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Abstract: The paper focuses on the application of neuro-fuzzy techniques in fault 
detection and isolation. The objective of this paper is to detect and isolate faults to an 
industrial gas turbine, with emphasis on faults occurred in the actuator part of the gas 
turbine. A neuro-fuzzy based learning and adaptation of TSK fuzzy models is used for 
residual generation, while for residual evaluation a neuro-fuzzy classifier for Mamdani 
models is used. The paper is concerned on how to obtain an interpretable fault classifier 
as well as interpretable models for residual generation. Copyright © 2002 IFAC 
 
Keywords: fault diagnosis, neural networks, fuzzy models, neuro-fuzzy, fault detection.  

 
 
 

 
1. INTRODUCTION 

 
In the last ten years, the field of diagnosis has 
attracted the attention of many researchers, both from 
the technical area as well as medical area. In the 
industrial field there is also an increasing need for 
safety, which conducted to the development of 
various techniques for an automatic diagnosis of 
faults.  Generally, in an industrial control system a 
fault may occur in the process components, in the 
control loop (controller and actuators) and in the 
measurement sensors for the input and output 
variables. The conceptual diagram for a fault 
diagnosis system is depicted in Figure 1. The 
diagnosis consists of two sequential steps: residual 
generation and residual evaluation. In the first step a 
number of residual signals are generated in order to 
determine the state of the process. The objective of 
fault isolation is to determine if a fault has occurred 
and also the location of the fault, by analysing the 
residual vector.  
 

Fig. 1. The general structure of a diagnosis system 
 
The problem of detecting and isolating faults to an 
industrial gas turbine was studied in other previous 
papers in the literature (Patton et al., 1999; Patton et 
al. 2000; Patton and Simani, 1999; Simani and Spina, 
1998) using mainly observer based techniques.  In 
this paper we investigate the problem of fault 
diagnosis of an industrial gas turbine using a neuro-
fuzzy approach. For simulating purposes we used a 
SIMULINK model of such an industrial gas turbine, 
developed at Alstom Power Technology Centre, 
United Kingdom. 
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The structure of the paper is the following. Section 2 
presents an overview on the use of neuro-fuzzy 
techniques in fault detection and isolation (FDI) as 
well as the neuro-fuzzy structures used in our 
application. Section 3 describes how residuals are 
generated using a TSK neuro-fuzzy based adaptation 
and learning technique.  Section 4 is concerned on 
the development of a transparent fault classifier 
using neuro-fuzzy networks for Mamdani fuzzy 
models, in order to describe the task of fault 
classification. The paper ends with some conclusions 
and remarks. 
 
 

2. NEURO-FUZZY IN FDI  
 
Many authors have focussed on the use of neural 
networks (NNs) in FDI applications (Marcu et al., 
1999; Korbicz et al., 1999) for solving the specific 
tasks in FDI, such as fault isolation but mainly fault 
detection. Other authors (Koscielny et al., 1999) used 
fuzzy logic for fault diagnosis, especially for fault 
isolation, but some of them even for fault detection, 
using for example TSK fuzzy models.  In the last few 
years there is also an increasing number of authors 
(Leonhardt and Ayoubi, 1997; Patton et al., 1999; 
Calado and Sa da Costa, 1999) who try to integrate 
neural networks and fuzzy logic in order to benefit of 
the advantages of both techniques for fault diagnosis 
applications. 
 
Neural networks have been successfully applied to 
fault diagnosis problems due to their capabilities to 
cope with non-linearity, complexity, uncertainty,  
noisy or corrupted data. Neural networks are very 
good modelling tools for highly non-linear processes. 
Generally, it is easier to develop a non-linear neural 
network based model for a range of operating than to 
develop many linear models, each one for a 
particular operating point. Due to these modelling 
abilities, neural networks are ideal tools for 
generating residuals. Neural networks can also be 
seen as universal approximation techniques. An 
usual 3 layered MLP neural network, with m inputs 
and n outputs, can approximate any non-linear 
mapping from Rm to Rn using an appropriate number 
of neurons in the hidden layer. Due to this 
approximation and classification ability, neural 
networks can also be successfully used for fault 
evaluation. The drawback of using neural networks 
for classification of faults is their lack of 
transparency in human understandable terms. Fuzzy 
techniques are more appropriate for fault isolation as 
it allows the integration in a natural way of human 
operator knowledge into the fault diagnosis process. 
The formulation of the decisions taken for fault 
isolation is done in a human understandable way 
such as linguistic rules.  
 
