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Abstract: The composite nonlinear feedback control tec hnique is developed for a class
of linear systems with actuator saturation, which consists of a linear and a nonlinear
feedback parts without any switching element. The linear part is to yield a quick
response in face of the actuator limits for the desired input levels. The nonlinear part
is to reduce the overshoot caused by the linear part as the system output approaches
the target. It is shown that the technique is capable of beating the time-optimal
control in asymptotic tracking situations and can be applied to design servo systems
that deal with \point-and-shoot" fast targeting. Copyright c
2002 IFA C
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1. INTRODUCTION

Every physical system has nonlinearities and very
little can be done to overcome them. Many prac-
tical systems are suÆciently nonlinear so that
important features of their performance may be
completely overlooked if they are analyzed and
designed through linear techniques. In hard disk
drive (HDD) serv o systems, major nonlinearities
are friction, high frequency mechanical resonance
and actuator saturation. Among these, the actua-
tor saturation could be the most signi�cant non-
linearit y in designing an HDD servo system, which
deteriorates the system performance seriously.

T raditionally, the time optimal control (TOC)
is taken to deal with \point-and-shoot" fast-
targeting for systems with actuator saturation,
which uses maximal acceleration for a predeter-
mined time period. Unfortunately, the TOC is
not robust to the system uncertainties and mea-
surement noises and is hardly used in an y real
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situation. Workman (1987) proposed a modi�ca-
tion of the TOC, the proximate time-optimal ser-
vomechanism (PTOS), to overcome such a draw-
bac k. The PTOS essentially uses maximal accel-
eration. When the error is small, it switches to
a linear con trol law. It is fairly robust to sys-
tem uncertainties and noises with a discounted
tracking time. The TOC is indeed time-optimal
for a point-to-point target tracking. How ev er, in
most practical situations, it is more appropriate to
consider asymptotic tracking instead, i.e., to track
the system within a certain neighborhood of the
target reference. It will be shown later that the
TOC is not time-optimal at all in the asymptotic
tracking situation. This is the motivation to search
for a better technique. Inspired by a recent work of
Lin et al.(1998), which was to improve the track-
ing performance under state feedback laws for a
class of second order systems subject to actuator
saturation, a nonlinear control tec hnique has been
developed in this paper, the so-called composite
nonlinear feedback (CNF) control tec hnique, to a
more general class of systems with measurement
feedback. The technique can be utilized to design
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servo systems that deal with asymptotic target
tracking or \point-and-shoot" fast targeting and
will be applied to design a servo system for an
actual hard disk drive in this paper.

This paper is organized as follows. In Section 2,
CNF control technique will be developed. In Sec-
tion 3, an example will show that the CNF could
yield a better performance than the TOC. The
application of the CNF technique to an actual
HDD servo system will be presented in Section 4.
Finally, some concluding remarks and open prob-
lems are drawn in Section 5.

2. CNF CONTROL TECHNIQUE

Consider a linear system with an amplitude con-
strained actuator, characterized by

� :

8<
:

_x = A x + B sat(u); x(0) = x0

y = C1 x

h = C2 x

(1)

where x 2 IRn

; u 2 IRl

; y 2 IRp and h 2 IR are
respectively the state, control input, measurement
output and controlled output of the �. A; B; C1

and C2 are appropriate dimensional constant ma-
trices, and sat: IR ! IR represents the actuator
saturation de�ned as

sat(u) = sgn(u)minf umax; j u j g; (2)

with umax being the saturation level of the input.
The assumptions on the system matrices are re-
quired: 1) (A;B) is stabilizable, 2) (A;C1) is de-
tectable, and 3) (A;B;C2) is invertible and has no
invariant zeros at s = 0. The objective is to design
a CNF control law that causes the output to track
a desired amplitude step input rapidly without
experiencing large overshoot and without the ad-
verse actuator saturation e�ects. This will be done
through the design of a linear feedback law with a
small closed-loop damping ratio and a nonlinear
feedback law through an appropriate Lyapunov
function to cause the closed-loop system to be
highly damped as system output approaches the
command input to reduce the overshoot. The CNF
control law will be developed in three distinct
cases 1) the state feedback case, 2) the full order
measurement feedback case, and 3) the reduced
order measurement feedback case.

2.1 State Feedback Case

A CNF control technique is developed for the case
when all the states of the plant � are measurable,
i.e., y = x. It will be done in three steps. In
the �rst step, a linear feedback control law will
be designed and in the second step, the design

of nonlinear feedback control will be carried out.
Lastly, the linear and nonlinear feedback laws will
be combined to give a CNF control law. It is noted
that the procedure for this case follows closely to
that reported in (Lin et al., 1998), although the
result in the section is applicable to a much larger
class of systems. Due to the space limitation all
proofs will appear elsewhere.

