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Abstract: In this paper, a new LQG control design based on input-output data for
linear time invariant continuous-time systems is proposed. Considering the laguerre
series expansion of input-output signals, the controller can be synthesized using only
the coefficients by an algebraic calculation. The analysis of the system transformed
by the laguerre series expansion is utilized to lead this design method. Comparing the
proposed controller with the model-based one through a numerical simulation, the
effectiveness is illustrated.
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1. INTRODUCTION

In most control design, the mathematical model of
a plant represented in the state space or the trans-
fer function is derived, and then the controller
is designed based on the model (Kalman, 1960).
If the model is accurate, we can obtain the rea-
sonable controller through this approach. On the
other hand, in the modeling we usually do not
have paid attention to the controller design. That
is, the modeling and controller design has been
done independently. However, the suggestion that
the goodness of the model should be judged by
closed loop performance of the system and that
the modeling and controller design should be per-
formed simultaneously is found in (Skelton, 1989).
To come up to the suggestion, we consider that
the optimal controller should be designed to min-
imize the criterion based on input-output response
(Furuta and Wongsaisuwan, 1995).

There exist many works standing in this point
of view, for example, the LQG controller de-
sign using the Markov parameters of the sys-

tem (Skelton and Shi, 1994) (Furuta and Wong-
saisuwan, 1995), the input design based on the ba-
sis array computed from an input-output data ar-
ray (Fujisaki et al., 1998)，the optimal controller
design utilizing the orthogonality of the initial
response and impulse response of the optimal sys-
tem (Kawamura, 2000), the convex programming
algorithm for the optimal input design based on
input-output data (Sugie and Hamamoto, 1998)
and the LQG controller design using the subspace
identification method (Favoreel, 1999). However,
only the class of linear time-invariant discrete-
time systems are considered in these works.

This paper proposes a new LQG control design
with input-output data for continuous-time sys-
tems. We first consider the Laguerre series ex-
pansion of input-output signals of systems, then
formulate the quadratic criterion with the expan-
sion coefficients. As a result, the optimal con-
troller minimizing the criterion is given by only
the algebraic calculation of the coefficients which
are obtained by the Laguerre series expansion
of the measured input-output signals generated
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by injecting the time response of the Laguerre
basis into the real system. Because the proposed
algorithm consists of the algebraic operator, it can
be easily implemented as a built-in controller such
as DSP. Utilizing this controller the redesign can
be done quickly, so it can be expected that the
controller works as an auto-tuning controller in a
sense, then that it is useful on industry.

2. PRELIMINARIES

First, notation and terminology are defined. R
and R+ mean the reals and the nonnegative re-
als, respectively. L2 consists of real-valued vec-
tor Lebesgue measurable functions f on R+ such

that ||f(t)|| =
√∫

R+
|f(t)|2 < ∞. {fn}n≥k

denotes a sequence of real numbers or func-
tions. The Laguerre function φi(t) is given as
φi (t) =

√
2p

∑i
k=0 (−1)i−k (2p)k i!

k!k!(i−k)! t
ke−pt

where p is the parameter determining the mode
of the function. Laguerre series expansion co-
efficients {vi}i≥0 of a continuous signal v(t) ∈
Rj×1 are obtained by the inner product: vi =∫

R+
v(t)φi (t) dt. Considering an expansion of v(t)

with N terms: v(t) ≈
∑N−1

k=0 vkφk(t), Laguerre
transform La [·] is defined as La [v(t)] := VN and
VN :=

[
vT
0 , · · · , V T

N−1

]T

Proposition 1. (Szegö, 1939) The Laguerre func-
tions {φn(t)}n≥0 form a complete orthonormal
basis of L2. ♦

Proposition 2. The Laguerre transform operator
La [·] holds the linearity: La [αv(t)] = αLa [v(t)]
and La [v(t) + w(t)] = La [v(t)] + La [w(t)]. ♦

Proposition 3. Let {φn(t)}n≥0 be the complete
orthonormal basis of L2. For any v(t) ∈ L2,
[i] v(t) =

∑∞
k=0 vkφk (t) and [ii] ||v(t)||2 =∑∞

k=0 |vk|2 are hold. ♦

[ii] is called Parseval’s identity. Because of com-
pleteness, a signal in L2 can be approximated with
an arbitrary accuracy, and the number of coeffi-
cients required to approximate the signal can be
reduced by choosing p suitably. Here, the Laguerre
transform of an autonomous system is considered
in the following lemma.

