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Abstract: In this paper the application of observers for glass melting furnaces is discussed.
In glass melting furnaces only few variables, of those that are important for the glass quality,
can be measured. Here it is demonstrated how low complexity mathematical furnace models
can be used to estimate the other variables that cannot be measured.
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1. INTRODUCTION

In glass melting furnaces glass is molten at high tem-
peratures and the result is a glass melt that contains a
high amount of very small bubbles (containing mainly
CO2 and N2) and also some solid material (mainly
SiO2) that has to be dissolved in the melt. Further-
more, the glass melt may not yet be homogeneous just
after melting. A sketch of a glass melting furnace is
shown in figure 1. For the melting of the remaining
solid particles it is important that the particles have
a sufficiently long residence time in the furnace and
sufficiently high temperatures along their trajectories.
The small bubbles are released from the melt by letting
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Fig. 1. Sketch of a glass melting furnace with its measurements.

TT is temperature transmitter, PT is pressure transmitter, LT

is level transmitter pO2
is partial oxygen pressure and pCO

is partial carbon monoxide pressure. The sensor with dotted

lines is a sensor for oxygen partial vapor pressure in the melt

and is in a test phase.

them grow and rise to the surface. This process is
called the fining process. The bubble growth is in-

duced by a so called fining agent, that dissociates at a
higher temperature than the melting temperature of the
glass to form a fining gas. For the melting, fining and
homogenizing processes not only the temperature is
important but also the velocities in the melt. In figure 1
it is shown that temperatures in the glass melt are not
measured. To determine the temperatures in important
glass melt zones but cannot be reached through online
measurements we use an estimator which is designed
based on mathematical models that are available for
the glass melting furnaces. Here the design of such
estimator for glass melting furnaces is discussed. First
the derivation of a relatively simple simulation model
is presented. This model is used in the Kalman ob-
server that will be discussed next.

2. MODELS FOR THE GLASS MELTING
FURNACE

Glass melting tanks are often modeled with CFD-
codes (computational fluid dynamics (Patankar, 1980),
(Post, 1988), (Ungan and Viskanta, 1987), (Viskanta,
1994)) for design purposes or process operation im-
provement. Typical properties of these models are
the high level of detail and high computational effort
needed to do calculate a solution. If a model is used
in a controller, it must allow fast enough calculations
and predict the dynamic behavior in the important
frequency region well enough. Fast enough would typ-
ically mean a hundred times real time and well enough
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would mean that the controller will make the process
meet any performance criteria one might have. Know-
ing this, one can verify that a CFD-code with a high
number of grid points will in general be to complex.
Much effort is being put in developing reduced models
that are derived from a glass tank model (GTM), a
CFD-code written especially for glass melting fur-
naces by the research institute TNO. Until these mod-
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Fig. 2. Physical topology of a glass tank with a single
recirculation loop.

els become available testing of controllers can be done
on simple test models derived from first principles or
identified by using input-output data from the GTM
or a real furnace. Identification of input-output data
((Haber et al., 1981), (Ljung, 1987), (Wertz and De-
meuse, 1987), (Wertz et al., 1992)) will lead to better
models for a particular furnace in a certain operating
range but it can only be applied in that range and for
that furnace. Here a simple model is proposed that
may be useful for:

� Gaining insight in the dynamics of the chemical
and physical processes involved in the melting
of glass and their effects on the overall time
dependent behavior of glass melting furnaces.

� Having a flexible model available that can easily
be extended or simplified and used for the design
and testing of state observer or controllers and
very fast simulations.

The model derived here is based on a container glass
furnace for making green bottles. This furnace has in
the glass melt a single recirculation loop and some
smaller loops.

Table 1 : Indices used in the model description

UB Under batch BB Batch blanket
B Bottom FS Fuel supply
NT Near throat CS Combustion space
T Top E Environment

In figure 2 a physical topology is given of the glass
melt, and the combustion space. It consists of sys-
tems (capacities) and connections. A circle indicates
a lumped system, that is a region with uniform prop-
erties, a rounded rectangle indicates a distributed sys-
tem, that is described by a partial differential equa-
tion, and an arc indicates a reservoir, a region with

properties that are not influenced by in or outflows.
Connections are mass flows (indicated by a solid line)
or energy flows (indicated by dotted lines), that could
be work or heat flows. Table 1 gives the indices of the
systems in figure 1. In the next section a derivation of
the model is given.

