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Abstract: In this paper, we present a global adaptive output feedback control
scheme for a class of 3rd-order uncertain nonlinear systems to which adaptive
observer backstepping method may not be applicable directly. In contrast to the
existing output feedback form, the allowed extended output feedback structure
includes quadratic and multiplicative dependency of unmeasured states. Our novel
design technique employs a change of coordinates and adaptive backstepping.
With these proposed tools, we can remove linear and quadratic dependence on
the unmeasured states in the state equation. Also, the multiplication of the two
unmeasured states can be eliminated. From the transformed systems, a state
observer can be constructed in a very easy way. The overall scheme achieves
globally exponential convergence of the tracking error to zero while maintaining
global boundedness of all the signals and states.
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1. INTRODUCTION

Adaptive output feedback nonlinear control prob-
lems have been given a lot of attention in con-
trol community during the recent years. Detailed
discussions in such a direction can be found in
(Marino and Tomei, 1995; M. Krstic, I. Kanel-
lakopoulos, and P.V. Kokotovic, 1995). Under the
assumption of full-states measurement, adaptive
backstepping scheme can achieve a global stabi-
lization for a class of parametric strict-feedback
systems (I. Kanellakopoulos, P.V. Kokotovic, and
A. S. Morse, 1991; M. Krstic, I. Kanellakopoulos,
and P.V. Kokotovic, 1992). Several authors have
developed the design methods for a wider class of
nonlinear systems under full-state feedback (Yao
and Tomizuka, 1997; Yao, 1997; R.A. Freeman, M.
Krstic, P. V. Kokotovic, 1998).

In case of only a single output measurement, the
existing works show semiglobal results for a class
of systems whose nonlinearities depend on the un-
measured variables (H.K.Khalil, 1996; Jankovic,
1997). If the nonlinearities depend on output mea-
surement, current works can achieve global results
only for a class of parametric output-feedback sys-
tems. With adaptive observer backstepping tech-
nique (M. Krstic, I. Kanellakopoulos, and P.V.
Kokotovic, 1995), an adaptive output-feedback
controller that guarantees asymptotic tracking of
the reference signal yr by the output while keeping
all the signals bounded can be designed for a class
of parametric output-feedback form. As the first
step to extend a class of output-feedback nonlin-
ear systems that can be globally stabilized, adap-
tive controller was constructed for a class of non-
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linear systems where the unmeasured states are
appearing linearly with regard to nonlinear func-
tions (Freeman and Kokotovic, 1996). Under the
assumption that the unmeasured states are gen-
erated by pre-stabilized subsystems, Freeman and
Kokotovic presented a global stabilization result
for a class of extended strict feedback systems. In
(Y. Tan, I. Kanellakopoulos, and Z. Jiang, 1998),
the assumption of the pre-stabilization of the sub-
system represented by Freeman and Kokotovic
was removed. More recently, with novel state
estimation technique, a global adaptive output
feedback controller was designed for a class of
uncertain nonlinear systems in (Choon-Ki Ahn,
Beom-Soo Kim, and Myo-Taeg Lim, 2001).

In this paper, we consider a class of output
feedback nonlinear systems which is a more ex-
tended output feedback structure than a class of
nonlinear system studied in our previous work
(Choon-Ki Ahn, Beom-Soo Kim, and Myo-Taeg
Lim, 2001) as one of the recent efforts to extend a
class of output-feedback nonlinear systems which
can be controlled to guarantee a global stabiliza-
tion. In contrast to the existing output feedback
structure, our extended class of nonlinear systems
has quadratic and multiplicative dependency of
the unmeasured states. Since a class of introduced
systems is not the parametric output-feedback
form, the well-known adaptive observer backstep-
ping technique (M. Krstic, I. Kanellakopoulos,
and P.V. Kokotovic, 1995) can not be applicable
directly. The major difficulty is that the system
equations depend quadratically and multiplica-
tively on the unmeasured states. In addition, our
extended class allows output-dependent nonlin-
earities to appear not only additively, but also
multiplicatively. However, for this extended struc-
ture, we can construct a global adaptive output-
feedback tracking controller based on a change of
coordinates and adaptive backstepping method-
ology. By a change of coordinates, the quadratic
and multiplicative dependency of the unmeasured
states in the state equations can be eliminated
from the transformed systems. In addition, with
the introduction of $ function, we can remove
the effect of parametric uncertainties in observer
design. Consequently, the proposed novel state
estimation technique and the adaptive backstep-
ping scheme achieve a global exponential tracking
of the output to the given reference signal while
maintaining the global boundedness of all the sig-
nals.