Step 1: Design a linear feedback law,

u
L
= Fx+Gr; (3)

where F is chosen such that 1) A + BF is an
asymptotically stable matrix, and 2) the closed-
loop system C2(sI � A � BF )�1B has a small
damping ratio. Such an F can be designed using
any appropriate method (Chen, 2000; Liu, et al.,

2001). G = �
�
C2(A+BF )�1B

��1
is a scalar,

which is well-de�ned because A + BF is stable,
and the triple (A;B;C2) is invertible and has no
invariant zeros at s = 0. r is a step reference input.

Lemma 2.1. Given a positive de�nite matrixW 2
IRn�n, let P > 0 be the solution of the following
Lyapunov equation

(A+BF )0P + P (A+BF ) = �W: (4)

Such a P exists since A + BF is asymptotically
stable. For any Æ 2 (0; 1), let c

Æ
> 0 be the largest

positive scalar satisfying the following condition:

jFxj�umax(1�Æ) 8x2XÆ
:=fx :x0Px�c

Æ
g: (5)

Then, the control law (3) is capable of driving
the controlled output, h, to track asymptotically
a step command input r, provided that the initial
state, x0 and r satisfy:

x0 � x
e
2X

Æ
; jH rj � Æumax: (6)

where H := [1�F (A+BF )�1B]G, x
e
:= G

e
r :=

�(A+BF )�1BGr.

Remark 2.1. For the case x0 = 0, any step input
of amplitude r can be asymptotically tracked if

j r j�
�
c
Æ
(G0

e
PG

e
)�1

�1=2
and j Hr j� Æ umax.

Clearly, the trackable amplitudes of step inputs by
the linear feedback control law can be increased
by increasing Æ and/or decreasingG0

e
PG

e
through

the choice of W . However, the change in gain
F will of course a�ect the damping ratio of the
closed-loop system and hence its rising time.

Step 2: The nonlinear feedback part u
N
:

u
N
= �(r; h)B0

P (x� x
e
) (7)

where �(r; h) is any non-positive function locally
Lipschitz in h, which is used to change the sys-



tem closed-loop damping ratio as the output ap-
proaches the step command input.

Step 3: Form a CNF control law,

u=u
L
+u

N
=Fx+Gr+�(r; h)B0

P (x�x
e
): (8)

The following theorem is on the CNF control law
for the state feedback case.

Theorem 2.1. Consider the system (1). Then, for
any non-positive function �(r; h), locally Lipschitz
in h, the CNF control law (8) will drive the
controlled output h to asymptotically track the
step command input of amplitude r from an initial
state x0, provided that x0 and r satisfy (6).

Remark 2.2. Theorem 2.1 shows that the addi-
tional nonlinear feedback part u

N
(7) does not

a�ect the ability of the closed-loop system to track
the command input. Any command input that can
be asymptotically tracked by the linear feedback
law (3), can also be asymptotically tracked by
the CNF control law (8). However, this additional
term u

N
can be used to improve the performance

of the overall closed-loop system. This is the key
property of the CNF control technique.

2.2 Full Order Measurement Feedback Case

The assumption that all the states of � are
measurable is in general not practical. Thus, the
following CNF control law for the measurement
feedback case is developed.

�
_x
v
= (A+KC1)xv�Ky+Bsat(u);

u = Fx
v
+Gr+�(r; ĥ)B0

P (x
v
�x

e
):

(9)

where �(r; ĥ) is a non-positive scalar function,

locally Lipschitz in ĥ = C2xv, and is to improve
the performance of the closed-loop system. It
turns out that for the measurement feedback case,
the choice of �(r; ĥ), is not totally free and subject
to a certain constraint. For any Æ 2 (0; 1), let c

Æ

be the largest positive scalar such that for all

�
x

x
v

�
2XFÆ :=

(�
x

x
v

�
:

�
x

x
v

�0�
P 0
0 Q

��
x

x
v

�
�c

Æ

)

)

����[F F ]

�
x

x
v

������umax(1�Æ): (10)

Where P and Q are the solutions of the appropri-
ate Lyapunov equations. The following theorem
is on the CNF control law for the measurement
feedback case.

