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ROBUST DISTURBANCE SUPPRESSION OF A MAGNETIC
LEVITATION SYSTEM WITH INPUT CONSTRAINT !
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Abstract: In this paper the problem of noise suppression for a magnetic levitation system is
addressed. The problem is formulated as a nonlinear regulation problem; a state feedback
and an error feedback internal model-based regulators are designed, able to offset the noise
in spite of the presence of unknown parameters affecting the model of the system. In both
cases a saturated control law is designed in order to fulfill physically constraint characterizing
the system. Moreover a general result in the context of output regulation of linear systems
with constant uncertain parameters affecting the inputs channel and with input constraints is
addressed.
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1. INTRODUCTION the mass, the permeability of the space, the reluc-
tance of the core etc. (for a detailed discussion on
Several works have been recently devoted to design ehow this model can be derived see (Woodson and
control law able to stabilize the dynamics of a non- Melcher, 1968)).
linear magnetic levitation system (see, besides others;The relevant aspect of this model is the nonlinearity
(Trumperet al, 1997), (Alleyne, 2000)). The typical which characterizes the control input, namely the fact
experimental setup able to reproduce all the peculiar-that the control input, entering squared in the model,
ity of a magnetic levitation system, is given by a mass can just enforce a positive “push”. From a physical
moving within a magnetic field produced by a coil point of view it means that, while to push up the
current. mass (namely the steer it towards the magnetic coil)
a suitably coil current value can be used, to eventually
steer the mass on the opposite direction the only al-
lowed control action is to decrease the coil current in
order to make the force of gravity predominant. As the
disturbance(¢) is concerned, it is worth to note that

In particular denoting by:; the position of the mass,
T its velocity, g the acceleration of gravity and(the
control input) the coil current, the nonlinear model of
the mechanical subsystem is described by

&1 = X9 ) its presence is typical in applications where magnetic
o g4 u +6(t) (1) levitation principle is used for low-friction rotating
T2 =—gTa go — 1 machinery (Alleyne, 2000). Usually any radial imbal-

ance in the rotating components will set up a periodic
disturbance whose magnitude phase and frequency are
directly related to the severity of imbalance and rota-

whered(t) is a disturbance force acting on the mass,
and a and gy are physical parameters dependent on

tional speed.
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of the mass to a desired (known) position while re-

jecting the disturbancé(t) robustly with respect to
the uncertain value of the physical constantThe

ul = (90 ;0551)2( 3)

wherev is an additional control law, the error system

g+v)

disturbance is modeled as a period signal obtained 3%, deal with reads as

sum of a finite number of sinusoidal functions of time

of known frequencies and unknown phases and ampli-

tudes. The problem is set up as@nlinear regulation
problem(see (Byrne®t al,, 1997h)). The disturbance
is thought as output of an autonommeutrally stable
system (usually known aexosystejnand an internal

T2
pv + 61+ 0(1)

€1
)

(0} a — (g
51:

(4)

with

@

g=k-1)g.

&%)

model-based regulator is designed able to reject any|n particular in view of the expression a¥(t) in

disturbance generated by the exosystem.
In particular we propose different solutions to the

(2) it turns out that the problem can be framed as
a classical robust nonlinear regulation problem (see

above problem. First of all in the next section we show (Byrneset al, 199%)) in which the exogenous terms

that the problem can be cast afireear robust output
regulation problenin presence of input constrairAf-

to offset ared,, the residual force of gravity which
can not be compensated by feedforward actions due

ter some preliminary pOSitiOﬂS, in section 3 we addressto the presence of the uncertain paramej;eand the

the design of a regulator in case of complete knowl-

edge of the statér;, z2) of the system. We show in
particular how to design thkowest ordercontroller

able to achieve tracking of the reference position while

rejecting the disturbance for any initial state of the

system and for any initial state of the exosystem in a

time-varying disturbancé(t). In particular the overall
exogenous disturbancg + J(¢) can be thought as
generated by aaugmentedxosystem

Wy = SaWa

51 +6 = Qawa (5)

certain set. Then, in section 4 we relax the assumptionwhere

on the knowledge of the ball velocity, looking for a

controller which, processing the tracking error, yields

regulation for any initial state of the plant and of the

gg) Qu=(Q1) .

5= (

exosystem belonging to given compact sets. We alsoMoreover, bearing in mind (3), it is easy to realize the

point out how the latter design method could be re-

the regulation problem is complicated by fresence

formulated as a general result in the context of output of input constraint As a matter of fact, in order to
regulation of linear systems with constant uncertain reconstruct the real control input the new control

parameters affecting the inputs channel and with in-
puts constraint. Simulations are given in section 5, and

in section 6 we conclude with some remarks.