The class of nonlinear systems considered in this
paper is described in Section 2. In Section 3, state
estimation technique based on a change of coordi-
nates is proposed. With this estimation technique,
adaptive backstepping scheme is presented in Sec-
tion 4. The conclusion is given in Section 5.

2. PROBLEM FORMULATION

The class of nonlinear systems to be controlled
in this paper is the following three dimensional
output-feedback form:

ẋ1 = φ1(x1)x2

ẋ2 = φ2(x1)x3 + χ2(x1) + θT ϕ2(x1) + Φ2(x1)x2 + ψ2(x1)x
2
2

ẋ3 = φ3(x1)u + χ3(x1) + θT ϕ3(x1) + Φ3(x1)x2 + ψ3(x1)x2x3

y = x1 (1)

where u ∈ R, and y ∈ R are the control input and
the output, respectively and x1 is the measured
state while x2, x3 represent the unmeasured states.
ϕ2 ∈ Rp, ϕ3 ∈ Rp are vectors of known smooth
functions. Also, φ1, φ2, φ3, χ2, χ3, Φ2, Φ3, ψ2, ψ3

are known smooth functions. θ ∈ Rp is a vector of
unknown constant parameters. φi(x1) 6= 0, 1 ≤ i ≤ 3,
for all x1 ∈ R. Throughout this paper, we assume
that the reference signal yr and the derivatives of
yr up to the 3rd-order are bounded and piecewise
continuous.

The control objective in this paper is to construct
an adaptive output feedback nonlinear control law
so that the output y tracks a given reference signal
yr while maintaining global boundedness of all the
signals.

Remark 1. As seen in (1), it is difficult to
design state observer directly since the unmea-
sured states appear multiplicatively in the output-
dependent nonlinear functions. In addition, the
major difficulty is that the system equations de-
pend quadratically and multiplicatively on the
unmeasured state. However, with the introduction
of a change of coordinates, the quadratic and mul-
tiplicative dependency of the unmeasured states
can be removed from the transformed systems.
Therefore, after transformation, we can design
state observer very easily from the transformed
systems.

Remark 2. In this paper, we consider only the
3rd-order extended output feedback structure.
Therefore, it is a further research topic to gen-
eralize our result to the n-dimensional extended
output feedback form. In addition, it is a topic of
another research to determine coordinate-free geo-
metric conditions that are necessary and sufficient
for the existence of a global state-space diffeo-
morphism that transforms uncertain input-affine
nonlinear system into the n-dimensional extended
output feedback structure.

3. STATE ESTIMATION TECHNIQUE

In this section, we propose state estimation tech-
nique based on a change of coordinates. With the
introduction of this tool, the quadratic and mul-
tiplicative dependency on the unmeasured states



can be eliminated from the transformed system.
First of all, we introduce the following transfor-
mation

ξ2 = x2 + θT $2 − l2(x1)x2 − w2(x1) (2)
ξ3 = x3 + θT $3 − l3(x1)x3 − w3(x1) (3)

where $2, l2, l3, w2, $3 and w3 are smooth design
functions of the measured state x1. l2(x1) 6= 1 and
l3(x1) 6= 1.

