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Abstract: In this paper the problem of noise suppression for a magnetic levitation system is
addressed. The problem is formulated as a nonlinear regulation problem; a state feedback
and an error feedback internal model-based regulators are designed, able to offset the noise
in spite of the presence of unknown parameters affecting the model of the system. In both
cases a saturated control law is designed in order to fulfill physically constraint characterizing
the system. Moreover a general result in the context of output regulation of linear systems
with constant uncertain parameters affecting the inputs channel and with input constraints is
addressed.
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1. INTRODUCTION

Several works have been recently devoted to design a
control law able to stabilize the dynamics of a non-
linear magnetic levitation system (see, besides others,
(Trumperet al., 1997), (Alleyne, 2000)). The typical
experimental setup able to reproduce all the peculiar-
ity of a magnetic levitation system, is given by a mass
moving within a magnetic field produced by a coil
current.

In particular denoting byx1 the position of the mass,
x2 its velocity,g the acceleration of gravity andu (the
control input) the coil current, the nonlinear model of
the mechanical subsystem is described by





ẋ1 = x2

ẋ2 = −g + α

(
u

g0 − x1

)2

+ δ(t)
(1)

whereδ(t) is a disturbance force acting on the mass,
and α and g0 are physical parameters dependent on
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the mass, the permeability of the space, the reluc-
tance of the core etc. (for a detailed discussion on
how this model can be derived see (Woodson and
Melcher, 1968)).
The relevant aspect of this model is the nonlinearity
which characterizes the control input, namely the fact
that the control input, entering squared in the model,
can just enforce a positive “push”. From a physical
point of view it means that, while to push up the
mass (namely the steer it towards the magnetic coil)
a suitably coil current value can be used, to eventually
steer the mass on the opposite direction the only al-
lowed control action is to decrease the coil current in
order to make the force of gravity predominant. As the
disturbanceδ(t) is concerned, it is worth to note that
its presence is typical in applications where magnetic
levitation principle is used for low-friction rotating
machinery (Alleyne, 2000). Usually any radial imbal-
ance in the rotating components will set up a periodic
disturbance whose magnitude phase and frequency are
directly related to the severity of imbalance and rota-
tional speed.

In this paper we address the problem of designing a
control law for system (1) able to steer the position
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of the mass to a desired (known) position while re-
jecting the disturbanceδ(t) robustly with respect to
the uncertain value of the physical constantα. The
disturbance is modeled as a period signal obtained as
sum of a finite number of sinusoidal functions of time
of known frequencies and unknown phases and ampli-
tudes. The problem is set up as anonlinear regulation
problem(see (Byrneset al., 1997b)). The disturbance
is thought as output of an autonomousneutrally stable
system (usually known asexosystem) and an internal
model-based regulator is designed able to reject any
disturbance generated by the exosystem.
In particular we propose different solutions to the
above problem. First of all in the next section we show
that the problem can be cast as alinear robust output
regulation problemin presence of input constraint. Af-
ter some preliminary positions, in section 3 we address
the design of a regulator in case of complete knowl-
edge of the state(x1, x2) of the system. We show in
particular how to design thelowest ordercontroller
able to achieve tracking of the reference position while
rejecting the disturbance for any initial state of the
system and for any initial state of the exosystem in a
certain set. Then, in section 4 we relax the assumption
on the knowledge of the ball velocityx2 looking for a
controller which, processing the tracking error, yields
regulation for any initial state of the plant and of the
exosystem belonging to given compact sets. We also
point out how the latter design method could be re-
formulated as a general result in the context of output
regulation of linear systems with constant uncertain
parameters affecting the inputs channel and with in-
puts constraint. Simulations are given in section 5, and
in section 6 we conclude with some remarks.