2.1 Ideally stirred regions

For the ideally stirred region under the batch blanket
an energy equation for a constant pressure zone leads
to:

ρcpVUB
dTUB

dt
= ρcpV̂T3jUB

�
TT 3�TUB

�
�αe f f AUBjBB1

�
TUB �TBB1

�
�

λwallAUBjE

δwall

�
TUB �TE

�
+Se;UB

This equation can briefly be written as:

ṪUB = fC
UB

�
TUB;TT 3

�
+ f D

UB

�
TUB;TBB1;TE

�
+

Se;UB

ρcpVUB
(1)

Chemical reactions are assumed to take place outside
region (that is in the batch blanket) and the glass is
treated as a single component having average proper-
ties that depend on the composition.

The region near the throat can be modeled similarly
with:

ρcpVNT
dTNT

dt
= ρcpV̂B13jNT

�
TB13 �TNT

�
+ρcpV̂B23jNT

�
TB23 �TNT

�
�

λwallANT jE

δwall

�
TNT �TE

�
�αe f f ;NT ACSjNT

�
TNT;S �TNT

�
+Se;NT

This can be written as:

ṪNT = fC
NT

�
TNT ;TB13;TB23

�
+ f D

NT

�
TNT ;TNT;S;TE

�
+

Se;NT

ρcpVNT
(2)

2.2 Heat transfer in laminar flow regions

For the laminar flow regions in the tank we can use
a two dimensional model, with convective transport
in the ξ1-direction and conductive transport in the ξ2-
direction. This results in a two dimensional form of
the energy equation:

∂ (cpT )
∂ t =

1
ρ

∂
∂ξ2

�
ke f f

∂T
∂ξ2

�
� v1

∂ (cpT )
∂ξ1

+
Se
ρ +∑

8k

q̂wall;k
ρ

which can be discretized (Patankar, 1980):
dTi j
dt =

ke f f

ρcp∆ξ 2
2
(Ti; j+1�Ti; j)�

ke f f

ρcp∆ξ 2
2
(Ti; j �Ti; j�1)

�
hv̄1i

∆ξ1
(Ti+1; j �Ti�1; j)+

Se;i j
ρcp

+∑
8k

q̂wall;k
ρcpVi j



Here, a central difference interpolation scheme for
the diffusive terms and an upwind scheme for the
convective terms are applied. For the top and the
bottom region the following equations can be found:

Ṫ B = f D
B
(T B;T T ;TE)+ fC

B

�
T B;TUB

�
+

Se;B
ρcp

(3)

Ṫ T = f D
T

�
T T ;T B;T T;s

�
+ fC

T

�
T T ;TNT

�
+

Se;T
ρcp

(4)
Figure 2 shows that for the bottom and top region 6
and 3 grid points (lumps) are chosen, and so T B 2 R

6

and T T 2 R
3 .

2.3 Model equations for the recirculation flow

Multiplication of the Navier-Stokes equations with the
velocity vector and integration over the entire system
volume gives us an expression for the total kinetic
energy change in the system (Bird et al., 1960):

K̇tot =∑
8m

αmm̂m

 
1
2



v̄3
�

hv̄i
+Φm+

pm

ρ

!
+ ŵpl

�∑
8i

E f ;i+

Z
V

ρβ v �g(T � T̄ )dΩ| {z }
�∑8b ρβ hv̄zigz(T̄b�T̄)Vb

Now if one makes the assumption that the kinetic
energy of the recirculating flow is only influenced by
the size of the buoyancy forces in the melt, then the
following form of this equation can be written:

K̇rc =�∑
8i

E f ;i+∑
8b

ρβ hv̄zigz
�
T̄b� T̄

�
Vb (5)