Theorem 2.2. Consider the system (1). Then,
there exists a scalar �� > 0 such that for any non-
positive function �(r; ĥ), locally Lipschitz in ĥ and

j�(r; ĥ)j � �
�, the CNF control law (9) will drive

the system controlled output h to asymptotically
track the step command input of amplitude r from
an initial state x0, provided that x0, xv0 and r

satisfy:

jHrj � Æ umax;

�
x0 � x

e

x
v0 � x0

�
2XFÆ (11)

2.3 Reduced Order Measurement Feedback Case

For the system (1), it is clear that there are
p states of the system are measurable, if C1

is of maximal rank. Thus, in general, it is not
necessary to estimate these measurable states
in the measurement feedback case. A dynamic
control law, which has a dynamical order less
than that of the plant, can be constructed under
the CNF control framework. For simplicity of
presentation, C1 is assumed already in the form
C1 = [ I

p
0 ]. Then, the system (1) can be

rewritten as,

8>>>>>><
>>>>>>:

�
_x1
_x2

�
=

�
A11 A12

A21 A22

��
x1

x2

�
+

�
B1

B2

�
sat(u);

y = [ I
p

0 ]

�
x1

x2

�

h = C2

�
x1

x2

� (12)

x0 = (x10 x20 )
0
: where the original state x

is partitioned into two parts, x1 and x2 with
y � x1. Thus, it will only need to estimate x2 in
the reduced order measurement feedback design.
Next, let F be chosen such that 1) A + BF is
asymptotically stable, and 2) C2(sI�A�BF )

�1
B

has desired properties, and let KR be chosen
such that A22 +KRA12 is asymptotically stable.
It is noted that (A22; A12) is detectable if and
only if (A;C1) is detectable (Chen, 1991). Thus,
there exists a stabilizing KR. Then partition F in
conformity with x1 and x2, F = [F1 F2 ]. The
reduced order CNF control law is given by

�
_x
v
=ARxv +Bvy

y +B
vu
sat(u)

u =F (x
r
�x

e
)+Hr+�(r; ĥ)B0

P(x
r
�x

e
)
(13)

where B
vy

= A21 +KRA11 � ARKR; AR = A22 +
KRA12; Bvu

= B2 +KRB1; xr = ( y x
v
�KRy )

0

and �(r; ĥ) is non-positive scalar function locally

Lipschitz in ĥ = C2xr. For any Æ 2 (0; 1), let cRÆ
be the largest positive scalar such that for all

�
x

x
v

�
2XRÆ :=

(�
x

x
v

�
:

�
x

x
v

�0�
P 0
0QR

��
x

x
v

�
�cRÆ

)

)

����[F F2 ]

�
x

x
v

������umax(1�Æ): (14)

Where P andQR are the solutions of the appropri-
ate Lyapunov equations. The following theorem



is on the reduced order CNF control law for the
measurement feedback case.

Theorem 2.3. Consider the system (1). Then,
there exists a scalar �

�
> 0 such that for any

non-positive function �(r; ĥ), locally Lipschitz in ĥ

and j�(r; ĥ)j � �
�, the reduced order CNF control

law (13) will drive the controlled output h to
asymptotically track the step command input of
amplitude r from an initial state x0, provided that
x0, xv0 and r satisfy

�
x0 � x

e

x
v0�x20�KRx10

�
2XRÆ; jHrj�Æ umax: (15)

3. BEATING THE TOC

Would a control system be designed to beat the
performance of the TOC? Obviously, the answer is
no for a precise point-to-point tracking. However,
the answer would be yes for an asymptotic track-
ing situation, which is widely used in almost all
practical situations. Consider a double integrator,

_x=

�
0 1
0 0

�
x+

�
0
1

�
sat(u); y=[1 0]x; h=[1 0]x;

sat(u) = sgn(u) minf 1; juj g: (16)

where x, u, y and h are the state, input, the
measurement and controlled output respectively
and x(0) = 0. The minimum time for h to reach
precisely the target reference r = 1 under the
TOC is exactly 2s. The following CNF control law
is designed for the asymptotic tracking situation,
where the settling time is de�ned as the total time
for h to enter the �1% region of r.

u= [�6:5 �1 ]x+ 6:5 r � (e�j1�hj (17)

�0:3678)[ 1:4481 10:8609 ](x�[ 1 0 ]
0
):

The simulation results of the TOC and the CNF
control are shown in Figure 1 and enlarged in
Figure 2, which shows that the CNF has a settling
time of 1:8453s faster than the TOC a settling
time of 1:8586s when h enters [0:99; 1:01]. It can
also be shown that, no matter how small the
target region is, a suitable control law can be
found to beat the TOC in settling time. it is
signi�cant enough to address one interesting issue:
there are control laws that can achieve a faster

settling time than the TOC in asymptotic tracking

situations. Nonetheless, it might be believed that
it would be interesting to carry out some further
studies in this subject.