From

x2 =
ξ2 − θT $2 + w2

1− l2
(4)

x3 =
ξ3 − θT $3 + w3

1− l3
(5)

the time derivative of ξ2 is given by

ξ̇2 =x2
2

[
ψ2 − ∂l2

∂x1
φ1 − l2ψ2

]
+ θT

[
ϕ2 − l2ϕ2 + $̇2

−$3
1− l2

1− l3
φ2 − $2

1− l2

(
Φ2 − l2Φ2 − ∂w2

∂x1
φ1

)]

+
1− l2

1− l3
(ξ3 + w3)φ2 +

[
Φ2 − l2Φ2 − ∂w2

∂x1
φ1

1− l2

]

(ξ2 + w2) + χ2(1− l2) (6)

If we choose l2, $2, $3 and w2 functions to satisfy
the following equalities

ψ2 − ∂l2

∂x1
φ1 − l2ψ2 = 0 (7)

ϕ2 − l2ϕ2 + $̇2 −$3φ2
1− l2

1− l3

− $2

1− l2

(
Φ2 − l2Φ2 − ∂w2

∂x1
φ1

)
= 0 (8)

Φ2 − l2Φ2 − ∂w2
∂x1

1− l2
= −k2

2(1− l2)
2φ2

1 (9)

where k2 is a positive design constant, then (6)
becomes

ξ̇2 =− k2
2(1− l2)

2φ2
1(ξ2 + w2) +

1− l2

1− l3
φ2(ξ3 + w3)

+ χ2(1− l2) (10)

It should be noted that, by the introduction of
l2 function, we can remove the quadratic depen-
dency of unmeasured state x2 from ξ system. Also,
it is interesting to note that, with the introduction
of $ function, the effect of parametric uncertain-
ties was eliminated from the transformed system
in observer design.

Therefore, we introduce the following observer

˙̂
ξ2 =− k2

2(1− l2)
2φ2

1(ξ̂2 + w2) +
1− l2

1− l3
φ2(ξ̂3 + w3)

+ χ2(1− l2) (11)

Denoting the state estimation error by ξ̃2 = ξ̂2 − ξ2

and ξ̃3 = ξ̂3 − ξ3, we can obtain the error equation

˙̃
ξ2 = −k2

2(1− l2)
2φ2

1ξ̃2 +
1− l2

1− l3
φ2ξ̃3 (12)

By the same method, the time derivative of ξ3 is
given by

ξ̇3 =φ3[1− l3]u + θT [ϕ3 + $̇3 − l3φ3] +

[
ψ3 − l3ψ3

− ∂l3

∂x1
φ1

]
x2x3 +

[
Φ3 − ∂w3

∂x1
φ1 − l3Φ3

]

ξ2 − θT $2 + w2

1− l2
+ χ3[1− l3] (13)

If we select w3 function, $ function and l3 function
to satisfy the following

Φ3 − ∂w3

∂x1
φ1 − l3Φ3 = −k2

3
(1− l2)2

1− l3
φ2 (14)

ϕ3 + $̇3 − l3φ3 + k2
3$2

1− l2

1− l3
φ2 = 0 (15)

ψ3 − l3ψ3 − ∂l3

∂x1
φ1 = 0 (16)

where k3 is a positive design constant, then we
have

ξ̇3 = φ3[1− l3]u− k2
3
1− l2

1− l3
(ξ2 + w2)φ2 + χ3[1− l3]

(17)

It is noted that, with the introduction of l3 func-
tion, the mutiplicative dependency of the unmea-
sured states was eliminated from ξ3-system (17).

Therefore, we introduce the following observer
˙̂
ξ3 = φ3[1− l3]u− k2

3
1− l2

1− l3
(ξ̂2 + w2)φ2 + χ3[1− l3]

(18)

From the definition of the state estimation error,
we have

˙̃
ξ3 = −k2

3
1− l2

1− l3
ξ̃2φ2 (19)

With the error equations (12) and (19), consider
the following observer Lyapunov function candi-
date

Vo =
k2
3

2
ξ̃2
2 +

1

2
ξ̃2
3 (20)

The time derivative of Vo is given by

V̇o =k2
3 ξ̃2

˙̃
ξ2 + ξ̃3

˙̃
ξ3

=k2
3 ξ̃2

[
1− l2

1− l3
φ2ξ̃3 − k2

2(1− l2)
2φ2

1ξ̃2

]

+ ξ̃3[−k2
3
1− l2

1− l3
φ2ξ̃2]

=− k2
2k2

3(1− l2)
2φ2

1ξ̃
2
2 ≤ 0 (21)

Therefore, we can conclude that the estimation
errors ξ̃2, ξ̃3 converge to zero.