2. PROBLEM STATEMENT AND PRELIMINARY
POSITIONS

The problem usually addressed for system (1) is that
of computing a control lawu in order to steer the
positionx1 of the mass to a certain reference position
xdes

1 in spite of the presence of the disturbanceδ(t)
and of the uncertain parameterα.
We assume that the disturbanceδ belongs to the class
of signals generated by the linear autonomous system
(exosystem)

ω̇(t) = Sω(t)
δ(t) = Qω(t) (2)

whereS is a IRs × IRs matrix andQ is a vector.
In this discussion the matrixS is supposed to be per-
fectly known and to be “neutrally stable”. For instance
anyδ(t) obtained by linear combination of sinusoidal
signals with known frequencies and unknown ampli-
tudes and phases can be modeled in this way.

Defining xdes
1 the reference position,α0 the nominal

value of the uncertain parameterα ande1 := x1 −
xdes

1 the tracking error, it turns out that setting the
preliminary control law

u2 =
(g0 − x1)2

α0
(g + v) (3)

wherev is an additional control law, the error system
to deal with reads as{

ė1 = x2

ẋ2 = µv + δ1 + δ(t) (4)

with

µ :=
α

α0
δ1 :=

α− α0

α0
g = (µ− 1) g .

In particular in view of the expression ofδ(t) in
(2) it turns out that the problem can be framed as
a classical robust nonlinear regulation problem (see
(Byrneset al., 1997b)) in which the exogenous terms
to offset areδ1, the residual force of gravity which
can not be compensated by feedforward actions due
to the presence of the uncertain parameterµ, and the
time-varying disturbanceδ(t). In particular the overall
exogenous disturbanceδ1 + δ(t) can be thought as
generated by anaugmentedexosystem

ẇa = Sawa

δ1 + δ = Qawa

(5)

where

Sa :=
(

S 0
0 0

)
Qa :=

(
Q 1

)
.

Moreover, bearing in mind (3), it is easy to realize the
the regulation problem is complicated by thepresence
of input constraint. As a matter of fact, in order to
reconstruct the real control inputu, the new control
variablev must satisfy

g + v(t) > 0 namely − g ≤ v(t) ≤ +g (6)

for all t ≥ 0 (note that conditionv(t) ≥ −g is im-
posed only to obtain a symmetric saturation). Indeed if
the design procedure is able to guarantee the condition
(6), it follows that the original control input can be
reconstructed as

u = (g − x1)
√

g + v

α0
.

With the above considerations we have recast the
problem in question as a problem of linear output reg-
ulation in presence of constraint regarding the ampli-
tude of the control input and in presence of uncertain
parameters (in the specific caseµ) affecting the model
of the system.
In particular this problem will be solved under the
assumption that the uncertain parameterµ (and hence
α) ranges within a compact set with positive lower and
upper bounds, namely

0 < µL ≤ µ ≤ µU .

Moreover, as far as the initial statewa(0) of the
exosystem is concerned, we assume that it satisfies

wa(0) ∈ W := {wa ∈ IRr+1 :
‖Qawa‖∞

µL
< g − β}

(7)
for some positiveβ < g. Clearly this constraint is
due to the fact that the maximum amplitude of the



disturbance must be lower than the maximum control
value which, in the worst case, is equal toµLg.

3. STATE FEEDBACK DESIGN

Following the nonlinear output regulationtheory
((Byrneset al., 1997b)), the regulator which solves
the problem is given by aninternal model, needed
to generate the control input which offsets the distur-
bance, and a stabilizer which is devoted to stabilize
the “extended system” given by (4) and the internal
model.
The first step in the design of the internal model
amounts in computing the solution of the so-called
regulator equations (see (Byrneset al., 1997b)),
namely the steady state control inputc(wa, µ) and the
associated steady state behaviourπ(wa, µ) compatible
with the regulation objective. For system (4)-(5) it
turns out that

π(wa, µ) = (0, 0) c(wa, µ) = − 1
µ

Qawa . (8)

The internal model is then designed according to the
procedure proposed in (Nikiforov, 1998). In particular
call (Φ, Γ) the observable pair such that the following
immersion condition

∂τ(wa, µ)
∂wa

Sawa = Φτ(wa, µ)

c(wa, µ) = Γτ(wa, µ)

is satisfied via a nonlinear mapτ(wa, µ). Moreover
given any Hurwitz matrixF and any vectorG such
that (F,G) is controllable, denote byM the unique
matrix solution of the Sylvester equation