The main drawback of neural networks is 
represented by their �black box� nature, whilst the 
disadvantage of fuzzy systems (FS) is represented by 
the difficult and time-consuming process of 
knowledge acquisition. On the other hand the 

advantage of neural network over fuzzy systems is 
learning and adaptation capabilities, while the 
advantage of fuzzy system is the human 
understandable form of knowledge representation. 
Neural networks use an implicit way of knowledge 
representation while fuzzy and neuro-fuzzy systems 
represent knowledge in an explicit form, such as 
rules.  
 
 
2.1 Methods of Neuro-Fuzzy Integration 
 
The combination of neural networks and fuzzy 
systems can be done in two main ways: 
a). Neural networks are the basic methodology and 
fuzzy logic is the second. These hybrid systems are 
mainly neural networks, but the neural networks are 
equipped with abilities of processing fuzzy 
information. The systems are usually termed Fuzzy 
Neural Networks and they are networks where the 
inputs and/or the outputs and/or the weights are fuzzy 
sets, and they usually consist of a special type of 
neurons, called fuzzy neurons.  
b). Fuzzy logic is the basic methodology and neural 
networks the subsequent. These systems can be 
viewed as fuzzy systems augmented with neural 
network facilities, such as learning, adaptation, and 
parallelism. These systems are usually called Neuro-
Fuzzy Systems. Most authors in the field of neuro-
fuzzy computation understand neuro-fuzzy systems 
as a special way to learn fuzzy systems from data 
using neural network type learning algorithms. Some 
authors (Shann and Fu, 1995) in the field term these 
neuro-fuzzy systems also fuzzy neural networks, but 
most of them like to term them as Neuro-Fuzzy 
Systems. Neuro-Fuzzy Systems (Nauck and Kruse, 
2000) can be always interpreted as a set of fuzzy 
rules and can be represented as a feed-forward 
network architecture.  
 
These two previous ways of neuro-fuzzy (NF) 
combination can be considered as a type of fusion 
systems, as it is difficult to see a clear separation 
between the two methodologies.  One methodology 
is fused into the other methodology, and it is 
assumed that one technique is the basic technique 
and the other is fused into it and augments the 
capabilities of information processing of the first 
methodology. There is another way of hybridisation 
of neural networks and fuzzy systems, where each 
methodology maintains its own identity and the 
hybrid neuro-fuzzy system consists of many 
modules, which cooperate in solving the problem. 
These kind of neuro-fuzzy systems can be called 
combination hybrid systems. The neural network 
based modules can work in parallel or serial 
configuration with fuzzy logic based modules and 
augments each other. In some approaches, a neural 
network (such as a self-organising map) can pre-
process input data for a fuzzy system, performing for 
example data clustering or filtering noise. But, 
especially in FDI applications, many authors use a 
fuzzy system as a pre-processor for a neural network. 
In (Alexandru et al., 2000) the residuals signals are 



 

     

fuzzified first and then fed into a recurrent neural 
network for evaluation, in order to perform fault 
isolation.   
 
The most often used NF systems are fusion NF 
systems and the most common understanding for a 
Neuro-Fuzzy system is the following. A NF system 
is a neural network that is topologically equivalent to 
the structure of a fuzzy system. The network 
inputs/outputs and weights are real numbers, but the 
network nodes implement operations specific to 
fuzzy systems: fuzzification, fuzzy operators 
(conjunction, disjunction), defuzzification. In other 
words, a NF system can be viewed as a fuzzy system, 
with its operations implemented in a parallel manner 
by a neural network, and that�s why it is easy to 
establish a one-to-one correspondence between the 
NN and the equivalent FS. Neuro-Fuzzy systems can 
be used to identify fuzzy models directly from input-
output relationships, but they can be also used to 
optimize (refine/tune) an initial fuzzy model acquired 
from human expert, using additional data. The NF 
networks used in our application in section 3 and 4, 
for residual generation and fault classification, are 
shortly presented in the following section. 
 