Lemma 1. Let us consider an autonomous system
ẋ = Ax with the initial condition x(0), and the ini-
tial response xI(t) = eAtx(0). Then its Laguerre
transform, La

[
xI(t)

]
=

[
xT

0 , · · · , xT
N−1

]T is
given as xk =

√
2p (pI − A)−(k+1) (pI + A)k

x(0)
where p is the pole of the Laguerre basis. ♦

Proof. For k = 0, x0 =
∫

R+
eAtx(0)φ0(t)dt =

√
2p (pI − A)−1

x(0). It is assumed that xk =√
2p (pI − A)−(k+1) (pI + A)k

x(0). Multiplying xk

by (pI − A)−1 (pI + A) from the left-hand side
and using the relations: (pI − A)−1 (pI + A) =
−I + 2p (pI − A)−1 and (pI − A)−1 (pI + A) =
(pI + A) (pI − A)−1, (pI − A)−1 (pI + A)xk =√

2p (pI − A)−(k+2) (pI + A)k+1
x(0) is obtained

by straightforward calculations. The proof is com-
pleted by mathematical induction. �

Using (pI − A)−i (pI + A)i =
∑i−1

k=0 (−1)i−k−1 2p

× (pI − A)−(k+1) (pI + A)k +(−1)i
I, Lemma 1 is

transformed into an algebraic equation with the
expansion coefficients by the Laguerre transform.

Theorem 1. Expand the initial response xI(t) =
eAtx(0) by the Laguerre transform. Then the ex-
pansion coefficients XN = La[xI(t)] must satisfy
the following algebraic equation:

DNXN − X0 = ANXN (1)

where X0 =
√

2p
[
I, · · · , (−1)N−1

I
]T

x(0),
AN = diag (A, A, · · · , A)︸ ︷︷ ︸

N

and

DN =




pI
−2pI pI

...
. . .

(−1)N−1 2pI · · · −2pI pI


 (2)

♦

Proof. By expansion of (pI − A)−k (pI + A)k,
(pI − A)xk =

∑k−1
i=0 (−1)k−i−1 2pxk

√
2p (−1)k

×Ix(0). Stacking up it from k = 1 to N − 1, (1)
is obtained. �

From Theorem 1 and the linearity of Laguerre
transform, an algebraic equation of the continuous-
time system is obtained as follows.

Corollary 1. Expand the input, output and state
of a time invariant continuous-time system:

ẋ = Ax + Bu, y = Cx

with x(0) by the Laguerre transform. Then, the
coefficients must satisfy the algebraic equation:

(DN − AN )XN = X0 + BNUN , YN = CNXN (3)

XN = La [x(t)] , UN = La [u(t)] , YN = La [y(t)]

where BN , CN are defined similarly to AN . ♦
(3) is called Laguerre System in this paper.

3. LQG PROBLEM FOR THE LAGUERRE
SYSTEM

In this section, to design the optimal controller
based on input-output signals, first of all, we



show that the optimal control problem formulated
with the coefficients of input-output signals is
equivalent to the problem based on the state space
representation, and lead the optimal controller
based on the equivalent problem, using Parseval’s
identity.

3.1 LQ problem

Consider a linear time-invariant continuous-time
system:

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) (4)

where x(t) ∈ Rn×1 is state, u(t) ∈ Rm×1 is
input, y(t) ∈ Rp×1 is output, (A, B) is con-
trollable and (C, A) is observable. The prob-
lem is to find, for any given x(0), the control
law minimizing a quadratic cost function J =∫

R+

(
yT (t)y(t) + uT (t)Ru(t)

)
dt where R > 0.

From the Parseval’s identity, the criterion is trans-
formed to J =

∑∞
k=0

(
xT

k Qxk + uT
k Ruk

)
, where

Q = CT C, equivalently. Then, we can restate the
LQ problem for the Laguerre system.