MΦ− FM = GΓ

and defineΨ := ΓM−1. Simple computations show
that, defininḡτ(wa, µ) := Mτ(wa, µ),

∂τ̄(wa, µ)
∂wa

Sawa = (F + GΨ)τ̄(wa, µ)

c(wa, µ) = Ψτ̄(wa, µ) .
(9)

This suggests to choose as internal model-based regu-
lator the system

ξ̇ = (F + GΨ)ξ + N(x1, x2, ξ)
v = satg (Ψξ + vst)

(10)

where satg(s) is the classical saturation function de-
fined as sgn(s)min{|s|, g} introduced in order to ex-
plicitly fulfill the constraint|v| ≤ g. In (10) N(·, ·, ·)
is a vector andvst is a new control variable, both to
be designed in order to asymptotically stabilize the
“extended” system given by (4) and (10). To this end
define the change of coordinates

ξ → χ := ξ − τ̄(ω)− 1
µ

Gx2 (11)

and chooseN(x1, x2, ξ) as

N(x1, x2, ξ) = G ( vst + ϕg(Ψξ + vst) )

where

ϕg(s) := satg(s)− s =
{

0 |s| ≤ g
g − s otherwise.

Simple algebraic computations show that system
(2),(4),(10) in the new coordinates reads as

ė1 = x2

ẋ2 = µ satg

(
vst +

1
µ

ΨGx2 + Ψχ + Ψτ̄(wa, µ)
)

+

−µ Ψτ̄(wa, µ)

χ̇ = Fχ +
1
µ

FGx2 .

(12)

Now note that, due to (8), (9) and to assumption (7),
the origin(e1, x2, χ) = (0, 0, 0) of (12) is an equilib-
rium point in casevst = 0. Hence the original problem
is re-formulated as that of globally asymptotically sta-
bilizing the origin of (12) by suitably designingvst.

To begin with note that, by virtue of assumption (7),
it is possible to rewrite the derivative ofx2 as (here
θ = vst + ΨGx2

µ + Ψχ)

ẋ2 = µ satg(θ + Ψτ̄(wa(t), µ))− µ τ̄(wa(t), µ)
= φ(t, θ) satg(θ)

where

φ(t, θ) := µ ( g −Ψ τ̄(wa(t), µ) sgn(θ) ) .

In particular it is easy to show that the functionφ(t, θ)
has positive lower and upper bounds independent ofθ,
namely

0 < µL β ≤ φ(t, θ) ≤ µU (2g − β) .

In view of this we drop the dependence onθ consid-
eringφ(t) as an uncertain time varying input gain and
we study the uncertain system

ė1 = x2

ẋ2 = φ(t) satg

(
vst +

1
µ

ΨGx2 + Ψχ

)

χ̇ = Fχ +
1
µ

FGx2 .

(13)

For such a system the following claim will be proved.

Proposition 1.There existsλ? > 0, k? > 0 andc1, c2

such that for allλ ≤ λ?, k ≥ k? the control law

vst = −kx2 − λsat1

(
c1e1 + c2x2

λ

)

globally asymptotically stabilizes the origin of (13).

The proof (for more details see (Gentili and Marconi,
2001)) is based on the small gain theorem for saturated
interconnected systems (see (Teel, 1996)).

4. ERROR FEEDBACK DESIGN

The goal of this section is the design of regulator
without explicit knowledge of the ball velocity. In par-



ticular we re-formulate the specific problem of distur-
bance suppression for the magnetic levitation system
(4)-(5) in more general terms. The aim is to obtain
a general result in the context of output regulation
of linear systems with constant uncertain parameters
affecting the inputs channel and with inputs constraint.
In this sense the result here presented can be seen as a
nontrivial extension of the results proposed in (Isidori
and DeSantis, 2001) where uncertain parameters was
not allowed. Clearly, by solving the general problem,
we obtain also the solution for the motivating example
specified in section 2.
In particular given the system