2. PROBLEM STATEMENT AND PRELIMINARY
POSITIONS

The problem usually addressed for system (1) is that

of computing a control law: in order to steer the

variablev must satisfy

g+uv(t)>0 namely —g<uo(t)<+g (6)

for all t > 0 (note that conditiorv(t) > —g is im-
posed only to obtain a symmetric saturation). Indeed if
the design procedure is able to guarantee the condition
(6), it follows that the original control input can be
reconstructed as
gtwv

(7)) '

u=(g—)

positionz, of the mass to a certain reference position With the above considerations we have recast the

xd°s in spite of the presence of the disturbari¢e)
and of the uncertain parameter
We assume that the disturbantbelongs to the class

problem in question as a problem of linear output reg-
ulation in presence of constraint regarding the ampli-
tude of the control input and in presence of uncertain

of signals generated by the linear autonomous systerrparameters (in the specific caggaffecting the model

(exosystem

w(t) = Sw(t)

3(t) = Qu(t)
whereS is a R’ x R*® matrix and@ is a vector.
In this discussion the matri% is supposed to be per-
fectly known and to be “neutrally stable”. For instance
anyd(t) obtained by linear combination of sinusoidal
signals with known frequencies and unknown ampli-
tudes and phases can be modeled in this way.

)

Defining z{** the reference positiony, the nominal
value of the uncertain parameterande; := x; —
xies the tracking error, it turns out that setting the
preliminary control law

of the system.

In particular this problem will be solved under the
assumption that the uncertain parametéand hence
«) ranges within a compact set with positive lower and
upper bounds, namely

O<pl<p<ul.

Moreover, as far as the initial state,(0) of the
exosystem is concerned, we assume that it satisfies

- B}
()

for some positives < g. Clearly this constraint is
due to the fact that the maximum amplitude of the

w,a(0) €W := {w, € R"T: M <



disturbance must be lower than the maximum control where
value which, in the worst case, is equajitog. 0 Is| <g

Pols) = sah(s) =5 = g—s otherwise
Simple algebraic computations show that system
3. STATE FEEDBACK DESIGN (2),(4),(10) in the new coordinates reads as

. . . €1 =X
Following the nonlinear output regulationtheory ! 2

((Byrneset al, 199)), the regulator which solves i, = , sat, (Ust + l\I/Ga:2 + Ty + \I/T(wa,u)> +
the problem is given by amternal model needed ' H

to generate the control input which offsets the distur- —HUT(Wa, 1)

bance, and a stabilizer which is devoted to stabilize y _ r\ lFGa;Q _

the “extended system” given by (4) and the internal

model. 12)

The first step in the design of the internal model Now note that, due to (8), (9) and to assumption (7),
amounts in computing the solution of the so-called the origin(e, 22, x) = (0,0,0) of (12) is an equilib-
regulator equations (see (Byrneset al, 199%)), rium pointin case,; = 0. Hence the original problem
namely the steady state control inpytv,, 1) and the  is re-formulated as that of globally asymptotically sta-
associated steady state behavio(i,, ;1) compatible  pilizing the origin of (12) by suitably designing.

with the regulation objective. For system (4)-(5) it

turns out that To begin with note that, by virtue of assumption (7),

1 it is possible to rewrite the derivative af, as (here
W(wa,u) = (0,0) c(Wa, p) = _;Qawa . (8 0 = vs + % + ¥x)

The internal model is then designed according to the 2 i ”iag(g - \I;%(wa(t)’“)) — 1T (wa(t), 1)
procedure proposed in (Nikiforov, 1998). In particular = ¢(t,0) sap (6)
call (®,T) the observable pair such that the following Where

immersion condition &(t,0) == pu (g — ¥ T(wa(t), ) sgnd)) .
OT (Wa, 1) Suws = Br(ws, 1) In particular it is easy to show that the functigft, 0)
Ow, has positive lower and upper bounds independeét of
c(wa, p) = I'7(wa, p) namely
is satisfied via a nonlinear mag{w,, ;). Moreover 0<pu"B<o(t,0) <p’(29—-5) .

given any Hurwitz matrixF' and any vectolG such
that (F, G) is controllable, denote by/ the unique
matrix solution of the Sylvester equation

In view of this we drop the dependence éronsid-
ering¢(t) as an uncertain time varying input gain and
we study the uncertain system

M®— FM = GT 6 = 2o

. 1

To = (b(t) Sag (Ust + ;\IJGJTQ + \I/X> (13)

1
o

and definel := I'M~!. Simple computations show
that, definingr (wa, 1) := M7(wa, 1),
OT (Wa, ) B B
87waS’awa = (F 4 GU)7(wa, ) )
c(Wa, ) = VT (wa, ) - For such a system the following claim will be proved.