LQ problem: For the Laguerre system of (4), the
problem is to find the control input UN minimizing
the cost function:

J = Y T
N YN + UT

NRUN = XT
NQNXN + UT

NRNUN (5)

where QN and RN are defined similarly to AN .
The optimal control input UN and the minimum
value of the cost function (5) are given as follows.

Theorem 2. ĀN := (DN − AN )−1. For (3), the
minimum of (5) and the optimal control UN are
given as

UN = −
(
RN + BT

N ĀT
NQN ĀNBN

)−1
BT

N ĀT
NQN ĀNX0(6)

min
UN

J = XT
0 PLX0 (7)

PL = ĀT
NQN ĀN − ĀT

NQN ĀNBN

×
(
RN + BT

N ĀT
NQN ĀNBN

)−1
BT

N ĀT
NQN ĀN . ♦

Proof. XN = ĀNX0 + ĀNBNUN from (3).
Substituting it into (5) leads to the following:

J = XT
0 PLX0 +

[
UN +

(
RN + BT

N ĀT
NQN ĀNBN

)−1

× BT
N ĀT

NQN ĀNX0

]T (
RN + BT

N ĀT
NQN ĀNBN

)
(8)

×
[
UN +

(
RN + BT

N ĀT
NQN ĀNBN

)−1

× BT
N ĀT

NQN ĀNX0

]
.

Therefore, the theorem is led from (8). �

Remark 1. The optimal control (6) is not a feed-
back but a feedforward control law using X0. ♦

Because of the Parseval’s identity, a relation be-
tween the standard LQ and our problem is stated
as follows.

Corollary 2. Let F = −R−1BT P be the optimal
feedback gain of the standard LQ problem, where
P is a solution of the riccati equation: AT P+PA+
Q − RBR−1BT P = O. Then, with N → ∞, P is
equivalent to

P = IT
NPLIN , IN :=

√
2p

[
I · · · (−1)N−1

I
]T

.(9)

Therefore F = −R−1BT IT
NPLIN . ♦

Proof. The statement is obvious from (7). �

3.2 Full order observer

Next, we consider a full order observer, ˙̃x(t) =
Ax̃(t)+Bu(t)+K [y(t) − Cx̃(t)], where the initial
state of the observer is assumed to be zero, x̃(0) =
0. Then, the observer for the Laguerre system is
given as follows:

X̃ = ĀNBNUN−[DN − (AN − KNCN )]−1
KNYN

+ [DN−(AN−KNCN )]−1
KNCN ĀNBNUN (10)

where [DN − (AN − KNCN )]−1
KN can be ob-

tained by considering the LQ problem for a dual
system of (3):

(DN −AT
N )X̃N = X̃0 + CT

N ŨN , ỸN = BT
N X̃N .(11)

Lemma 2. ÃN :=
(
DN − AT

N

)−T . For (11), the
optimal input ŨN minimizing the quadratic cost
function: J̃ = X̃T

N Q̃N X̃N + ŨT
N R̃N ŨN , Q̃ ≥

0, R̃ > 0 and its minimum are given as

ŨN = −
(
R̃N +CN ÃN Q̃N ÃT

NCT
N

)−1
CN ÃN Q̃N ÃT

N X̃0 (12)

min
ŨN

J̃ = X̃T
0 P̃LX̃0 (13)

P̃L = ÃN Q̃N ÃT
N − ÃN Q̃N ÃT

NCT
N

×
(
R̃N + CN ÃN Q̃N ÃT

NCT
N

)−1
CN ÃN Q̃N ÃT

N . ♦

Proof. This lemma is proved by replacing the
coefficients in Theorem 2 as follows: ĀN →
ÃT

N , BN → C̃T
N , QN → Q̃N , RN → R̃N . �

Let ŨN = −KT X̃ denote the optimal feed-
back law and substitute it into (11). Then, from
(12), ŨN = −KT

N

[
DN −

(
AT

N − CT
NKT

N

)]−1
X̃0

is equal to −(R̃N + CN ÃN Q̃N ÃT
NCT

N )−1CN ÃN

×Q̃N ÃT
N X̃0. While KT

N

[
DN −

(
AT

N−CT
NKT

N

)]−1

has the Toeplitz structure, (R̃N + CN ÃN Q̃N ÃT
N

×CT
N )−1CN ÃN Q̃N ÃT

N does not have generally.
Therefore, by using the structure of X0, an op-
erator to fit it into the Toeplitz structure, Ttoep,
can be defined as Ttope [·] := To [Tc [·]] where



To





 φ1

...
φN





 :=


 φ1

...
. . .

