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Abstract: The development and application of a constrained Single Input Single Output 
(SISO) version of the popular Generalised Predictive Control (GPC) algorithm, which 
uses the Quadratic programming (QP) approach, is presented in this paper; Mean Arterial 
pressure (MAP) is used as an inferential variable to indicate the level of unconsciousness. 
First, the algorithm was validated using a derived re-circulatory physiological model of 
anaesthesia via a semi-closed circuit before the closed-loop control system was 
transferred to the operating theatre for validation during surgical operations. Simulation 
and real-time experiments showed that excellent regulation of blood pressure around set-
point targets can be achieved. Such regulation was later translated to being equivalent to a 
good maintenance of level of anaesthesia. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
Anaesthesia is generally described as that part of the 
medical profession which ensures that the patient’s 
body remains insensitive to pain an other stimuli 
during surgical operations. It includes muscle 
relaxation (paralysis), unconsciousness, and 
analgesia (pain relief). In contrast to muscle 
relaxation, depth of anaesthesia is more diff icult to 
quantify accurately. It is in fact agreed that there is 
no absolute standard for the definition of clinical 
state of anaesthesia against which new methods 
designed to measure ‘depth’ of anaesthesia can be 
proposed (Robb et al, 1988). Thus, one approach has 
been to merge a number of clinical signs and on-line 
monitored data to produce an expert system adviser 
for the anaesthetist.  In spite of the multisensor 
nature of the above approach, it appears that, during 

the majority of operating periods when no emergency 
conditions occur, a good indication of 
unconsciousness can be obtained from a single on-
line monitored variable. Thus, the use of arterial 
blood pressure, monitored via an inflatable cuff using 
a Dinamap instrument, has been investigated for 
feedback control with simple PI strategies (Robb et 
al, 1988). In this case, the control actuation was via a 
stepper motor driving the dial on a gas vaporiser. 
This concept forms the basis for the modelli ng and 
control aspects of unconsciousness in the following 
work. In particular, we have focused on the drug 
isoflurane in these studies, it being commonly used 
in modern surgery. 
 
The control theme at the heart of this study is that of 
Model-Based Predictive Control, particularly 
Generalised Predictive Control (GPC) (Clarke et al, 
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1987), which is seen by many as the control strategy 
that had the most significant impact on solving 
complex industrial problems, and including those 
within the realm of biomedicine (Mahfouf and 
Linkens, 1998). In this paper hard constraints are 
introduced as part of the optimisation problem and 
the CARIMA1 model, normally used in the standard 
GPC algorithm, is extended to include a fuzzy 
modelli ng approach via the Takagi-Sugeno-Kang 
model (Takagi and Sugeno, 1985), but in the 
CARIMA sense. Hence, this paper is organised as 
follows: Section 2 will review the re-circulatory 
physiological model relating to the drug isoflurane 
(Derighetti, 1999), together with our own 
modification in terms of the control actuation being 
via a syringe pump rather than a gas vaporiser. In 
Section 3, the development of constrained GPC but 
using the fuzzy modelli ng approach is briefly 
reviewed, while in Section 4 results of the simulation 
experiments are presented and discussed. In Section 
5 the transfer of the overall control system to the 
operating theatre is described and the real-time 
experiment hitherto conducted is presented and 
analysed. Finally, in Section 6 conclusions relating to 
this study together with plans for the future are 
given. 
 
 

2. ANAESTHESIA MODEL RELATING TO 
ISOFLURANE 

 
The model, whose diagram is shown in Figure 1, 
consists of two parts; one part for the uptake and 
distribution of drugs, and the other part for the 
circulation of the blood-flows. Space prohibits 
expanding of the methodology behind this model 
derivation but suff ice to say that the overall non-
linear model associated with the anaesthetic 
describes such pharmacokinetics (uptake and 
distribution) of the drug, the circulation model (blood 
flow), as well as pharmacodynamics (effects of the 
drugs on the patient’s body) as follows: 
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9,,1 �=i  (number of compartments). 

 
The state vector )(tp describes the partial pressure of 

the anaesthetic gas in every compartment, the input 
being the concentration of the anaesthetic gas in the 
inspired air ( )Airp , v refers to ‘venous’ , A refers to 

“Artery” , and L refers to “Lungs” , 0,jg , ib , ik , 

0CO , and iλ are all terms which can be inferred 

                                                 
1 Controlled Auto-Regressive Integrated Moving 
Average 

from the partial pressures or are constants which are 
either patient or drug dependent (Derighetti, 1999). 
The Mean Arterial Pressure (MAP) is given by the 
following equation: 
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where 0CO is the total cardiac output prior to any 

anaesthetic being given.  
 