Remark 3. From (7) and (16), a nonlinear design
functions l2 and l3 can be constructed by solving
the following linear differential equations

∂l2

∂x1
φ1 + l2ψ2 = ψ2 (22)

∂l3

∂x1
φ1 + l3ψ3 = ψ3 (23)

Refer to the basic differential equation text (W.E.
Boyce and R. C. Diprima, 1997) for the general
solution of these linear differential equations.

Remark 4. From (9) and (14), nonlinear design
functions w2 and w3 can be explicitly obtained as
follows:

w2(y) =

∫
1

φ1
[Φ2(y)(1− l2(y)) + k2

2(1− l2(y))3φ2
1]dy

(24)



w3(y) =

∫
1

φ1

[
Φ3(y)(1− l3(y)) + k2

3
(1− l2(y))2

1− l3(y)
φ2

]
dy

(25)

Remark 5. From (8), (15) and (9), functions $2

and $3 are the outputs of the following filters

$̇2 = −k2
2(1− l2)

2$2φ
2
1 + φ2

1− l2

1− l3
$3 − ϕ2(1− l2)

(26)

$̇3 = −k2
3
1− l2

1− l3
φ2$2 − ϕ3(1− l3) (27)

4. ADAPTIVE CONTROLLER DESIGN

In this section, with the state estimation tech-
nique proposed in the previous section, we em-
ploy adaptive backstepping method and design a
nonlinear controller that guarantees exponential
tracking and the boundedness of all the signals

4.1 Step 1

Let z1 = y − yr, z2 = ξ̂2 − α1. With these notations,
we can obtain the time derivative of z1 as

ż1 = φ1
z2 + α1 − θT $2 + w2 − ξ̃2

1− l2
− ẏr (28)

If we select α1 function and the tuning function as

α1 =
1

φ1

[
− c1(1− l2)z1 − w2 + θ̂T $1 + (1− l2)ẏr

− 3z1

4k2
2k2

3(1− l2)3

]
(29)

τ1 =− Γz1

(
$2

1− l2

)
φ1 (30)

where c1 is a positive constant for design, then
it can be shown that the time derivative of the
Lyapunov function candidate

V1 =
1

2
z2
1 +

1

2
θ̃T Γ−1θ̃ (31)

satisfies

V̇1 =− c1z
2
1 +

z1z2

1− l2
φ1 + θ̃T Γ−1(

˙̂
θ − τ1)− z1φ1

ξ̃2

1− l2

− 3z2
1

4k2
2k2

3(1− l2)4
(32)

where Γ is the positive definite matrix for design,
θ̃ = θ̂ − θ, and z1 subsystem is

ż1 =− c1z1 +
φ1z2

1− l2
+ φ1θ̃

T

(
$2

1− l2

)
− φ1ξ̃2

1− l2

− 3z1

4k2
2k2

3(1− l2)4
(33)

4.2 Step 2

Let z3 = ξ̂3 − α2. From the defined notations and
(11), we can obtain the time derivative of z2 as

ż2 =− k2
2(1− l2)ξ̂2 + (1− l2)(z3 + α2)φ2 + w3(1− l2)φ2

− k2
2(1− l2)w2 − α̇1 (34)

where

α̇1 =
∂α1

∂y

ξ̂2 + w2

1− l2
φ1 +

∂α1

∂θ̂

˙̂
θ +

∂α1

∂yr

ẏr +
∂α1

∂ẏr

ÿr +
∂α1

∂$2
$̇2

− θT

(
∂α1

∂y
φ1

$2

1− l2

)
− ∂α1

∂y

ξ̃2

1− l2
φ1 (35)

If we select α2 function and the tuning function as

α2 =
1

φ2

[
− c2

z2

1− l2
− z1φ1

(1− l2)2
+ k2

2(ξ̂2 + w2)− w3φ2

− 3z2

4k2
2k2

3(1− l2)5

(
∂α1

∂y

)2

+
1

1− l2

(
∂α1

∂θ̂
τ2

)

