
are chaotic(Sakai et al., 2001). Then the expecta-
tions of sji and  j are given by E[sji] = E[wji] �
E[xi] = 0 and E[ j] = 0. The variances are re-
spectively given by �

2
(sji) = E[!

2
ji
] � E[x

2
i
] and

�
2
( j) = E[ 

2
j ], where �2(z) denotes the variance

of a variable z. Using the above supposition, E[x
2
i
] is

calculated asE[x
2
i
] = 1=3. The expectations converge

to the ensemble averages as n ! 1, thus E[!
2
ji] =P

j;i
!
2
ji

Æ
n
2 and E[ 

2
j
] =

P
j
 
2
j

Æ
n. Therefore by

the low of large numbers, a variance �2 of the inputs
si is calculated by



�2 � n�
2
(sji) + �

2
( j);

=
1

3n

nX
j=1

nX
i=1

!
2
ji +

1

n

nX
j=1

 
2
j : (17)

Here @�2=@vr` is calculated by the definitions of !ji
and  j as

@�2

@vr`

=
2

3n

nX
j=1

nX
i=1

!ji
@!ji

@vr`

+
2

n

nX
j=1

 j
@ j

@vr`

;

=
2

3n

nX
j=1

!j`�jr: (18)

Also @�2=@p; p 2 f�r ; wr`; �r`; �rg can be calcu-
lated similarly. Therefore, if the gradients @E[xi]=@�

2

are calculated, then the target gradients in (13),
@E[xi]=@p can be calculated.

4.2 Calculation of @E[x i]=@�
2

From (2), the sigmoid function is given as a following
power series representation(Sakai et al., 2001).

xi �

8>>><
>>>:

1; (si > �=�);

M1X
�=0

F (� ) � (�si)
�
; (jsij < �=�);

0; (si < ��=�);

(19)

F (� )�

8><
>:

1=2; (� = 0);

�X
k=1

(�1)k+1

2k!
� F (� � k); (� > 0);

(20)

where M1 is a suitable natural number and � is a
positive constant. The probability density g(s i; 0; �2)
of the expectation of the input s i can be given as a
power series representation(Sakai et al., 2001).

g

�
si; 0; �

2

�
=

1p
2��2

exp

�
�
s
2
i

2�2

�
;

�

8>>>>><
>>>>>:

M2X
�=0

R(� )

�
1

�2

�1=2�
s
2
i

�2

��

;

�
jsij < �

p
�2
�
;

0; ( otherwise) ;

(21)

R(� ) �
(�1)�p

2� � 2� � � !
; (22)

where M2 is a suitable natural number and � is a
positive constant. Supposing M1 = 2M2 to avoid
much complicated representation, E[xi] can be given
by a power series representation as

E[xi] =

1Z
�1

xi � g(si; 0; �2) dsi

�

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

X
0���M2
0�k��

Q(�; k)�
2�+1

�
�
2
�2
�k

+

X
M2+1���2M2
��M2�k�M2

Q(�; k)�
2�+1

�
�
2
�2
�k
;

�
�
2
�2 <

�
2

�2

�
;

X
0���M2
0�k��

Q(�; k)�
2�+1

�
�
2
�2
�(k��)�1

2

+

X
M2+1���2M2
��M2�k�M2

Q(�; k)�
2�+1

�
�
2
�2
�(k��)� 1

2

+

M2X
�=0

R(� )

(2� + 1)

(
�
2�+1 �

�
�
2

�2�2

��+ 1
2

)
;�

�
2
�2 >

�
2

�2

�
;

Q(�; k)� 
2 � F (2k) �R(� � k)

(2� + 1)
;

(23)

(24)

where  is a positive constant. From the above ar-
rangements the @E[xi]=@�

2 can be calculated by (23)
and (24) easily. Thus @yk(H � 1)=@p in (12) can be
calculated by (13) and (18). Finally, using the trunca-
tion algorithm and the @yk(H � 1)=@p as the initial
values, the gradients @yk=@p can be calculated.

5. SIMULATION RESULTS

The three neural learning methods, the multi-layer
perceptrons (MLPs) trained by the backpropagation
(BP) method which is equivalent to the truncation
method, the simultaneous recurrent networks (SRNs)
trained by the backpropagation through time (BPTT)
method and the truncation method, have been tested
on a design task which requires the networks to learn
a following non-smooth function (Fig.2).

y
d
=

8<
:

1; (u1 � 0:5)(u2� 0:5) > 0 ;

0:5; (u1 � 0:5)(u2� 0:5) = 0 ;

0; (u1 � 0:5)(u2� 0:5) < 0 :

(25)

In this task, the networks with m = 1; n = 30; r =

2; � = 10 were employed, and the constants and the
coefficient were decided experimentally: M2 = 5,
� = 2:4, � = 2,  = 1:2 and � = 0:0002. The
connecting weights of the networks were initialized
randomly, then changed by the learning methods. The
number of learning iteration was 5000 and the number
of training data was T = 121 (11 � 11 mesh data in
[u1 u2] space, u1; u2 2 f0; 0:1; 0:2; � � � ; 1:0g).

