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Abstract: A fuzzy controller equipped with an adaptive algorithm and two supervisors is
developed in this work to achieve tracking performances for a class of uncertain non-
linear single input single output (SISO) systems with external disturbances. The
convergence of the training algorithm is guarantied by a gradient projection law. The
effect of both the approximation errors and the externa disturbances is atenuated to a
prescribed level thanksto Hee control. The convergence of the tracking error toward zero
is guarantied by a supervisor where linguistic rules are used to accel erate the convergence

speed. Copyright © 2002 IFAC
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1. INTRODUCTION

Fuzzy logic control, as one of the most useful
approaches for utilising expert knowledge, has been
a subject of intense research in recent years (King
and Mamdani, 1977; Mamdani and Assilian, 1975;
Sugeno, 1985; Tong et al., 1980). Fuzzy logic
control is generaly applicable to plants that are
mathematicaly poorly modelled and where
experienced operators are available for providing
qualitative guiding. Although achieving many
practical success, fuzzy control has not been viewed
as arigorous science, because most of the fuzzy logic
algorithms are proposed without analytical tools to
guarantee basic performance criteria.

According to the universal approximation theorem
(Wang, 1996), many important adaptive fuzzy-based
control schemes have been developed to incorporate
the expert information directly and systematically,
and various dsable performance criteria are
guaranteed by theoretical analysis (Marino and
Tomei, 1995; Spooner and Passino, 1996; Wang,
1996). The major advantagesin al these fuzzy-based
control schemes are that the developed controllers
can be implemented without any precise knowledge
about the structure of the entire dynamic model.

However, the influence of both fuzzy logic
approximation errors and the external disturbances
can not be diminated with these approaches (Chang,
2001). In this sense, Hamzaoui, et al. (2000) have
proposed a fuzzy logic controller equipped with a
training algorithm to approximate the system and a
H.. control to attenuate the effect of both fuzzy
approximation errors and external  disturbances.
However, only a good choice of the initid
parameters of the fuzzy approximator can guarantee
the convergence of the algorithm. Chen, et al. (1996)
proposed a similar agpproach with a gradient
projection law to assure the convergence of the
adaptive fuzzy logic system. But, the attenuation
level can not be systematically determined because it
depends on the control signal (Kang, et al., 1998).
Furthermore, no constraints are imposed to keep the
system in aforced region (g(x)=0).

In order to aleviate these problems, we propose in
this work a new fuzzy adaptive algorithm equipped
with a gradient projection law and two supervisors.
The first supervisor, us, forces the system to remain
in a given controllability zone. Thus, the controller’s
parameters are bounded and the quadratic integral of
both the minimal approximation error and the



tracking error is bounded, i.e, the tracking error
converges to zero. The second supervisor, U,
attenuates the effect of both the approximation errors
and the external disturbances to a prescribed leve, p,
using Hee approach. The performances of the
resulting controller can be improved by incorporating
some linguigic rules describing the dynamic
behaviour of the plant. The classical example of
inverted pendulum, as presented in (Wang, 1996), is
used to illustrate this approach. We show that the
proposed algorithm is robust and the control signal is
smooth compared to (Hamzaoui, et al., 2000) and
(Wang, et al., 2001).

Section 2 presents the problem statement. Section 3
gives, in a consructive manner, the geps for
constructing the robust adaptive fuzzy controller, and
how to use the two supervisors to meet the control
objectives. A pendulum tracking control example is
given in section 4 for illustration.