φN · · · φ1




Tc [ΨN ] :=


 I

..

.
. . .

(−1)N−1I · · · I


ΨN


 I

..

.

(−1)N−1I


 .

Because of the special structure of (2), there
exists the following relation between ĀN and ÃN :

ĀN =


 δ1

.

..
. . .

δN · · · δ1


 , ÃT

N =


 δT

1

.

..
. . .

δT
N · · · δT

1


 . (14)

Using (14), we define an operator T as T
[
ĀN

]
:=

ÃN . Finally, we propose the design method of the
full order observer for the Laguerre system.

Theorem 3. A full order observer for (3) is given
as (10). The observer gain in (10) is obtained as

[DN − (AN − KNCN )]−1 KN

= T
[
Ttoep

[(
R̃N + CN ÃN Q̃N ÃT

NCT
N

)−1
CN ÃN Q̃N ÃT

N

]]
using the optimal control of the dual system. ♦

Proof. The proof is easily given from Lemma 2
and the definitions of T and Ttoep. �

3.3 Dynamic output feedback controller

From Corollary 2 and Theorem 3, combining the
state feedback law and the full order observer
leads to a dynamic output feedback controller for
the Laguerre system.

Theorem 4. FN is defined similarly to AN . For
(3), a dynamic output feedback controller is given
as follows:

UN = FN

{
ĀNBNUN − [DN − (AN − KNCN )]−1KNYN

+ [DN − (AN − KNCN )]−1 KNCN ĀNBNUN

}
(15)

where F and [DN − (AN − KNCN )]−1
KN are

designed according to Corollary 2 and Theorem
3, respectively. ♦

Proof. The proof is obvious. �

Remark 2. The proposed dynamic controller is
equivalent to a LQG controller minimizing the
cost function:

Js = lim
tf→∞ E

{∫ tf

0

(
xT Qx + uT Ru

)
dt

}
where Q = CT C ≥ 0, R > 0, E {·} means
the expectation operator, for a stochastic system:
ẋ = Ax + Bu + w, y = Cx + v under conditions:

E
{[

w(t)
v(t)

] [
wT (τ) vT (τ)

]}
=

[
Q̃ O

O R̃

]
δ(t − τ).

E {x(0)} = O, E {w(t)} = O, E {v(t)} = O.
In this sense, we can say that (15) is a LQG
controller.

4. LQG CONTROLLER WITH THE
LAGUERRE SERIES EXPANSION OF

INPUT-OUTPUT SIGNALS

In this section, we give the main result of this
paper, that is, the design of the optimal controller
minimizing the quadratic criterion (5) formulated
with the coefficients of the Laguerre series expan-
sion of an input-output signal. The coefficients
used in the design is obtained by the expansion of
the input-output signal generated by injecting the
time response of the Laguerre basis into the real
system. Therefore, we first consider the special
response such as the impulse response for the
Laguerre system.

4.1 Laguerre pulse response

Let us consider an augmented system of (4):
ẋ(t) = Ax(t) + Ez(t) + Bu(t), y(t) = Cx(t),
and its Laguerre system is given as DNXN −
X0 = ANXN + ENZN + BNUN , YN = CNXN .
From Theorem 1, input-output relations of this
Laguerre system with the zero initial state, X0 =
O, are described as

YN = To

[[
gT
1 · · · gT

N

]T
]

ZN (16)

gi =

{
C (pI − A)−1 E, i = 1

2p · C (pI + A)i−2 (pI − A)−i E, i > 1

YN = To

[[
hT
1 · · · hT

N

]T
]