+
1

1− l2

[
∂α1

∂y

ξ̂2 + w2

1− l2
φ1 +

∂α1

∂yr

ẏr +
∂α1

∂ẏr

ÿr +
∂α1

∂$2
$̇2

− θ̂T

(
∂α1

∂y

$2

1− l2
φ1

)]]

τ2 = τ1 + Γz2
$2

1− l2

(
∂α1

∂y

)
φ1 (36)

where c2 is a positive design constant then, it can
be shown that the time derivative of the Lyapunov
function candidate

V2 = V1 +
1

2
z2
2 (37)

satisfies

V̇2 =−
2∑

i=1

ciz
2
i + (1− l2)z2z3φ2 +

2∑
i=1

zi

1− l2

(
∂αi−1

∂y

)
ξ̃2φ1

−
2∑

i=1

3

4k2
2k2

3

z2
i

(1− l2)4

(
∂αi−1

∂y

)2

+ (
˙̂
θ − τ2)

[
θ̃T Γ−1 − z2

(
∂α1

∂θ̂

)]
(38)

where for notational convenience we have intro-
duced ∂α0

∂y
, −1 and z2 subsystem is

ż2 =φ2(1− l2)z3 − c2z2 − z1

1− l2
φ1 − ∂α1

∂θ̂

˙̂
θ − θ̃T

(
∂α1

∂y

$2

1− l2
φ1

)

+
∂α1

∂y

ξ̃2

1− l2
φ1 − 3z2

4k2
2k2

3(1− l2)4

(
∂α1

∂y

)2

+
∂α1

∂θ̂
τ2

(39)

4.3 Step 3

From the above defined notations and (18), we can
obtain the time derivative of z3 as

ż3 =φ3u− k2
3(1− l2)φ2ξ̂2 − k2

3(1− l2)w2φ2 − α̇2 (40)

where

α̇2 =
∂α2

∂y

ξ̂2 + w2

1− l2
φ1 +

∂α2

∂θ̂

˙̂
θ +

∂α2

∂yr

ẏr +
∂α2

∂ẏr

ÿr +
∂α2

∂ÿr

yr
(3)

+
∂α2

∂ξ̂2

˙̂
ξ2 +

∂α2

∂$2
$̇2 +

∂α2

∂$3
$̇3 − θT

(
∂α2

∂y

$2

1− l2
φ1

)

− ∂α2

∂y

ξ̃2

1− l2
φ1 (41)

If we select the control input u as

u =
1

φ3

[
− c3z3 − (1− l2)φ2z2 + k2

3(1− l2)(ξ̂2 + w2)φ2 +
∂α2

∂θ̂
τ3

− 3z3

4k2
2k2

3(1− l2)4

(
∂α2

∂y

)2

+ z2

(
∂α1

∂θ̂

)
Γ

(
∂α2

∂y

)
$2

1− l2
φ1

+
∂α2

∂y

ξ̂2 + w2

1− l2
φ1 +

∂α2

∂yr

ẏr +
∂α2

∂ẏr

ÿr +
∂α2

∂ÿr

yr
(3) +

∂α2

∂ξ̂2

˙̂
ξ2



+
∂α2

∂$2
$̇2 +

∂α2

∂$3
$̇3 − θ̂T

(
∂α2

∂y

$2

1− l2
φ1

)]
(42)

where c3 is a positive design constant and the
tuning function satisfies the following equation

τ3 = τ2 + Γz3
$2

1− l2

(
∂α2

∂y

)
φ1 (43)

then, it can be shown that the time derivative of
the Lyapunov function candidate

V3 = V2 +
1

2
z2
3 (44)

satisfies

V̇3 =−
3∑

i=1

ciz
2
i +

3∑
i=1

zi

1− l2

(
∂αi−1

∂y

)
φ1ξ̃2

−
3∑

i=1

3

4k2
2k2

3

z2
i

(1− l2)4

(
∂αi−1

∂y

)2

+ (
˙̂
θ − τ3)