This suggests to choose as internal model-based regu-
lator the system
. Proposition 1. There exists\* > 0, k* > 0 andcy, co
§ = (F+GY)E+ N(xy,22,8) (10)  suchthatforallh < A\*, & > k* the control law
v = saf, (V€ + vg)
cire] + CQ.%‘Q)

A
globally asymptotically stabilizes the origin of (13).

where sajf(s) is the classical saturation function de- Ust =~k — Asal <

fined as sg(s) min{|s|, g} introduced in order to ex-
plicitly fulfill the constraint|v| < g. In (10) N(-,-,-)
is a vector andy; is a new control variable, both to
be designed in order to asymptotically stabilize the The proof (for more details see (Gentili and Marconi,
“extended” system given by (4) and (10). To this end 2001)) is based on the small gain theorem for saturated
define the change of coordinates interconnected systems (see (Teel, 1996)).

1
i~ rw) - ~G 11
§ = x:=§-Tw) m T2 (11) 4. ERROR FEEDBACK DESIGN

and chooseV (zy, 2, ) as The goal of this section is the design of regulator

N(z1,22,8) = G (vst + 0g(VE + vg) ) without explicit knowledge of the ball velocity. In par-



ticular we re-formulate the specific problem of distur- In particular it is trivial to check that all these assump-
bance suppression for the magnetic levitation systemtions are fulfilled specializing the systgi, B, C) to
(4)-(5) in more general terms. The aim is to obtain he magnetic levitation plant presented in section 2.
a general result in the context of output regulation Now call P4 the positive definite matrix such that
of Imgar sys’gems with constant u.nc.ertaln parameFers PuA+ ATP, <0 (16)
affecting the inputs channel and with inputs constraint. )
In this sense the result here presented can be seen as"jla{".j consider thebserver-basedontroller
nontrivial extension of the results proposed in (Isidori &z = A&; + pu® Bv — B¢, + Gu(e — C&;)
and DeSantis, 2001) where _uncertam parameters was €0 = SEu+ Gule — CE;)
not allowed. Clearly, by solving the general problem, .

: . . BT P.c-
we opftaln_also the solution for the motivating example — sa(T&, — A saﬁ(iA&))
specified in section 2. A

In particular given the system (17)
i = Az + pBv + Qu wher_e_Gx ande_ are output ?njection mgtrices to_be
W = Sw specified, saf-) is the classical saturation function
e = Cz + Pw defined in the previous section and< ||0]|«/2. The

o _ claim is that this controller, suitably tuned, solves the
with inputsv € R™ and outputs: € R™, givenaset  proplem.

W € R” and a real numbey > 0, we consider the
problem of designing an error feedback regulator of

the form N ) _

) Proposition 2. There exists &* > 0 such that if the

E=pe) v=9E |0)I<g output injection matrixG. = (G,,G,,) is chosen so
such that for all:(0) € R™ and for all constant such ~ that all the eigenvalues of. — G.C. have real part
that0 < ub < pu < uY, lower than—~*, i.e.

Re(o;(Ae — GoCo)) < —* t1=1,...,n+r
L U

(i) the closed loop system witly = 0 is asymptoti- Vi € [ut ] 7(18)

cally stable; then the controller (17) solves the problem in ques-

tion for any (z(0),w(0)) € R™ x W and for any

(i) for all w(0) € W C R" the response of the closed (€2(0),&w(0)) € R" x R".

loop system is bounded atigh;_, ., e(t) = 0.

Before presenting a sketch of the proof of this claim
we provide a result which turns out to be instrumental
in the following. This result refers to the linear uncer-
tain system

The first assumption which will be used to solve the
problem is the existence of matricHsandI" solution
of the Francis (or regulator) equations

IS = ATl + BT + Q
0=CI+P.

555 = (A - Grc)gfc - ,LLBréw +q

. ~ ~ (19)
gw = Sgw - Gwcgi,

(14)

In particular the functiod'w(t) /. represents the con-
trol law which must be provided asymptotically by l ¢ ) =oU
the controller in order to offset the exogenous dis- states that it is possible to choose the output injection

turbanceQu(t) while keeping the erroe identically ~ Matrix Ge in order to impose an arbitrary input-to-
zero. Hence, in this general context, assumption (7)state linear gain, robustly with respect to the uncertain

specializes in requiring that the initial state of the Parametey.
exosystem satisfies

with input ¢ and uncertain parameter. The result

Proposition 3. Consider system (19) witp ranging
<g-p). within a compact set. Then for ajl > 0 there exists

a~vy* > 0 such that ifG. is chosen so that (18) is
i (15) fulfilled, then (19) is ISS with no restriction on the
for some positives < g. input ¢ and on the initial state and linear gain

Moreover, in qrder to reconstruct the valge of the namely the following asymptotic estimate hokls
exogenous variable, we assume that the pair - -
12 ()s (D lla < YNY(la -

A —uBIl
Ce := (C O) Ae = ( 0 /fg ) In particular for alle > 0 there exists &* > 0 such
that

16 (), &) < (v+e)lly=()||  forallt >T* .