 
2.2 Neuro-Fuzzy Networks 
 
Two major classes of neuro-fuzzy networks are 
preferred by most of the authors in the field of neuro-
fuzzy integration. The most common neuro-fuzzy 
network structure is used to develop or adjust a fuzzy 
model in Mamdani form, given by relation (1), using 
input�output data (Shann and Fu, 1995). The 
network  is a five layers network as shown in Figure 
2. A Mamdani fuzzy model consists of a set of fuzzy 
if-then rules in the following form: 
 

If x1 is X1i1 and x2 is X2i2 and �.. xn is Xnin 
then  y is Yj         (1) 

 

where: x1, x2, �, xn are the system inputs, y is the 
output, Xkik with k=1,2, �, n and ik=1,2, �, lk are 
the linguistic values of the linguistic variable xk, and 
Yj j=1,2, �. ly are the linguistic values of the output. 
Every linguistic variable xk is described by lk 
linguistic values Xk1, Xk2, �, Xklk. 
 
Layer 1 is the input layer and each node corresponds 
to each input variable. Layer 2 is called membership 
function layer, the nodes from this layer mapping 
each input xi to every membership function Xij of the 
linguistic values of that input. It is possible to use, in 
the layer 2, a subnet of nodes to implement a desired 
membership function, instead of a single node. Each 
node in the layer 3 (called rule layer) performs the 
precondition matching � the IF part � of a fuzzy rule. 
The nodes from layer 4 combine the fuzzy rules with 
the same consequent, each node implementing a 
fuzzy OR operator, such as fuzzy max operator. Each 
node in the layer 5 corresponds to an output variable 
and acts as a defuzzifier. The integration and the 
activation functions of nodes for such a network are 

chosen (Shann and Fu 1995) so that to perform 
specific operations in a fuzzy inference engine as 
described before. 
 

 
Fig. 2. The general structure of a neuro-fuzzy 

network for Mamdani models 
 
Another neuro-fuzzy network based structures used 
in our application are the neuro-fuzzy networks used 
to develop and adjust a Sugeno-type fuzzy model. 
The structure of such a neuro-fuzzy network is 
shown in figure 3. The first 3 layers are the same 
with those in a neuro-fuzzy network for Mamdani 
models. Usually, all weights at layer 3 are set to 1. If 
some prior knowledge on process functioning is 
available, it can be established the number of nodes 
in layer 3 (the number of rules or fuzzy partition 
regions) and the corresponding links between layer 2 
and 3. 
 

 
 

Fig. 3. Neuro-Fuzzy network for TSK fuzzy model  
                             implementation 
 
In (Zhang and Morris 1996) the authors developed a 
neuro-fuzzy network for process modelling and fault 
diagnosis. The main shortcoming of this structure is 
that the user must partition the process operation into 
several fuzzy operating regions before training the 
fuzzy neural network. The partitioning is made 
empirically, looking to the process functioning, and it 
may be a very difficult task when the process has a 
complex nature. Different clustering techniques as 
well as genetic algorithms can be used to find the 
best fuzzy partition of the input space. Layer 4 is 
called the model layer, and each node implements a 
linear model corresponding to a rule node in the rule 
layer, respectively to a fuzzy operating region. The 
weights of a node are the parameters of the linear 
model and the inputs of the node are the past system 
inputs and outputs. Layer 5 consists of a single node, 
which performs the defuzzification. The most general 
Sugeno-type neuro-fuzzy network structure is a 
network which implements a set of fuzzy rules with 



 

     

ARMA models of higher order in the consequence 
part of the rules. The rules are in the following form: 
 
Rk: If x1 is X1i1 and x2 is X2i2 and ... xn is Xnin  then 
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where k=1,2, �, m, m the number of rules, and 
x=(x1, x2, �, xn) is the input vector, and 
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When linear ARMA models of higher order are used, 
every node from layer 4 must be replaced by a 
subnet, which implements the ARMA model of the 
desired order. In figure 4, it is shown the subnet 
which corresponds to node k from layer 4, when 
n1=n2=2. The inputs of the subnet k from layer 4 are 
the previous inputs and outputs of the system. 
 