The friction terms can be derived from the laminar
flow patterns that are assumed by calculating the in-
tegral E f ;i = �

R
Vi
(τ : ∇v)dΩ. In this paper it is as-

sumed that the friction losses occur in the top and
bottom regions indicated by T and B in the physical
topology given in figure 2 and that the flow can be
modeled as one dimensional laminar flow between
horizontal plates.

v1 =
�γiV̂i

WH3
i

� 1
6 γiξ

2
2 �Hξ2

�
Two cases can be considered:

� One dimensional flow (in 1-direction) over one
plate: γi = 3

� One dimensional flow between two plates: γi = 6

With these velocity profiles the accumulation term can
be written as:

K̇rc =
d
dt

Z

VT1

1
2 ρ v̄2dΩ+

d
dt

Z

VT2

1
2 ρ v̄2dΩ+

d
dt

Z

VB

1
2 ρ v̄2dΩ

=

"�
1

60 γ2
T2+

1
15 γ2

T1

�
1
2 ρVTV̂ 2

pull

W 2
T H2

T
R +

γ2
BρVBV̂ 2

pull

60W 2
B H2

B
(R+1)

�
dR
dt

with R=
V̂T

V̂pull

a dimensionless backflow ratio and γ a

constant depending on the situation (one plate ore two
plates). For the friction parts we can derive:

E f ;T 1 =
3V̂ 2

T µLT1

WT H3
T

and E f ;T 2 =
12V̂ 2

T µLT 2

WT H3
T

(6)

E f ;B =
12V̂ 2

B µLB

WBH3
B

(7)

and the buoyancy terms can be written:

∑
8b

ρβ hv̄zigz
�
T̄b � T̄

�
Vb =

�
1
2 +R

� ρβ gVV̂pull
W L

�
TNT �TUB

�
Using these equations we can rewrite the equation for
kinetic energy and we obtain a nonlinear differential
equation for R:

Ṙ =

�
f B
R + f F

R

�
= fR (8)

with

f B
R =

ρβ gV
W L V̂pull

��
1
2 +R

��
TNT �TUB

��
f F
R = 15 µLT

2WT H3
T

V̂ 2
pullR

2
�12 µLB

WBH3
B

V̂ 2
pull (R+1)2

fR =

�
1
60 γ2

T 2+
1
15 γ2

T1

�
1
2 ρVT

W 2
T H2

T
V̂ 2

pullR+
γ2

BρVB
60W 2

B H2
B

V̂ 2
pull (R+1)

This equation describes the acceleration of the recir-
culating glass, due to a change in the temperature dif-
ferences in the melt. The acceleration is counteracted
by the friction forces. Combination of equations (1),
(2), (3), (4) and (8) gives:2

66664
ṪUB
Ṫ B
ṪNT
Ṫ Top

Ṙ

3
77775=

2
666664

fC
UB + f D

UB +Se;UB

f D
B
+ fC

B
+Se;B

fC
NT + f D

NT +Se;NT

f D
Top

+ fC
Top

+Se;Top�
f B
R + f F

R

�
= fR

3
777775

These equations can briefly be written as:

ẋ (t) = f (x(t) ;u(t) ;θ )

If we define ∆x = x� xss then we can write a linear
approximation near the steady state:

∆ẋ(t) = A∆x(t)+B∆u(t)

where

A =
∂ f
∂x

����
x=xss ;u=uss

B =
∂ f
∂u

����
x=xss;u=uss

A step response of the model that was derived here
was compared with simulation results of a detailed
CFD-model. Some results are shown in figure 3. Ma-
jor differences occur in the steady state behavior.

3. LINEAR OBSERVERS

Suppose that in the neighborhood of a certain operat-
ing point the behavior of the glass melting furnace can
be described by a linear state space model of the form:
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Fig. 3. Step response results of a detailed computa-
tional fluid dynamics model (CFD) and the sim-
ple simulation model (smooth curves)

σx = Ax+Bu+w

y =Cx+ v

where xus 2 R
n is the state vector, w 2 R

n , v 2 R
p

are disturbance vectors, u 2 R
m is the input vector

(manipulated variables), y 2 R
p is the output vector

(measured variables) and σ =
d
dt in continuous time

and σx(t) = x(t+1) in discrete time. This state space
model is used in an observer to estimate the state
variables.