ẋ = Ax + µBv + Qw
ẇ = Sw
e = Cx + Pw

with inputsv ∈ IRm and outputse ∈ IRm, given a set
W ∈ IRr and a real numberg > 0, we consider the
problem of designing an error feedback regulator of
the form

ξ̇ = ϕ(ξ, e) v = γ(ξ) |v(·)| ≤ g

such that for allx(0) ∈ IRn and for all constantµ such
that0 < µL ≤ µ ≤ µU,

(i) the closed loop system withw = 0 is asymptoti-
cally stable;

(ii) for all w(0) ∈ W ⊂ IRr the response of the closed
loop system is bounded andlimt→∞ e(t) = 0.

The first assumption which will be used to solve the
problem is the existence of matricesΠ andΓ solution
of theFrancis(or regulator) equations

ΠS = A Π + B Γ + Q
0 = C Π + P .

(14)

In particular the functionΓw(t)/µ represents the con-
trol law which must be provided asymptotically by
the controller in order to offset the exogenous dis-
turbanceQw(t) while keeping the errore identically
zero. Hence, in this general context, assumption (7)
specializes in requiring that the initial state of the
exosystem satisfies

w(0) ∈ W := {w ∈ IRr :
‖Γw(·)‖∞

µL
< g − β}.

(15)
for some positiveβ < g.
Moreover, in order to reconstruct the value of the
exogenous variable, we assume that the pair

Ce :=
(
C 0

)
Ae :=

(
A −µBΓ
0 S

)

is observable for anyµ ∈ [µL, µU]. Finally we assume
that the pair(A,B) is stabilizable and the system
is null-controllable, namely the spectrum ofA is all
contained in the closed left half plane, i.e.σ(A) ⊂ C̄−.

In particular it is trivial to check that all these assump-
tions are fulfilled specializing the system(A,B,C) to
he magnetic levitation plant presented in section 2.
Now callPA the positive definite matrix such that

PAA + AT PA ≤ 0 (16)

and consider theobserver-basedcontroller

ξ̇x̃ = Aξx̃ + µ0 B v − µ0BΓξw + Gx(e− Cξx̃)

ξ̇w = Sξw + Gw(e− Cξx̃)

v = satg(Γξw − λ sat1(
BT PAξx̃

λ
))

(17)

whereGx andGw are output injection matrices to be
specified, satg(·) is the classical saturation function
defined in the previous section andλ ≤ ‖δ‖∞/2. The
claim is that this controller, suitably tuned, solves the
problem.

Proposition 2.There exists aγ? > 0 such that if the
output injection matrixGe = (Gx, Gw) is chosen so
that all the eigenvalues ofAe − GeCe have real part
lower than−γ?, i.e.

Re(σi(Ae −GeCe)) < −γ? i = 1, . . . , n + r

∀ µ ∈ [µL, µU] ,
(18)

then the controller (17) solves the problem in ques-
tion for any (x(0), w(0)) ∈ IRn × W and for any
(ξx̃(0), ξw(0)) ∈ IRn × IRr .

Before presenting a sketch of the proof of this claim
we provide a result which turns out to be instrumental
in the following. This result refers to the linear uncer-
tain system




˙̃
ξx̃ = (A−GxC)ξ̃x̃ − µBΓξ̃w + q

˙̃
ξw = Sξ̃w −GwCξ̃x̃

(19)

with input q and uncertain parameterµ. The result
states that it is possible to choose the output injection
matrix Ge in order to impose an arbitrary input-to-
state linear gain, robustly with respect to the uncertain
parameterµ.

Proposition 3.Consider system (19) withµ ranging
within a compact set. Then for allγ > 0 there exists
a γ? > 0 such that ifGe is chosen so that (18) is
fulfilled, then (19) is ISS with no restriction on the
input q and on the initial state and linear gainγ,
namely the following asymptotic estimate holds2

‖(ξ̃x̃(·), ξ̃w(·))‖a ≤ γ‖yx(·)‖a .

In particular for allε > 0 there exists aT ? > 0 such
that

‖(ξ̃x̃(t), ξ̃w(t))‖ ≤ (γ+ε)‖yx(t)‖ for all t ≥ T ? .