UN (17)

hi =

{
C (pI − A)−1 B, i = 1

2p · C (pI + A)i−2 (pI − A)−i B, i > 1

where
[
hT

1 , · · · , hT
N

]T

,

[
gT
1 , · · · , gT

N

]T are ob-
tained by injecting the input sequences:

ui, zi =
{

I i = 0
O i �= 0 . (18)

(18) can be generated practically by the Laguerre
transform of the time response of the Laguerre
basis φ0(t). Therefore, {gi}i≥1 and {hi}i≥1, called
Laguerre unit pulse response in this paper, can be
generated by the Laguerre transform of responses
given by injecting the time response of φ0(t) into
z(t), u(t), respectively. (See Fig. 1, 2 for example.)

Remark 3. The continuous signals of input and
output, which is needed to calculate the inner
product for the Laguerre expansion, cannot be
obtained actually. However, in the system where
the sampling interval can be set short such as DSP
system, the inner product can be approximated
with enough accuracy by numerical integration of
the data sampled at the interval T , for example,

vk ≈
∑

i

v[i + 1] + v[i]
2

T



where {v[k]} are sampled data of v(t).

4.2 LQG controller with the Laguerre unit pulse
response

Now we try to represent the LQG controller (15)
with the Laguerre unit pulse response. Substitute
QN = CT

NCN in the LQ optimal gain of Theorem
2 and Corollary 2. Then,

UN = −R−1BT IT
N

[
ĀT

NCT
NCN ĀN − ĀT

NCT
NCN ĀNBN

×
(
RN + BT

N ĀT
NCT

NCN ĀNBN

)−1
BT

N ĀT
NCT

NCN ĀN

]
IN

where CN ĀNBN and BT IT
N ĀT

NCT
N can be repre-

sented with (17), but CN ĀNIN cannot be indi-
vidually. For the observer (10), CN ĀNBN can be
represented with (17), but ĀNBN cannot be. Note
that [DN − (AN − KNCN )]−1

KN is constructed
by (R̃N +CN ÃN Q̃N ÃT

NCT
N )−1CN ÃN Q̃N ÃT

N from
Theorem 3. Substitute R̃ and Q̃N = ENET

N in
Lemma 2, then

KT
N

[
DN −

(
AT

N − CT
NKT

N

)]−1
X̃0

=
(
R̃N + CN ÃNENET

N ÃT
NCT

N

)−1
CN ÃNENET

N ÃT
N X̃0

where CN ÃNEN are represented with (16), but
ET

N ÃT
N cannot be individually. Therefore, we need

to combine ĀNBN and ET
N ÃT

N with CN ĀNIN of
the optimal feedback gain. Actually, we can do
that as shown in the following theorem.

Theorem 5. It is assumed that R > 0, R̃ > 0 are
given and QN = CT

NCN , Q̃N = ENET
N . Then, the

LQG controller (15) can be represented with the
Laguerre unit pulse response (16)-(17) as follows:

UN =
[
I −FN + KN H̄N

]−1 KNYN (19)

FN = To

[[
(FGγ1)T · · · (FGγN )T

]T
]

KN = T
[
Ttoep

[
KGTo

[
FGγ̃1 · · · FGγ̃N

]T
]]

FG = −R−1
[̄
hT
1· · ·h̄T

N

] [
I − H̄N

(
RN + H̄T

N H̄N

)−1
H̄T

N

]
KG =

[
R̃N + ḠN ḠT

N

]−1
ḠN , H̄N = To

[[
hT
1· · ·hT

N

]T
]

ḠN = To

[[
g1· · ·gN

]T
]T

γ1 =

√
2p

2p

[
hT
2· · ·hT

N+1

]T
, γ̃1 =

√
2p

2p

[
gT
2 · · ·gT

N+1

]T

γi =

√
2p

2p


 hi+1 + hi

..

.
hi+N + hi+N−1


 , γ̃i =

√
2p

2p


 gi+1 + gi

..