3.1 Luenberger observer

A type of observer that is often used is a Luenberger
observer. The structure of such observer type is shown
in figure 4. A Kalman filter ((Gelb, 1974), (Jazwinski,

-
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Fig. 4. Luenberger observer

1970), (Muske and Rawlings, 1993)) also has this
structure and the gain matrix L is then determined
such that the variance of the estimation error x̃= x� x̂
is minimized when v and w are taken as normally
distributed white noise, that is:

min
L;x̂(0)

tr E
�

x̃(t) x̃(t)T
�

The solution is then found in the discrete time case
through the solution of the following Discrete time
Algebraic Ricatti Equation (DARE):

P̄ = AP̄AT
�AP̄CT �CP̄CT

+Rv
��1

CP̄AT

+GwQwGT
w (9)

where Rv and Qw are the covariance matrices of the
disturbance vectors v and w respectively. The solution
P̄ is the steady state value of the covariance matrix P
of x̃:

lim
t!∞

P(t) = lim
t!∞

E

�
x̃(t) x̃(t)T

�
The Kalman gain matrix L is then given by:

L = AP̄CT �CP̄CT
+Rv

��1

The observer equation in the discrete time case is
given by:

x̂(tjt+1) = Âx̂ (tjt �1)+ B̂u(t)

+L(y(k)�Cx̂(tjt �1))

The Luenberger configuration can be put in the stan-
dard form in figure 5 where P̃ can be partitioned as:

P̃ =

�
P̃11 P̃12
P̃21 P̃22

�

If we take

w̃ =

�
R1=2

v 0
0 Q1=2

w

��1�
v
w

�

and w̃ as white noise with unit intensity then the
Kalman filter minimizes

����Fl (P;F)
����

2 = jjP̃11+P̃12(I�
P̃22F)�1P̃21jj2. So the Kalman filter is a H2-filter.
Minimization of the 2-norm means minimizing all

e

ẑ

yu

P̃

P
z

F

w̃

Fig. 5. Filter problem in standard form: Find a filter
F such that the norm of the closed loop transfer
from w̃ to e is minimized

singular values of the transfer matrix Fl (P;F) in the
entire frequency range. By filtering the white noise
disturbances (coloring) emphasis can be put on im-
portant frequency ranges. Let these filters have the
following state space representation:

σxv = Avxv+Bvw̃1

v =Cvxv+Dvw̃1

σxw = Awxw +Bww̃2

w =Cwxw+Dww̃2

with xv 2 R
nv and xw 2 R

nw Then the extended plant is
described by:



0
BB@

σxv

σxw

σx
y

1
CCA=

0
BB@

Av 0 0 Bv 0 0
0 Aw 0 0 Bw 0
0 Cw A 0 Dw B

Cv 0 C Dv 0 D

1
CCA

0
BBBBBB@

xv

xw

x
w̃1
w̃2
u

1
CCCCCCA

The filter that is designed for this extended system
has dimension nv+nw+n. The filter can be extended
in the Luenberger setting by adopting the extended
model also in the observer and then search for a
gain matrix L̃ 2 R

(nv+nw+n)�p ((Muske and Rawlings,
1993)). First we consider the case where we only have
integrating coloring filters for the output disturbance
v:

0
@ σxv

σx
y

1
A=

0
@ Av 0 Bv 0 0

0 A 0 Q1=2
w B

Cv C Dv 0 D

1
A
0
BBBB@

xv

x
w̃1
w̃2
u

1
CCCCA

where
Av = I Bv =

h
R1=2

v;1
0
i

Cv = I Dv =

h
0 R1=2

v;2

i
If we consider the evolution of the filter states, x̂E , we
get:�

xv (t+1)
x̂(t+1)

�
=

�
I�L1 �L1C
�L2 A�L2C

��
xv (t)
x̂ (t)