The solid curve in Fig.3 shows the simulation result
using the MLP with the BP method, and the input-
output function of the MLP trained by the BP method



(after 5000 learning iterations) is shown in Fig. 4.
Note that the MLP with the BP method cannot learn
the target model accurately: the non-smooth parts of
the target model are approximated by the smooth
functions.

The dashed curve in Fig.3 shows the simulation result
using the SRN with the BPTT method, and the input-
output function of the SRN trained by the BPTT
method is shown in Fig. 5. Note that the SRN with the
BPTT method fails to learn the target model because
the recursive calculations of the gradients diverged.

The dotted curve in Fig.3 shows the simulation re-
sult using the SRN with the truncation method, and
the input-output function of the SRN trained by the
truncation method is shown in Fig. 6. Note that the
SRN with the truncation method can learn the target
model better than the MLP with BP method. How-
ever, in the other simulation trials, the networks with
different values of the initial states and connecting
weights often fail to learn the target model. The typical
failure is shown in Fig.7 (the dotted curve) and Fig.8
(the trained input-output function). Note that the SRN
trained by the truncation method converges to the un-
suitable local optimal solution. This is because of the
inexact approximation of the truncation method.

On the other hand, the solid curve in Fig.7 shows the
simulation result using the SRN with the SAL method,
where the initial network states and parameters of
the network are taken to be equal to those of SRN
giving the input-output function in Fig.8 trained by the
truncation method. The trained input-output function
is shown in Fig. 9. As compared with Figs. 4�6
and Fig. 9, note that the SRN with the SAL method
can learn the target more accurately than the three
conventional methods.

Also, Table 1 lists the average error over 32 trials
and CPU-TIMEs to calculate the gradients @y

k
=@p in

the similar simulations where the number of learning
iterations was 10,000 and n = 50. In this case, the
BPTT method cannot finish to train the SRN within
a practical computational cost. Note that, as compared
with the average errors over 32 trials, the average error
of the SAL method, 6:98, is less than the average
error, 12:07, by the truncation method under the same
condition. In addition, for 4 trials out of 32 trials,
the SRN trained by the truncation method fails to
get a practical solution within 10,000 iterations. On
the other hand, for all the 32 trials, the SAL method
always leads to a good solution illustrated such as
in Fig. 9. In brief, the accuracy of the SAL method
is better than that of the truncation method. Also
note that the SAL method can provide a practical
computational time compared with that of the BPTT
method.

Table 1. Average error over 32 trials and CPU-TIME

Learning method
Average

error
CPU-TIME

[sec.]
The MLP
with the BP method

13.10 0.11

The SRN
with the truncation method

12.07 (4*) 3.56

The SRN
with the SAL method

6.98 (0*) 8.42

The SRN
with the BPTT method

32.64

� The number of the convergence to a local optimal solution

6. CONCLUSIONS

In this paper, a statistical approximation learning
(SAL) method for the simultaneous recurrent net-
works (SRNs) has been proposed. In a simulation
study, the proposed SAL method was tested. This sim-
ulation results showed that the proposed SAL method
can efficiently learn the target model consisting of
strongly nonlinear and non-smooth functions which
cannot be learned by the conventional methods. Also,
due to the non-recursive formulation of the approxi-
mation, it was shown that the SAL method can provide
a practical computational time compared with that of
the conventional BPTT method. Further applications
using this method are in progress.
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Fig. 2. The input-output function of the target model
given in (25).
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Fig. 3. The error e as functions of learning iteration by
the three conventional neural learning methods,
the MLP trained by the BP method (solid curve),
the SRN trained by the BPTT method (dashed
curve), and the SRN trained by the truncation
method (dotted curve).
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Fig. 4. The input-output function of the MLP trained
by the BP method after 5000 learning iterations.
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Fig. 5. The input-output function of the SRN trained
by the BPTT method after 5000 learning itera-
tions.
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Fig. 6. The input-output function of the SRN trained
by the truncation method after 5000 learning
iterations (a successful result).
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Fig. 7. The error e as functions of learning itera-
tion for the SRN. The dotted curve shows the
typical failure by the truncation method, while
the solid curve shows the result by the proposed
method, the statistical approximation learning
(SAL) method.
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Fig. 8. The input-output function of the SRN trained
by the truncation method after 5000 learning
iterations (a fail result).
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Fig. 9. The input-output function of the SRN trained
by the SAL method after 5000 learning iterations.