[
θ̃T Γ−1 −

2∑
i=1

zi+1

(
∂αi

∂θ̂

)]
(45)

where z3 subsystem is

ż3 =− (1− l2)φ2z2 − c3z3 − ∂α2

∂θ̂

˙̂
θ − θ̃T

(
∂α2

∂y

$2

1− l2

)
φ1

+
∂α2

∂y

ξ̃2

1− l2
φ1 − 3z3

4k2
2k2

3(1− l2)4

(
∂α2

∂y

)2

+
∂α2

∂θ̂
τ3

+ z2

(
∂α1

∂θ̂

)
Γ

(
∂α2

∂y

)
$2

1− l2
φ1 (46)

In this case, selecting the parameter update law
as

˙̂
θ = τ3 (47)

yields

V̇3 =−
3∑

i=1

ciz
2
i +

3∑
i=1

zi

1− l2

(
∂αi−1

∂y

)
φ1ξ̃2

−
3∑

i=1

3

4k2
2k2

3

z2
i

(1− l2)4

(
∂αi−1

∂y

)2

(48)

We are ready to state and prove the following
theorem.

Theorem 1. Consider the system (1). If we apply
the control input (42), the parameter update law
(47) and the design procedure in the previous
subsections, then
(1) all signals are globally bounded.
(2)

lim
t→∞

[y(t)− yr(t)] = 0 (49)

Proof. Consider the following Lyapunov func-
tion candidate

V = V3 + Vo = V3 +
k2
3

2
ξ̃2
2 +

1

2
ξ̃2
3 (50)

The time derivative of V can be calculated as

V̇ =−
3∑

i=1

ciz
2
1 +

3∑
i=1

zi

1− l2

(
∂αi−1

∂y

)
ξ̃2

−
3∑

i=1

(
√

3)2

4k2
2k2

3

z2
i

(1− l2)4

(
∂αi−1

∂y

)2

−
3∑

i=1

k2
2k2

3

(
√

3)2
(1− l2)

2ξ̃2
2

=−
3∑

i=1

ciz
2
1 −

3∑
i=1

[ √
3

2k2k3

(
∂αi−1

∂y

)
zi

(1− l2)2

− k2k3√
3

(1− l2)ξ̃2

]2

≤−
3∑

i=1

ciz
2
1 (51)

From the above result, we know that z, ξ̃ and θ̃ are
globally uniformly bounded. Since yr is bounded,
from z1 = y − yr, the output y remains globally
bounded. Therefore, from (26) and (27), $ func-
tion is also bounded. With these informations of
boundedness, we can conclude that α1 function is
also globally bounded. By z2 = ξ̂2 − α1, the global
boundedness of ξ̂2 holds. By the same method, we
can obtain the global boundedness of α2, u, ξ̂3, ξ2,
ξ3 and the other signals. Thus, the property (1) of
Theorem 1 follows from some observations. From
(33), (39) and (46), we have ż ∈ L∞. Since z ∈ L∞,
we can obtain z, ż ∈ L∞. From the definition of
V and (51), we see that z ∈ L2. According to Bar-
balat lemma (Marino and Tomei, 1995; M. Krstic,
I. Kanellakopoulos, and P.V. Kokotovic, 1995), we
can get the property (2) of Theorem 1. �

5. CONCLUSION

In this paper, we presented a global adaptive
output-feedback control scheme for a class of 3rd-
order uncertain nonlinear systems. In contrast to
the existing output feedback structure, our ex-
tended class of nonlinear systems has quadratic
and multiplicative dependency of unmeasured
states. As one of the recent efforts to extend a class
of output-feedback nonlinear systems which can
be controlled to guarantee a global stabilization,
we constructed a global adaptive output-feedback
controller based on a change of coordinates and
adaptive backstepping. With the introduction of
a change of coordinates, the quadratic and mul-
tiplicative dependency of the unmeasured states
can be removed from the transformed systems.
Therefore, we could design state observer very
easily from the transformed systems. For a class
of output-feedback systems to which adaptive ob-
server backstepping technique can not be applica-
ble directly, the proposed schemes achieve globally
exponential convergence of the tracking error to
zero while maintaining global boundedness of all
the signals and states.
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