2. PROBLEM STATEMENT

We consider the following nth order non linear
dynamic Single Input Single Output (SISO) system
in the canonical form:

X = £, %,... XD )+ g(x, %,...x" D )u+d )

y=X
where f and g are unknown (uncertain) but bounded
continuous functions;, ue R and ye R are the input
and output of the system, respectively. d denotes the
externa disturbances (due to system load, externd
noise, etc) which is assumed to be unknown but
bounded. It should be noted that more general classes
of non linear control problem can be transformed
into this structure (Slotine and Li, 1991; Chen, et al.,
1996). Let x =[x %..x" V) e %" be the state vector of
the system which is assumed to be available for
measurement. We require the system (1) to be
controllable, thus the condition g(x)z0 must be

satisfied in a given controllability region U, c R".
Without loss of generality we assume that g(x)>0,

but the analysis throughout this paper can easly be
tailored to systems with g(x)<0.

The control objective is to force y to follow a given
bounded reference signal, y,, under the constraint that
al the parameters (u,y,X) are bounded and the closed
loop system is globally stable and robust.

If the system is well-known and free of externa
disturbances, feedback linearization (Isiodori, 1989)
can be used to synthesisa contral law of the form:

__ 1/ M, T 2
u g(X)( f(X)+ypV +K Ej 2

wheree=[ee..e™ T is the eror vector,
e=Yy, -y, and K=[k,k, 5-.k]"is the dynamic error
coefficient vector such that al the roots of the
polynomial H(s)=s" +k;s" "1+ ..+k, are located in

the open left half plane.
The control sgna (2) gives the following dynamic

eror: e +k,e"V +  +k,e=0 ©)

which implies that |ime(t)=0. However, it is

t—oo
impossible to obtain such a control agorithm if f and
g are unknown and the system is perturbed. A fuzzy
logic approximation, as described in section 3, is
therefore employed to treat this tracking control
design problem. The following control law, proposed
by (Hamzaoui, et al, 2000), can be applied to the
system:
1 : T
Zg(x)(f i)+ Y + K E-ua) (4)
where f and § are the approximationsof fand g,

respectively, and u, is the control signa which
attenuates the effect of both the approximation errors
and the external disturbances.

u

3. ROBUST TRACKING PERFORMANCE
DESIGN IN ADAPTIVE FUZZY SYSTEM

The objective of this work is to guarantee the
convergence of both the estimation algorithm and the
tracking error. For the firgt requirement, we impose
the convergence of the adjustable parameters using
the projection technique. For the second, we add a
supervisor control signal, u, to guarantee the
stahility, in the sense of Lyapunov, of the system.

3.1 Adaptive fuzzy algorithm

The approximation f and § (in (4)), can be given
by the universal fuzzy systems f (x|ef) and g(x|eg)

(Wang,1996):

Tl )=67cx) . dlKlog)=675(x) &)
where ¢, and ¢, are the vectors of the tuneable
parameters and {(X)=[¢,(X),...¢n(X)] is a regressive
vector as given in (Wang, 1996).

The tracking error dynamic equation resulting from
(4) can be written as:

E=AE+Bl(f7f)+(@fg)J+ua+dJ (6)
where:

0 1 00 .0 0

0 0 10 .0 0
A=l v e B0 0d]

0 0 00 .0 1

T

A isastable matrix, thusit can be associated with the
following agebraic Riccati equation which has a

unique positive definite solution, pP=pP", if and only
it 2- 250, ie,if202r:
rop

APT +PA +Q- 2PB[l L]BTP=0 7
r 2P2
where Q is a positive definite matrix given by the

designer.
According to the universal approximation theorem
(Wang, 1996), there exists optimal approximation

parameters o7 and oy such that ?(x|e*fjand



g(X‘G;) can, respectively, approximate f(X) and

g(X) as closdly as possble. The minimum
approximation error is defined as:

we=(f(x|6}j— f(X))+(g(X|6;jfg(X))u (8)

and the tracking error dynamic equation (6) can be
rewritten as.

E=AE+ B( f(x‘ef )7 f(x‘e*f n
+ B(@(X‘eg)+ @(X‘e*g j]u N B[ua Wy d

From (5), (9) can be rewritten as:

©)

E:AE+B[(I)¥C(X)+(D£C(X)+ua+wefd} (10)

where o =0, -0, 0g=0, -0 .
Let’s choose the Lyapunov function as.

e L oo, 4+ Lo 11
v=2E PE+2yfq>fq>f+2yg Dy, (11)
where ¥ and y, are positive constants.