[ITw ()0

w(0) eW :={weR": e

is observable for any € [u, uV]. Finally we assume
that the pair(A, B) is stabilizable and the system
is null-controllablg namely the spectrum of is all

contained in the closed left half plane, g A) C C~. 2 Here||s()||a := lim¢— oo supl|s(t)]|




Note that fory = p° the result is trivial due to
the observability assumption of the péir., A.). For
uncertain values of: the result can be easily proved
for instance by small gain arguments. ok

0.01

0.0051

Considering now the change of coordinates 0005 -

T — T:=a—w (20) 001 ! ! ! | |
0 5 10 15 20 25 30
and _
&z — &G=&-T 5
: w 21
w — Cw=&w— ﬁ ) (1)

=

the overall system in the new coordinates reads as
(recall equations (14))

i = Ai+ pBv — p°Blw

i = (A= G.C)¢; — BTG, + (u° — p)Bo+
p— p°

+ Bl'w

€uw

~ ILL~
Séw — Gués -
(22)

The proof of the result is then divided in two parts.
In the first it is shown that there exists a choice of ‘ ‘ ‘ ‘
G. = (G4, G,) and a timeT™ > 0 such that for the 0 5 10 15 0 5
closed loop system the following holds

T pe.
g () - Asa (7

namely the control law becomes lower than the satu-the reference position was assumed siiff> =
ration level in finite time. In the second part, due to —0.022 m and the initial state of the system was taken

proposition 1, it can be shown that the origin of the asz1(0) = —3.03 m andx2(0) = —2m/s.
system (22) fort > T* is globally asymptotically ~ Just note that the choice of two different initial states
stable. This, in view of the definitions (20)-(21) and of for these simulations was made just to point out that,

the equations (14), proves the result (for more detailsdue to the presence of a non saturated high gain state
see (Gentili and Marconi, 2001)). feedback, the state feedback stabilizer controller also

without the internal model is able to reduce the effect
of the disturbance but not to totally overcome it; on
the other hand the error feedback saturated stabilizer
controller without the internal model unit is in no way
able to contrast the sinusoidal disturbance.

30

Fig. 1. state feedback controller: tracking errex ),

Vi> T disturbanced(t)), control input ¢)

)<y (23)

5. SIMULATION RESULTS

In order to check the performances of both the con-
trollers above designed, a certain number of tests have
been made, simulating the response of the system sub-
ject to various periodic disturbances. The results of
these tests are shown in fig. 1 and fig. 2. In particular
the disturbance that has been simulated is a sinusoidaln this paper the problem of disturbance suppression
signald(t) = V sin(2¢) with amplitudeV = 5 m/s” for a magnetic levitation system has been addressed.
and frequency) = 2rad/sec occurring at time = In the realistic case the model of the system is uncer-
10 sec. The parametet is assumed to range within tain, we have proposed two design procedure yield-
of +20% of the nominal valuexy = 6.612 x 1073 ing an internal model-based regulator that achieves
Kgm?/s? A?; the internal model of both controllers tracking of the reference position while rejecting the
was connected at time= 20. disturbance for any initial state of the system and for
The state feedback controller was designed choosingany initial state of the exosystem in a certain set. In

6. CONCLUSIONS

k=800, cl =1.252x 10%, ¢c2 = 900 and\ = 10°;
the reference position was assumgtf = —0.022 m
and the initial state of the system was taken g9) =
—0.03 m andz(0) = —0.1m/s.

The error feedback controller was designed choos-

ing G, 103 % [0.072 2.043]T, G, = 10° *
[—1.08 0.95564 1.365|7, A\ = V/3, BT P = [100 100];

particular we presented a state feedback design pro-
cedure able to obtain tHewest ordercontroller and

an error feedback design procedure able to obtain an
observer-based controller; the latter solves also a more
general problem in the context of output regulation
of linear systems with constant uncertain parameters
affecting the inputs channel and with input constraints.
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Fig. 2. error feedback controller: tracking errar §,
disturbanced(t)), control input ¢)
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