 
Fig. 4. The subnet corresponding to node k in layer 4 
 
 

3. RESIDUAL GENERATION USING NEURO-
FUZZY MODELS 

 
The purpose of this paper is to detect and isolate 
mainly actuator faults, but also other types of faults 
such as components or sensor faults, occurred in an 
industrial gas turbine. In our turbine, air flows via an 
inlet duct to the compressor and the high pressure air 
from the compressor is heated in combustion 
chambers and expands through a single stage 
compressor turbine. A Butterfly valve provides a 
means of generating a back pressure on the 
compressor turbine (there is no power turbine present 
in the model). Cooling air is bled from the 
compressor outlet to cool the turbine stator and rotor. 
A governor regulates the combustor fuel flow to 
maintain the compressor speed at a set-point value. 
For simulation purposes we used a Simulink 
prototype model of such an industrial gas turbine, 
presented in (Patton and Simani, 1999) and 
developed at Alstom Power Technology Centre, 
United Kingdom. The SIMULINK prototype 
simulates the real measurements taken from the gas 
turbine with a sampling rate of 0.08s. The model has 
two inputs and 28 output measurements, which can 
be used for generating residuals. The Simulink model 
where validated in steady state conditions against the 
real measurements and all the model variables were 
found to be within 5% accuracy. All the neuro-fuzzy 
models we will develop later in the section for 
generating residuals purposes are driven by two 
inputs: valve angle (va) and the fuel flow (ff) which 
is also a control variable.  

One common fault in the gas turbine is the fuel 
actuator friction wear fault. Other faults considered 
in our work were compressor contamination fault, 
thermocouple sensor fault and high-pressure turbine 
seal damage. Usually these faults in the industrial gas 
turbine develop slowly over of a long period of time. 
We will try to detect the actuator fault and to isolate 
it from other faults in the turbine. For simplicity, we 
present in the following only the results for the first 
two faults - fuel actuator friction wear fault and 
compressor contamination fault. 
 
The residual signals are calculated as difference 
between estimated signal given by observer and the 
actual value of the signal (Fig. 5).  The residuals are 
generated using TSK neuro-fuzzy networks.  We are 
concerned with the problem of finding accurate 
neuro-fuzzy models for generating residuals which 
retain as much as possible a certain degree of model 
transparency.  That is why a good model structure 
has been achieved and consequently a good partition 
of the input space, using fuzzy clustering.  There is a 
compromise between the interpretability and the 
precision of the model. 

 

 
Fig. 5. Neuro-fuzzy based observer scheme for 

generating residuals. 
 

The first step was the development of a 3 input � 1 
output NF-TSK network for the output measurement 
which is most affected by the actuator fault (ao). As 
input of the network, the present value for valve 
angle (va) and fuel flow (ff), and the previous value 
of the output affected by the fault, were used. Three 
linguistic values were used for each input variable 
and grid partition of the input space. The 
performance of the model is shown in Fig. 6a, the 
generated residual in Fig. 6b, and the difference 
between the system output and the model output in 
Fig. 6c.  Unfortunately, due to the control loop 
action, this kind of fault cannot be seen in steady 
state regime and cannot be described by a ramp 
function (the example of a gradually developing 
fault).  But this actuator fault can be seen in the 
dynamic regime, for different values of the valve 
angle.  For isolating purposes we take the absolute 
value of this residual signal and then pass it through a 
filter to obtain a persistent residual signal.  In order 
to see a gradually developing fault, a NF based 
observer was constructed for the output most affected 
by the compressor contamination fault.  In a similar 
way a network with 3 inputs and 3 membership 
functions per input was also used.  This had first 
order linear models in the consequents of the rules. 
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The output (co) most sensitive to a compressor ramp 
fault is depicted in Fig. 7a and the residual generated 
in Fig. 7b.  The compressor fault also affects the 
output ao - most affected output by the actuator fault 
- but not in the same magnitude as the output co is 
affected.  It is then the case that the residual designed 
for the output ao is sensitive to both faults. 
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c) The system and the model output  