4. AN APPLICATION

The above CNF control technique is applied to
design a reduced order CNF control law for the
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Fig. 1. Simulation results of the TOC and CNF
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Fig. 2. Enlarged output responses
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Fig. 3. Frequency response of HDD

HDD servo system. There are two main functions
of the head positioning servomechanism in disk
drives: track seeking and track following. Track
seeking moves the R/W head from the present



track to a speci�ed destination track in minimum
time using a bounded control e�ort. Track follow-
ing maintains the head as close as possible to the
destination track center while data is being read
from or written to the disk. The actuator, called a
voice-coil motor (VCM), carries the carriage and
moves the head on a desired track. An actual HDD
was modeled through frequency response test.
Figure 3 shows the frequency response characteris-
tics of a Maxtor HDD (Model No. 51536U3). The
frequency response characteristics was obtained
using a Laser Doppler Vibrometer and a HP make
dynamic signal analyzer. A fourth order model
for the actuator is obtained using the measured
data from the actual HDD and the algorithms of
Eykho� (1981) .

Gv(s) =
a

s2

!
2

n

s2 + 2�
n
!
n
s+ !2

n

(18)

where a = 6:4013� 107, �
n
= 0:085, !

n
= 1:57�

104 rad/sec and the units of the input and output
are respectively in volts and micrometers. During
the design only the double integrator model with
actuator saturation was taken which is as follows8<

: _x =

�
0 1
0 0

�
x+

�
0
a

�
sat(u);

y = [ 1 0 ]x:
(19)

where umax = 3V . For the HDD model (19), the
following parameterized feedback gain is derived.

F (") = �
1

a

h
4�2f2

"2

4�f�

"

i
: (20)

The eigenvalues of A+BF ("), are placed at (���

j

p
1� �2)2�f=". Such a gain is determined with

� = 0:3, f = 350 and " = 1 roughly corresponding
to the normal frequency range of the HDD. The
scalar function is chosen as follows,

�(r; y) = �1:5820�(e�j1�y=rj� 0:3678): (21)

A reduced order CNF control law is designed as
only displacement of R/W head is measurable
with KR = 4000 as follows:

8<
:

_x
v
= �KRxv�K

2

R
y+a sat(u);

u = �2xv+(�1+KR�2)y��1r
+�(r; y)[�3xv+(KR�3��1)y+�1r]:

(22)

where �(r; y) is de�ned as (21). �1 = �0:0755"�2,
�2 = �2:0613 � 10�5"�1 and �3 = 5:7257 �
10�5"�1. Note that the parameters " and � can
be adjusted accordingly to the amplitude of the
target reference, which are listed in Table 1. The
PTOS control law (Workman, 1987) is taken to
compare with the CNF control law. The following
PTOS control law is found for the HDD model
(19).

Table 1. Parameters " and �

Seek Length (�m) " �

1 1 1

100 2.33 1.59

300 2.76 1.59
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Fig. 4. Experimental results for 1�m seek length
using CNF and PTOS
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u
p
= umax sat(k2[f(e)� v]=umax) (23)

f(e)=

(
(k1=k2)e jej�y

l

sgn(e)[
p
2umaxa�jej�

umax

k2
] jej>y

l

where e = r � y and v = _y. The parameters
practicable in implementations using PTOS up to
a seek length of 300�m were found a = 6:4013�
107, k1 = 0:0178, k2 = 2:997�10�5, � = 0:62 and
y
l
= 168:32�m. A velocity estimator is designed

with a pole �4000 for the PTOS control law.
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Fig. 5. Experimental results for 100�m seek length
using CNF and PTOS
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Fig. 6. Experimental results for 300�m seek length
using CNF and PTOS

Table 2. Settling time from experimen
-tal results using CNF and PTOS

Seek Settling Time Overall

Length (ms) Improve

(�m) PTOS CNF -ment (%)

1 | 1.2 |

100 6.5 4.5 31

300 6.7 5.3 21

The implementations were made on a typical 3.5-
inch open hard disk drive with a TMS320 digital
signal processor (DSP) with a sampling rate of 10
kHz. The R/W head position was measured using
a Laser Doppler Vibrometer (LDV) and the track

pitch was assumed to be 1�m. Thus the track
density was 25,000 TPI. The implementation re-
sults for 1, 100 and 300 �m using CNF and PTOS
control laws are respectively shown in Figures 4,
5 and 6. The Table 2 summarizes the settling
time from the implementation results which shows
that the CNF control improves the performance
by more than 30% than the PTOS control. The
settling time in the implementations is de�ned as
the time to let the residual error within 0:05; 0:2
and 0:5�m around the target track for 1; 100 and
300�m respectively.

5. CONCLUDING REMARKS

The composite nonlinear feedback control tech-
nique has been developed for a class of linear sys-
tems with actuator saturation. The implementa-
tion results show that the new technique has out-
performed the conventional PTOS by more than
30% for the HDD servo system. It has been shown
by an example that the CNF control is capable of
beating the TOC in asymptotic tracking. It would
be interesting, although it is pretty hard, to carry
out a systematic study on how to derive a TOC
law in the asymptotic tracking situations. This
will be the subject of the future research.
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