Because giving 100% 2O can cause the patient to 

have lung problems, a mixture of 70% ON2 and 30% 

2O is preferred when anaesthetising them. ON2  

having a mild anaesthetic effect acts as a carrier for 
isoflurane and lowers the drug equili brium time. 
Hence, its effect was modelled by increasing the 
effective air-flow Airq  in Equation (1) to take into 

account the partial pressures in relation to this gas 
(Derighetti, 1999). Moreover, we adopted a more 
recent technique which consists of delivering the 
anaesthetic in a liquid form which will be 
transformed into a gas as it passes through a heating 
chamber; this having the advantage of avoiding to 
drive a vaporiser with all it s software complexity. In 
order to reflect such a modification, a model which 
describes the dynamics associated with the 
vaporisation process, was elicited through an 
experimental study using the following first-order 
differential equation: 
 

liqisoggasisoAirggasiso pkpqkp _2_1_ +−=�
        (3) 

 
where gasisop _ , liqisop _ are the concentrations of the 

anaesthetic in “gas” and “ liquid” forms respectively, 
and gk1 , gk2 are constants. The following 

approximate liner model was obtained: 
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The model described by Equations (1), (2), and (4) 
will form the basis for a closed-loop control strategy 
design using the theme of constrained fuzzy model-
based predictive control as will be outlined in the 
next section. 
 
 

3. CONSTRAINED FUZZY GENERALISED 
PREDICTIVE CONTROL 

 
 
3.1 Controller Formulation 
 
The long-range predictive controller developed in 
this research study is based on the Popular 
Generalised Predictive Control (GPC) strategy 



 

     

(Clarke et al, 1987) whose theoretical background is 
briefly reviewed here: 
 
Consider the following locally linearised discrete 

model in the backward shift operator 
1−z : 
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)(tu  represents the control input and )(ty  is the 

measured variable. The controller computes the 
vector of controls using optimisation of a function of 
the form: 
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where 1N  is the minimum costing (output) horizon, 

2N  is the maximum costing horizon, NU is the 

control horizon, ω  is the future set-point, )( jλ is the 

control weighting sequence, and )( 1−zP  is the 

inverse model in the model-following context with 

1)1( =P . Furthermore, the )( 1−zC  polynomial in 

Equation (4) is replaced by a fixed polynomial 

)( 1−zT  known as the observer polynomial for the 

predictions ).(ˆ)( 1 jtyzP +−  This as already 

mentioned, enables an offset of the effect of the 
∆ operator as a high-pass filter on the input-output 
data. 
 
When the control horizon NU (which reflects the 
number of degrees of freedom for the controller) is 
greater than 1, the solution of (5) in the 
unconstrained case (physical and terminal 
constraints not included prior to optimisation) differs 
from that in the constrained case (physical and 
terminal constraints included before optimisation 
takes place). In the latter case the final solution can 
be found in the ‘optimal’ sense. Hence, one way of 
solving (5) in the constrained case is to consider the 
following Least Squares Inequality (LSI) problem 
(Mahfouf and Linkens, 1998): 
 
Minimise bAx−  subject to hHx >                      

(6) 

Where x  is the NU solution vector, H  is the 
static/dynamic constraints information matrix and 
h is a vector containing the lower and upper limits of 
the constraints. In the case of Equation (5), we have: 
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H and h  will depend on the types of constraints 
which are considered, i.e. input rate constraints, input 
magnitude constraints and output magnitude 
constraints. If all three types of constraints are 
considered, then we would write the conditions as 
follows: 
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where ,,,,, minmaxminmaxmin Φ∆∆ uuuu and maxΦ are 

the minimum and maximum allowed control 
increments, absolute control moves, and the outputs 
respectively. It is worth noting that the Quadratic 
Programming (QP) problem can be solved using the 
method proposed by Lawson and Hanson (1974). 
Also, when using both input and output constraints 
simultaneously infeasibility problems may be 
encountered (when the optimiser cannot satisfy all 
constraints at once). Several methods can be used to 
circumvent such a problem, but the one we used in 
this instance is the hierarchical removal of output 
constraints starting from the bottom predictions until 
the optimiser is capable of returning a feasible 
solution (Mahfouf and Linkens, 1998). 
 
 
3.2 Fuzzy Process Model 
 
One common denominator of all Model Based 
Predictive Control (MBPC) strategies which 
represents their “ raison d’etre”  is their assumption 
of a model which has to be quite accurate. The 
modelli ng of real world systems, however, often 
presents problems. As processes increase in 
complexity, they become less amenable to direct 
mathematical modelli ng based on physical laws since 
they may be distributed, stochastic, non-linear and 
time-varying, uncertain, etc. According to Zadeh’s 
Principle of Incompatibilit y (Zadeh, 1973), the closer 
one looks at a real world problem, the fuzzier 
becomes the solution. Hence, the modelli ng problem, 
instead of being posed within a strictly analytical 
framework, is based on empirically acquired 
knowledge regarding the operation of the process. 
 
Many fuzzy modelli ng methods have been proposed 
in the literature. Most are based on collections of 
fuzzy IF-THEN rules of the following form: 
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1 CisyTHENBisxandandBisxIF n
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where ( )Tnxxx ,,1 �=  and y are the input and 

output linguistic variables respectively, and iB  and 
C  are linguistic values characterised using 
membership functions. It is considered that this fuzzy 
rule representation provides a convenient framework 
to incorporate human experts' knowledge  
 
An alternative method of expressing fuzzy rules 
proposed by Takagi and Sugeno (1985) has fuzzy 
sets only in the premise part and a regression2 model 
as the conclusion: 
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where x , y and iB  are defined as above, and ic are 

real-valued parameters.  
 