 
Fig. 6. Results for the fuel actuator friction wear fault 
   
Furthermore, several types of models for a residual 
sensitive to the actuator fault were developed, in 
order to see a comparison between the accuracy and 
the model transparency. These results are 
summarised in Table 1 from which it can be seen that 
a more transparent NF model for residual generation 
has less model accuracy. The first three NF models 
were generated using clustering methods and the 
following three were generated using a grid partition 
with 2, 3 and 4 membership functions for each input 
variable. The exceptional performance shown in the 
first case can be explained by the capabilities of 
Gustafson-Kessel clustering method, which can 
produce clusters with different shapes and 
orientation, and then more accurate model while 
keeping a reduced number of rules.  On the other 
hand, it can be concluded that if the structure of the 
model is not properly chosen, then the transparency 
degree is reduced, but also the training time will be 
much increased and then more difficult to reach a 

desired performance of the model in a given time.  
Table 1 shows that there is not a very big difference 
in performance between a model with 64 rules and a 
model with 2 rules, even if the number of the 
parameters were much bigger in the first case. That 
means the structure of the model in the first case 
where not appropriate and the training was not fully 
completed. In fact, after an appropriate and a 
complete training, the model with 64 rules should 
have overlapping membership functions and many 
input regions with about the same consequent, which 
require a post-processing of the model in order to 
simplify it. But this task, represented by a more 
difficult training and a simplification after that, is 
more complicate to perform than trying to predict 
first a right structure of the model at a desired degree 
of transparency and train the model after that.  
 

Table 1  
 

Transparency of 
the model 

Performance of the 
model 

Comments 

2 rules 0.00180 Gustafson-Kessel 
2 rules 0.007214 Substr. Clustering 
3 rules 0.006087 Substr. Clustering 

8 rules (2x2x2) 0.004194 Grid partition 
27 rules (3x3x3) 0.001024 Grid partition 
64 rules (4x4x4) 0.000887 Grid partition 

Black box 0.000001 Neural network 
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b) Generated residual for a ramp fault 
 
Fig. 7. Results for compressor contamination fault. 

 
 

4. NEURO-FUZZY BASED RESIDUAL 
EVALUATION  

 
In the residual generation part of a diagnosis system 
the user should be more concerned on the accuracy 
of neuro-fuzzy models, even desirable to have 
interpretable models also for residual generation, 
such as TSK models. For the evaluation part it is 
more important the transparency or the 
interpretability of the fault classifier, in human 
understandable terms, such as classification rules. 
The main problem in neuro-fuzzy fault classification 
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is how to obtain an interpretable fuzzy classifier, 
which should have few meaningful fuzzy rules with 
few meaningful linguistic rules for input/output 
variables. Neuro-fuzzy network for Mamdani models 
are appropriate tools to evaluate residuals and 
perform fault isolation, as the consequence of the 
rules contains linguistic values, which are more 
readable than linear ARMA models in case of using 
TSK fuzzy models. As in previous section, the price 
paid for the interpretability of the fault classifier is 
the loss of the precision of the classification task. 
 
The isolation table for the two faults used in the 
previous section is represented by Table 2. For 
training the neuro-fuzzy network in order to isolate 
these faults, 150 patterns for each fault were used. 
The NF-network decisions for the residual values 
were assigned in relation with the known faulty 
behaviour. In order to obtain a readable fault 
classifier we used NEFCLASS neuro-fuzzy classifier 
(Nauck and Kruse, 2000). This neuro-fuzzy system 
has a slightly different structure than the neuro-fuzzy 
network for Mamdani models presented in section 2, 
but it allows to the user to obtain in an interactive 
manner and very easy an interpretable fuzzy fault 
classifier at the desired level and compromise 
accuracy/transparency. Considering conjunctive 
fuzzy rules for fault classification (both residual 
inputs in the antecedent), Table 3 summarises the 
results of the study.   
 

Table 2 Fault isolation table 
 

 Actuator 
fault 

Compressor 
fault 

R1 1 1 
R2 0 1 

 
Table 3 Transparency/accuracy of NF fault classifier   

 
Transparency(no.of rules) 2 4 8 12 
Accuracy (no. of patterns 
correctly classified�in %) 88.7 91.2 96.4 99.6 

 
 

5. CONCLUSION  
 
This paper studied the problem of diagnosing faults 
occurred in an industrial gas turbine. Neuro-fuzzy 
techniques have been applied in the paper both for 
residual generation and for fault classification. This 
study demonstrates that the combination of neural 
networks with fuzzy systems can produce better 
diagnostic results, especially when there is an interest 
on the transparency in human understandable terms 
of neuro-fuzzy models. A compromise must be made 
between the interpretability and  model precision.  
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