�

+

�
0
B

�
u(t)+

�
L1
L2

�
(Cx(t)+ v(t))

Now we assume the following:

� Steady state (t ! ∞), which means x̂E (t+1) =
x̂E (t)

� u(t) = 0
� The system is assymptotically stable: limt!∞ x(t)=

0
� The disturbance v(t) = v̄ remains constant (off-

set)

We can then write:�
�L1 �L1C
�L2 A�L2C� I

��
xv (t)
x̂ (t)

�
+

�
L1
L2

�
v̄ = 0

And calculate the steady state value for the extended
state x̂E :�

xv (t)
x̂ (t)

�
=�

�
�L1 �L1C
�L2 A�L2C� I

��1 �
L1
L2

�
v̄

If we use the MATLAB routine dare to calculate
the Kalman gain matrix L and then construct x̂E
where the output disturbance is a constant offset v̄ =�

1 1 1 1
�T

we get for x̂E :

x̂E �

�
x̄v

0

�
and the error x̃ converges to zero. This is indeed
observed and shown in figure 6. The corrections for
the output offset disturbance are applied to the extra
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Fig. 6. The estimation error x̃= x� x̂ of a variable that
is not measured: the temperature in the region
under the batch blanket (disturbance: first a step
and then also a ramp).

filter states xv that were added to the observer. If we
consider the case we only have an input disturbance
filter we get:

0
@ σxw

σx
y

1
A=

0
@ Aw 0 0 Bw 0

Cw A 0 Dw B
0 C R1=2

v 0 D

1
A
0
BBBB@

xv

x
w̃1
w̃2
u

1
CCCCA

The evolution in discrete time of the observer state
xE (t) is then given by:�

xw (t+1)
x̂ (t+1)

�
=

�
Aw �L1C
Cw A�L2C

��
xw (t)
x̂(t)

�

+

�
0
B

�
u(t)+LCx(t)+LR1=2

v w̃1 (t)

Now if we make again some assumptions:

� We only have a constant offset on the state vari-
ables: w̃2 (t) = w̄2

� u(t) = 0 and w̃1 (t) = 0
� Steady state: xE (t +1) = xE (t)

With these assumptions we get:

0 =

�
Aw� I �L1C

Cw A�L2C� I

��
xw (t)
x̂(t)

�
+LCx(t)

If we choose Aw = I and C = I then we would expect
the error x̃ = x� x̂ to converge to zero. Results are
shown in figure 7 and 8. After applying a step dis-
turbance the error converges to zero for this type of
Kalman filter.

Finally, we can add both an input and an output filter.
Then the states of the observer x̂E satisfy:0
@ σxv

σxw

σ x̂

1
A=

0
@ Av�L1Cv 0 �L1C

�L2Cv Aw �L2C
�L3Cv Cw A�L3C

1
A
0
@ xv

xw

x̂

1
A

+

0
@ 0

0
B

1
Au+

0
@ L1

L2
L3

1
A(Cx+Cvv)

In this case offsets lead to steady state estimation
errors. Results are shown in figure 9. If both input



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

−2

0

2

4

6

8

10

12

14
x 10

−3

Temperature under batch (no extension)
Temperature under batch (input disturbance integrator)

t [s]

x̃
[K

]
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and output disturbances are present as discussed above
then no improvements if compared with the ordinary
Kalman filter are observed, up to now. In glass melting
furnaces low frequency input disturbances (like load
changes and changes in cullet properties) are most
likely to occur.
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Fig. 9. Response to input and output disturbances. In
this case C =[0 I 0].

4. CONCLUSIONS

A relatively simple simulation model was derived.
Simulation results obtained with this model were com-
pared with a detailed simulation model that takes large

simulation times. The simple simulation model ap-
proximates the dynamics of the detailed model quite
well. The obtained simulation model can be linearized
and used in a Kalman filter to estimate state variables
that are not measurable but important for the glass
melting process. Effects of disturbances than white
noise (e.g. offsets because of sensor aging) can be
dealt with in the Kalman filter by extending the as-
sumed process model with coloring filters.
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