Consider a single input single output (SISO) system 
which can be modelled using the method proposed 
by Takagi and Sugeno. Assuming that the input 
space is partitioned using p fuzzy partitions and that 
the system can be represented by fuzzy implications 
(one in each fuzzy sub-space), we can write the 
following implication L : 
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Such model representation in the consequent part of 
the above implication is called a Auto-regressive 
Moving Average (ARMAX) model. Several li near 
adaptive predictive controllers have been designed 
using such model representation, however, the most 
popular linear model structure is the so-called 
CARIMA structure which was found to be effective 
against offsets which can be present in the data.  
Using a CARIMA model structure, the fuzzy 
implication (10) can be written as follows: 
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The model parameters can be expressed in the 
following matrix form: 
 



















=Θ
p

n
pp

n
p

nn

ba

ba

bbaa

bbaa

......

......

11

11
1

11
1

��
                           (12) 

 
 
The overall fuzzy model output (in incremental 
form) can be written as follows: 

                                                 
2 This model can be either linear or non-linear. 
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Θ′  are the parameters Θ but weighted by β  
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and, 
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[ ])(tyBi  is the grade of membership of y(t) in iB and 

β  is a vector of the weights assigned to each of the p 

implications at each sampling instant.   
 
 

4. SIMULATION RESULTS 
 
The simulation study considered the continuous non-
linear system (1-3) which was represented in 
MATLAB-SIMULINK, using a sampling interval of 
1 minute, while the external constrained predictive 
control module was coded in ‘C’ . For parameter 
estimation, a UD-factorisation method was used on 
incremental data. At time 0=t  an initial arterial 
pressure of =0MAP 90 mmHg was assumed. The 

set-point command was 70 mmHg then 80 mmHg for 
a 400-minute total simulation time. The GPC 
algorithm used a combination of tuning factors of (1, 
8, 2, 0) for ),,,( 21 λNUNN  together with a filter 

polynomial 211 )8.01()( −− −= zzT . Different fuzzy 

partitions of the input space can be used; we chose 
triangular shapes for simplicity. The algorithm used 
the three types of constraints with the following 
limits: 
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The experiment considered a fuzzy model with 2 
partitions and the output obtained was that shown in 
Figure 2 where it can be seen that tracking was better 
without too much compromise on the control activity 
which remained very reasonable.  
 
It is worth noting that this simulation study and 
others (not reported here) formed the basis for the 



 

     

transfer of the overall closed-loop control system to 
the operating theatre for administration of isoflurane 
during surgery as the next Section explains: 
 
 
 

5. REAL-TIME EXPERIMENTS 
 
The real-time closed-loop control system which was 
transferred to the operating theatre comprises (see 
Figure 2): 
 
•  An IBM compatible microcomputer which 

incorporates the control system. 
•  A Braun Perfusor Secura digital pump driving a 

disposable syringe containing a liquid solution of 
isoflurane. 

•  A Dinamap Instrument for measuring the arterial 
blood pressure. 

•  A Capnomac Ultima Device for measuring the 
inspired and expired isoflurane concentrations. 

The links between the syringe pump, the Capnomac 
machine, the blood pressure monitor, and the 
computer are via three RS-232 serial ports. 
 
After local Ethics Committee approval, one patient 

was selected for the experiments as he underwent 
surgery which required anaesthesia. Figure 4 shows 
the result of the trial using  the fixed constrained 
generalised predictive control algorithm with a linear 
model for estimation. The target MAP selected in 
this case was 80 mmHg. As can be seen from the 
same figure tracking was excellent with a reasonable 
control activity. 
 
 

6. CONCLUSIONS 
 
A new algorithm, which combines the advantages of 
model-based predictive control, particularly GPC in 
terms of constraints, and fuzzy systems, which 
allows the absorption of model uncertainties, has 
been proposed for the control of unconsciousness via 
blood pressure measurements. First, a simulation 
platform was built around a non-linear recirculatory 
physiological model which was modified to include a 
more eff icient way of delivering the anaesthetic in a 
liquid form rather than gas. The simulation results 
showed that the fuzzy-based constrained algorithm 
was effective in terms of set-point tracking and drug 
consumption. So far, only one clinical trial was 
conducted where the unconstrained controller was 
validated, however, in the next few months it is 
hoped that the constrained version will be tested in a 
series of trials and that the control system is extended 
to include an inner loop which will t ake into account 
the true inspired concentration of isoflurane. 
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Fig. 1 Patient physiological model relating to  
           inhalational anaesthesia. 
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Fig. 2 Fuzzy constrained GPC using the simulated anaesthesia model. 

Fig. 4 Real-time constrained GPC with input constraints in the operating    
           theatre during surgery. 
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Fig. 3 The closed-loop control system as used in the operating  
           theatre to monitor anaesthesia via blood pressure measurements. 