The time derivative of V aong the error trajectory
(20) isgiven by:
VeleToe- L eTreeTre
2 2
P
Tpgl 1T
+E PB(?B PE+uafd+we}
. . (12
+—q>¥(9f 7 ETPBC(X)j
7t

1.7(; T
+E¢g(9g +74E PBQ(x)uj
Then by using the following control and adaptation
laws proposed in (Hamzaoui, et al., 2000):

Uy _leTps

r
0¢ =~y ETPB((X) (13)

0g = —ygETPBg(x)u

we obtain;
2

\'/s%ETQHM (14)
In this case, the parameters 6 and 6, are not
guaranteed to be bounded, which means that w; is
not bounded. The modified algorithm, proposed in
the following subsection, has therefore been
developed to obtain a stable system.

3.2. Modified adaptive fuzzy algorithm

Let the constraint sets Q; and Qg be defined as:

Q¢ ={6f Hef <M¢ <oo}

Q4 ={eg
where My, ¢, and My are constants. Since § =0, | 6, |

must be bounded from below by €>0.
We therefore propose the modified adaptation law
where u, is the same as in (13), but 6; and 6, are

(15
0<e<|0

g g

<M <oo}

calculated, using the projection technique (Goodwin
and Mayne, 1987), asfollows:

~7¢ETPBL(X) ifﬂﬁf <Mf)
b= or(ﬁf‘:Mf and ETPBC(X)ZO) (L6)

74 Pr{f ETPBC(X)}if (‘Qf ‘ZMf and ETPBC(X)<0)

where the projection operator Pr{*} is defined as:

N

Pr{ E'pBL(X )}: —ETPBy(X)+ET PB%TCZ(X)
%

If an element 65 of ¢, isequal to ¢, then:

7ygETPB§i X if ETPBS (Xu<0

04 = (17)
%o if ETPBZ, (X)u=0
where ¢;(X) isith component of £ (X).
Otherwise:
—7gETPBL(X ) if qgg|< M)
0, = or qgg| M, and ETPBL(X >0 (18)

Tq Pr{ ETPBc(x)}_u if qgg| =M, and ETPBL(X)u <o)

3.3 Sability and robustness analysis

Since the convergence of the parameters 6; and 6, is
guaranteed by this modified adaptation law, the next
step is to guarantee the convergence of the tracking
error toward zero.

From (12), the control law (13) gives:

Il e < 555 0)-supv(c) -

1
Tiyal"el blwelr)-d"as

where Ain(Q) is the minimum eigenvalue of Q. Let's
choose Q such that Ain(Q) >1. The existence of the

integral fé|e(v:]2dv: implies that |ime(t)=0. So, the
t—oeo

+

convergence of the tracking error toward zero
depends only on the term (v(o)—suptzo|v(t]). We

require that V=%ETPESV, where V is a congtant

specified by the designer. Then, after some
straightforward manipulations, we obtain:

2 2
T 2
. 1 1 E'PB d
V=-ZE'QE-= vpd | +2 il
2| p 2

2 (20)

+ ETPB((f - f)+ G-gu+u, +EBTPE}
r

Using the control law (13), (20) can berewritten as.

(21)
21412
+%+ ETPB((f - f)+ (@ - g)J)
Since the firg term is negative, a good chaice of the
attenuation factor, p, resultsin a small value for the

tem  (pld[)¥2. Since the sgn  of



ETPBH f— f)+(@— g)J] is unknown, we append a

supervisor, ug, to obtain the overall control signal:
U= Ut Ug (22)
We now show how to determine ug such that V <0
when V>V .