.
gi+N + gi+N−1




[
h̄T
1· · ·h̄T

N

]
=

√
2p

[
hT
1· · ·

N∑
i=1

(−1)i−1hT
N−i+1

]
♦

Proof. Due to the lack of space, the proof,
which is complex but straightforward calculation
of matrices, is omitted. �

The main point we address in this paper is that
in the optimal controller design, we need only to
calculate the (19) using the coefficients directly,
and do not need to obtain any mathematical
model or to design the feedback gain and the full-
order observer separately.

4.3 State space realization of LQG controller
In the previous, the LQG controller has been given
in the form of expansion coefficients of the unit
pulse response. The realization method of (19) in
the state space is given here. Let (Ac, Bc, Cc)
denote a state space realization of (19). (19) has
the toeplitz structure:

UN = To

[[
ΦT

1 · · · ΦT
N

]T
]

YN (20)

Φi =

{
Cc (pI − Ac)

−1 Bc, i = 1

2p · Cc (pI + Ac)
i−2 (pI − Ac)

−i Bc, i > 1
(21)

Moreover, we define
(
Āc, B̄c, C̄c, D̄c

)
as follows:

Āc = (pI + Ac) (pI − Ac)
−1 , B̄c =

√
2p (pI − Ac)

−1 Bc

C̄c =
√

2pCc (pI − Ac)
−1 , D̄c = Cc (pI − Ac)

−1 Bc,

then (21) is rewritten as

Φi =
{
D̄c : i = 1, C̄cĀ

i−1
c B̄c : i > 1

}
.(22)

(Ac, Bc, Cc) can be also described as follows.

Ac = p ·
(
Āc + I

)−1
(Ac − I) , Bc =

1√
2p

(pI − Ac) B̄c

Cc =
1√
2p

Cc (pI − Ac) . (23)

From (20), (22) and (23), we summarize the
design algorithm of the LQG controller in the
state space form.

Algorithm

Step 1: Generete input-output signals by injecting
the time response of φ(t) into the real system.
Step 2: Calculate the coefficients of the generated
signals by the Laguerre transform.
Step 3: Design the LQG controller according to
(19).
Step 4: Extract Φi from the result of Step 3.
Step 5: Realize

(
Āc, B̄c, C̄c, D̄c

)
from Φi accord-

ing to Ho and Kalman’s realization method.
Step 6: Using (23), transform

(
Āc, B̄c, C̄c, D̄c

)
into the state space realization: (Ac, Bc, Cc).

5. NUMERICAL EXAMPLES

To verify the effectiveness of the proposed method,
we consider a LQG control design for the following
2nd order system:

ẋ =
[

0 1
−100 −10

]
x +

[
30 0
0 3

]
z +

[
0
1

]
u

y =
[
1 0

]
x

(24)
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Fig. 1. Time responses used for the design
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Fig. 2. Laguerre coefficients used for the design
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Fig. 3. Time responses in (p, N) = (5, 5)

and R = [0.01] , R̃ = I are given. In the above
case, Q = diag(1, 0) and Q̃ = diag(900, 9).
The time responses and coefficients used in the
design is shown in Figure 1–2. We must choose
the parameter p and the length of the series N
appropriately. The best choice is found in (Hof et
al., 1995). Here we show two cases. The result of
(p, N) = (5, 5), (5, 12) are shown in Figure 3–4.
From figures, it can be seen that the proposed
method gives the same controller as designed
based on the state space model (24) as long as N
is large enough. However, as the future work, we
should investigate some left problems such as the
robustness for noises and numerical calculations,
and the influence of modeling error if the length
N is not long enough.

6. CONCLUDING REMARKS

This paper has proposed a new LQG controller
design using input-output data for continuous-
time linear systems. By utilizing the Laguerre
series expansion, the quadratic criterion has been
formulated with the expansion coefficients. The
analyses of the optimal feedback gain and full
order observer minimizing the criterion have been
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Fig. 4. Time responses in (p, N) = (5, 12)

given. As the result, the controller has been
obtained merely by the algebraic calculation of
the Laguerre transform of input-output responses
generated by injecting the time response of the
Laguerre basis to the real system. Moreover, the
state space realization method of the controller
has been proposed. Finally, the effectiveness has
been verified through the numerical simulation.
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