2 Here‖s(·)‖a := limt→∞ sup‖s(t)‖



Note that forµ = µ0 the result is trivial due to
the observability assumption of the pair(Ce, Ae). For
uncertain values ofµ the result can be easily proved
for instance by small gain arguments.

Considering now the change of coordinates

x → x̃ := x−Πw (20)

and
ξx̃ → ξ̃x̃ = ξx̃ − x̃

ξw → ξ̃w = ξw − w

µ
,

(21)

the overall system in the new coordinates reads as
(recall equations (14))

˙̃x = Ax̃ + µBv − µ0BΓw

˙̃
ξx̃ = (A−GxC)ξ̃x̃ −BΓξ̃w + (µ0 − µ)Bv+

+
µ− µ0

µ
BΓw

˙̃
ξw = Sξ̃w −Gw ξ̃x̃ .

(22)

The proof of the result is then divided in two parts.
In the first it is shown that there exists a choice of
Ge = (Gx, Gw) and a timeT ? > 0 such that for the
closed loop system the following holds

Γξw(t)− λ sat1(
BT Pξx̃

λ
) ≤ g ∀ t ≥ T ? (23)

namely the control law becomes lower than the satu-
ration level in finite time. In the second part, due to
proposition 1, it can be shown that the origin of the
system (22) fort ≥ T ? is globally asymptotically
stable. This, in view of the definitions (20)-(21) and of
the equations (14), proves the result (for more details
see (Gentili and Marconi, 2001)).

5. SIMULATION RESULTS

In order to check the performances of both the con-
trollers above designed, a certain number of tests have
been made, simulating the response of the system sub-
ject to various periodic disturbances. The results of
these tests are shown in fig. 1 and fig. 2. In particular
the disturbance that has been simulated is a sinusoidal
signalδ(t) = V sin(Ω t) with amplitudeV = 5 m/s2

and frequencyΩ = 2 rad/sec occurring at timet =
10 sec. The parameterα is assumed to range within
of ± 20% of the nominal valueα0 = 6.612 × 10−3

Kg m3/s2 A2; the internal model of both controllers
was connected at timet = 20.
The state feedback controller was designed choosing,
k = 800 , c1 = 1.252× 103 , c2 = 900 andλ = 105;
the reference position was assumedxdes

1 = −0.022 m
and the initial state of the system was taken asx1(0) =
−0.03 m andx2(0) = −0.1 m/s.
The error feedback controller was designed choos-
ing Gx = 103 ∗ [0.072 2.043]T , Gw = 105 ∗
[−1.08 0.95564 1.365]T , λ = V/3, BT P = [100 100];
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Fig. 1. state feedback controller: tracking error (e1),
disturbance (δ(t)), control input (v)

the reference position was assumed stillxdes
1 =

−0.022 m and the initial state of the system was taken
asx1(0) = −3.03 m andx2(0) = −2 m/s.
Just note that the choice of two different initial states
for these simulations was made just to point out that,
due to the presence of a non saturated high gain state
feedback, the state feedback stabilizer controller also
without the internal model is able to reduce the effect
of the disturbance but not to totally overcome it; on
the other hand the error feedback saturated stabilizer
controller without the internal model unit is in no way
able to contrast the sinusoidal disturbance.

6. CONCLUSIONS

In this paper the problem of disturbance suppression
for a magnetic levitation system has been addressed.
In the realistic case the model of the system is uncer-
tain, we have proposed two design procedure yield-
ing an internal model-based regulator that achieves
tracking of the reference position while rejecting the
disturbance for any initial state of the system and for
any initial state of the exosystem in a certain set. In
particular we presented a state feedback design pro-
cedure able to obtain thelowest ordercontroller and
an error feedback design procedure able to obtain an
observer-based controller; the latter solves also a more
general problem in the context of output regulation
of linear systems with constant uncertain parameters
affecting the inputs channel and with input constraints.
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Fig. 2. error feedback controller: tracking error (e1),
disturbance (δ(t)), control input (v)
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