Subgtituting (22) into (1) and after some
mani pulations, the new error equation becomes:

E:AE+Bl(f—f)+(@+g)1+gus+ua—dj (23)
using (23) and (7), we obtain:

2 22
+pd] +ﬂ

2

+ ETPB((f - f)+ (@ - g)J - gus)
and therefore,

V< —%ETQE+ |ETPB|((| f| +|f |j +(au] + |gu|))
~E"PBgUg

In order to design us such that the last term of (24) is
nonpositive, we need to know the bounds of f and g,

i.e, we have to determine the functions ™ (X)<eo,
g"(X)<e, and g,(x)>0 such that |f(x)]< f™(x) and

(24)

gmX)<|g(x) < g™ (x) for x cu, .

Consequently, the supervisory contral, us, is chosen
asfollows:

uszlsgn(ETPB)gi“fA|+ M +|Quc|+|gMuc} (25)
m

where I1=1 if v>v, I=0 if v<Vv, and sgn(y)=1
(respectively, -1) if y=o0, (respectivdy, <O0).
Subsgtituting (25) into (24) and considering the case
V>V, we have

V< —%ETQE + |ETPB|((| f| +|f |j+ (6u]+ |gu|))

-9 ETPB|((|f|+|f M |}+(|@u|+|gMUMSO

gm
which guarantees that v <o0.
From (12), (16)-(18) and (7), we obtain the same
inequality given in (14).
Integrating (14) fromt=0to T yields:

(26)

2 —
V(T)—V(O)S—%IOTETQE+IOTM 27
Since v(T)=0, the above inequality implies that:

1 2(we —d
eV + ] M 29)

From (14), theinequality (28) is equivalent to:
1.7 T 1 T 1 T
3 I, E QEdi<—E (O)PE(O)+E(Df(O)(Df(O) 9
+2iq>;(o)@g(o)+lp2;g (we—df dt
Vg 2

Thisisour H,, criterion.

3.4 Design procedure

In order to minimise the on-line computing time of
our algorithm, the design of the robust adaptive
fuzzy controller implies an off-line processing step,
and an on-line during control execution as shown
bellow:

»  Off-line processing

- Specify My, Mg, e and Vv .

- Determine K and Q satisfying (3) and
(19), respectively.

- Solve the algebraic Ricatti equation.

- Choosing theinitial parameters.

» On-line processing

- Apply u=u+us, where uis given by (4)
and us by (25).

- Use the adaptation law, given by (16)-(18),
to adjust the parameters.

4. SSIMULATION EXAMPLE

To validate our approach, we consider the inverted
pendulum depicted in fig. 1.

9=X1

Fig. 1. Theinverted pendulum system.

Let xq=0 and x2=é . The dynamic equation of
the inverted pendulum asis given by (Wang, 1996):
X1=%2

. mlxg cos(xl)sjn (Xl) cos(xl)
. [gsz17 me.+m 1+ me+m L +d
XA =
2 4 mcosz(xl) 4 mcosz(xl) t
3 me+m 3 me+m
y=xq (30)

where g is the acceleration due to gravity, mis the

mass of the cart, m is the mass of the pole, | is the

half-length of the pole, the force u; represents the

contral signal, and d is the externa disturbance. We

choose m=1Kg, m=0.1Kg and [=0.5m in the

following simulations. The reference signa is

assumed here to be y,(t)=(n/30)sin(t), and the system

is subject to two disturbances:

e A dtructural disturbance on the mass of both the
cart and the pale, in the form: dm=0.01.m.sin(t)

o An external disturbance: d(t)=0.1.sin(t)

If werequire;

|x|s% . Ju|<180 (31)

and substituting the functions sin(.), and, cos(.) by
their limited development we can determine the
bounds:

™ (x;,x,)=15.78+0.366x 3
g™ (x;,%,)=146, g (x;,%,)=1.12 (32)

To satisfy (3) and (19), we choose, for example,
ki=2, k=1 and Q=diag(10,10). Furthermore to
simplify the calculation, we choose r=2p2. So, the
solution of the agebraic Riccati equation is:



constraint  related to [X|, we choose
- }‘min 21 2
V=08 15| =0267, My =16, M, =16 and £=0.48.

We sdlect 5 Gaussian membership functions for both
X, and x, (i=1,2) to cover the whole universe of
discourse:

e oo 2
HFl )= em [ = ZG]Z} )

After trial and errors, =50 and ;=1 are chosen. The
MATLAB command “ode23s’ is used to smulate
the overall contral system with step size 0.01.
The initia position of the pendulum is chosen as far
as possible (6(0)=x; =n/12) to improve the efficiency
of our agorithm.
Two cases are considered to show the influence of
the incorporation of the linguistic rules in the contral
law:
Case one: the initial values of 6; and 6, are chosen
arbitrarily.
Case two: the initial values of 6; and 6 are deduced
from the fuzzy rules describing the dynamic
behaviour of the system. For example, if we consider
the unforced system, i.e., u=0, the acceleration is
equal to f(xy1,%2). So, intuitively, we state that:

“The bigger is x4, the larger isf(Xy,X5)”
Our task now is to transform this fuzzy information
into afuzzy rule. We obtain therule:

R](,l’ L IFx, isFf and x,, ing
THENf(xl,xz) is Positive Big
where “Positive Big”
membership function is I.LFil(Xi) given in (33). The
acceleration is proportional to the gravity, i.e
f(Xy,X2)zo.sin(xy), where o is a constant. Since
f(X1,X0) acheives its maximum at x,=n/2; thus based
on (32), we have a=16. Therefore, we the final fuzzy

rules characterizing f(x1,X,) as shown in fig. 2, which
comprises 25 rules.

is a fuzzy set whose

f(x1,%2) B R B B
-n/6 | -m/12 |0 /12 | /6

= -n/6 -8 -4 0 4 8
2
g2 /12 | -8 -4 0 4 8
2
X2 Fg 0 -8 -4 0 4 8
g4 /12 -8 -4 0 4 8
2
5 /6 -8 -4 0 4 8
2

Fig. 2. Linguitic rules for f(X1,X2)

Now, to determine the fuzzy rules for g(x;,xz), we
use the following observation:

“The smadler isxy, thelarger isg(Xy,X2)”
Similary to the case of f(xy,X,) and based on the
bounds (32), this observation can be quantified into
the 25 fuzzy rules given in fig. 3.

X1

g(X1,%2) Fll Flz ':13 F14 Fls

/6 | -m/12 |0 /12 | /6

= -1t/6 16 | 136 146 | 136 |1.26
2

F2 -n/12 | 1.26 | 1.36 146 | 1.36 | 1.26
2

X2 Fg 0 1.26 | 1.36 146 | 1.36 | 1.26

= n/12 | 1.26|1.36 146 | 1.36 | 1.26
2

/6 1.26 | 1.36 146 | 1.36 | 1.26

R

Fig. 3. Linguistic rules for g(xy,X»)

To obtain the same tracking performances, the
attenuation level, p, was egqual to 0.2, in the first case
and to 0.8 in the second.

For both the two cases fig. 4 illustrates the tracking
performance for a snusoidal trgjectory; the
pendulum reaches the reference trajectory in 3.14s.
The quadratic error is given by thefig. 5.

rad
0.25

Fig. 4. Thestate x; (solid line) and itsdesired value
y,(t) (dashed line) for X (0)=(n/12,0)"

2
rad”o o7

Fig. 5. Thequadratic error

Figures 6 and 7 show the difference between the
control signal us and u in the two cases, respectively.
As shown in fig.8 , when we incorporate the
linguistic rulesin the controller, and with a high level
of attenuation, the initial global control is much
smaller than the control signals proposed in
(Hamzaoui, et al., 2000) and (Chen , et al., 1996).
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Fig. 6. The supervisory control ug
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Fig. 7. The control signal u

2 4 6 8 10 12 14 16 18 s

Fig. 8. Theglobal control signal u,

5. CONCLUSION

An adaptive fuzzy controller with two supervisors is
proposed for the control of a class of nonlinear
systems subject to large uncertainties or to unknown
variations in the parameters and the structure of the
plant. The projection theorem is used to guarantee
the convergence of the adaptation laws coresponding
to fuzzy approximators. The first supervisor, u,
ensures the global stahility of the system, in the sense
of lyapunov. The second supervisor, u, USeS Heo
technique to attenuate the effect of both external
disturbances and approximation erors to a
prescribed level. The stability and the robustness are
demonstrated analytically, and an illustrative
example has been used to show the efficiency of the
proposed method. The performances of the approch
can be improved by incorporating some linguistic

rules. However, the design of the control algorithm
needs a good knowledge of the dynamic behaviour of
the system in order to determine both the bounds and
the linguigtic rules of the functions f and g. Futher
work is under investigation to apply the proposed
robust adaptive algorithm to miti-input multi-output
systems.

REFERENCES

Chang, Y.-C (2001). Adaptive fuzzy-based tracking
control for nonlinear SISO systems via VSS and
He- approaches. IEEE Trans. on Fuzzy Syst. Val.
9, pp 278-292.

Chen, B.-S, C.-H. Lee and, Y.-C. Chang (1996). Heo
tracking design of uncertain nonlinear SISO
systems. Adaptive fuzzy approache. IEEE Trans.
on Fuzzy Syst. Val. 4, pp 32-43.

Hamzaoui, A., J. Zaytoon and A. Elkari (2000).
Adaptive control for uncertain nonlinear
systems. In Proc. Of IFAC Workshop on Control
Applications of Optimization, pp 149-152, Saint-
Petersburg, Russia.

Goodwin, G.C., and D.Q. Mayne (1987). A
parameter estimation perspective of continuous
time modd reference adaptive contral.
Automatica. Vol. 23, pp 57-70.

Kang, H.-J, H. Lee, and M. Park (1998). Comments
on “Heo tracking design of uncertain nonlinear
SISO systems: Adaptive fuzzy approache’. IEEE
Trans. on Fuzzy Syst. Val. 6, pp 605-606.

King, PJ, and EH. Mamdani (1977). The
application of fuzzy control systemsto industrial
processus. Automatica. Vol. 13, pp 235-242.

Mamdani, F.H., and S Asdilian (1975). An
experiment in linguistic synthesis with a fuzzy
controller. Int. Journal Man-Machine Sudies
Val. 7, pp 1-13.

Marino, R., and P. Tome (1995). Nonlinear control
design: Geometric, Adaptive and Robust.
Englewood Cliffs, NJ: Prentice Hall.

Slotineg, JE., and W. Lie (1991). Applied nonlinesr
control. Englewood Cliffs, NJ: Prentice Hall.
Spooner, JT., and K.M. Passino (1996). Stable
adaptive control using fuzzy systems and neural
networks. |EEE Trans. on Fuzzy Syst. Vol. 4, pp

339-359.

Sugeno, M. (1985). Industrial applications of fuzzy
control. Amsterdam, The Netherlands: North-
Hoalland.

Tong, R.M., M. Beck, and A. Latten (1980). Fuzzy
control of the activated dudge wastewater
treatment process. Automatica. Vol. 16, pp 695-
697.

Wang, L.X. (1996). Stable adaptive fuzzy controllers
with application to inverted pendulum tracking.
IEEE Trans. on Sys., Man and Cybernetics-part
B, Vol. 26, pp 677-691.

Wang, W.-Y., Y.-G. Leu and C.C. Hsu (2001).
Robust adaptive fuzzy-neural control of
nonlinear dynamical systems using generdized
projection update law and variable structure
controller. IEEE Trans. on Syst., Man and
Cybernetics-part B, Vol. 31, pp 140-147.





