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Abstract: A class of nonlinear controllers is presented which guarantees the stability property
of global uniform ultimate boundedness with respect to some known set for a class of
nonlinear, singularly perturbed systems, with discrete and distributed delays, in the presence
of uncertainty, provided the singular perturbation parameter is small enough. The uncertainty
acting on the systems, which may be time-, state-, delayed state-, and/ or input-dependent,
are modelled as additive nonlinear perturbations influencing a known nominal, singularly
perturbed, time-delay system of the retarded type. Each feedback controller is designed using
information based mainly on a nonlinear, affine in the control, ‘reduced-order’ system. A
‘matched’ uncertainty structural condition for the ‘reduced-order’ system is not presumed in
this paper. Copyright ©2002 IFAC
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1. INTRODUCTION

Often, control systems exhibit nonlinear characteris-
tics and are also subject to various forms of distur-
bances. One approach to modelling systems with un-
certainty is to absorb the unknown nonlinear elements
and noise disturbances within a perturbed idealized
model, where the uncertainty perturbation appears ad-
ditively. Other problems that may arise is the coex-
istence of slow and fast dynamics in the plant to be
controlled. This particular problem can be addressed
utilizing singular perturbation theory (for more de-
tails, see (Kokotovic et al., 1986) or, for a differential-
geometric approach, (Isidori, 1989)). There has been
much research, over the past decades, on control of un-
certain singularly perturbed systems using a determin-
istic approach; for example, (Binning and Goodall,
1999; Binning and Goodall, 2000; Corless, 1991;
Corless et al., 1993; Corless et al., 1990; Corless
and Ryan, 1991; Garofalo and Leitmann, 1990), and
(Leitmann et al., 1986), to name but a few. In addition,
time-delays, which can have a significant effect on the
dynamic behaviour of a system, is a phenomenon that

has been investigated by a number of researchers in
recent times; in particular, aspects of stability analysis
using a deterministic approach. However, up to the
present time, very few papers have been published
on singularly perturbed systems with time-delay (see
(Chen, 1995; Glizer, 1999; Glizer, 2001; Hsiao and
Hwang, 1996; Shao and Rowland, 1995) and (Sun
et al., 1996)), and none of these papers considers
distributed delays. To the authors’ knowledge, there
appears to be no studies on uncertain singularly per-
turbed systems with time-delays.

The main objective of this paper is to design, us-
ing a deterministic approach, a class of robust feed-
back controls for singularly perturbed uncertain non-
linear systems, subject to time-delays (discrete and
distributed), in order to achieve the stability property:
global uniform ultimate boundedness. Parametric un-
certainty is not considered in this paper; instead, a
priori bounding knowledge of the system uncertainty,
in terms of growth conditions with respect to its ar-
guments, is assumed. One feature of the controllers,
employed to stabilize the class of uncertain systems,
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is that the gains depend explicity on upper bounds of
the uncertainty and, thus, robustness of the feedback
controls is a consequence. The controllers, which are
composite in nature, guarantee the desired behaviour
provided the singular perturbation parameter is small
enough. One component of a controller assures de-
sired behaviour of the slow dynamics, whilst a sec-
ond component yields the desired stability properties
for the fast dynamics in the presence of the active
slow controller. The stability analysis is similar to that
used in (Binning and Goodall, 1999) and (Binning
and Goodall, 2000) but, here, the full-order system
is a nonlinear delay system of the retarded-type, con-
taining both discrete and distributed delays. Utilizing
memoryless feedback controllers, together with a de-
terministic methodology based on Lyapunov theory
and Lyapunov-Krasovskiĭ functionals, some stability
criteria are proposed that will ensure the desired sta-
bility property for the prescribed class of singularly
perturbed delay systems, provided the singular pertur-
bation parameter is small enough. One advantage of
using memoryless controllers is that past history of the
states does not need to be stored.

2. FULL-ORDER SINGULARLY PERTURBED
UNCERTAIN SYSTEM

Consider a singularly perturbed uncertain dynamical
system consisting of two coupled subsystems with the
following structure: The class of uncertain, singularly
perturbed, time-delay systems to be investigated con-
sists of two coupled subsystems with the following
structure:

ẋ
�
t ��� a

�
t � x � t ��� x � t � ρ ��� I � x � τ ��� y � t ��� u � t ��� µ � (1)

µ ẏ
�
t ��� b

�
t � x � t ��� x � t � ρ ��� I � x � τ ��� y � t ��� u � t ��� µ ��� (2)

subject to the initial condition xt0 � ψx
�
θ ��� yt0 �

ψy
�
θ � , θ �	� � T � 0 
 , with T � max � ρ � τ 
 and xt

�
θ � : �

x
�
t � θ � , where

a
�
t � x1 � x2 � x3 � y � u � µ ��� f1

�
x1 � x2 � x3 �

� F1
�
x1 � x2 � x3 � y � G1

�
x1 � x2 � x3 � u

� h1
�
t � x1 � x2 � x3 � y � u � µ ���

b
�
t � x1 � x2 � x3 � y � u � µ ��� A

�
t ��
 f2
�
x1 ��� y

�
t �

� G2
�
x1 � u ��� h2

�
t � x1 � x2 � x3 � y � u � µ ����

x
�
t ��� y � t ������� n � ��� is the state of the system,

u
�
t ���	� m is the control input, 1 � m ����� n, and

µ �����0 : � � 0 � ∞ � denotes the singular perturbation
parameter, assumed to be ‘small’. The discrete and
distributed delays, represented by ρ and τ , respec-
tively, are assumed to be bounded and the initial con-
dition functions satisfy ψx � C

� � � T � 0 
 ; � n � and ψy �
C
� � � T � 0 
 ; � � � ; moreover, I

�
x � τ � : �"! t

t # τ x
�
z � dz. It is

assumed that the vector fields f1 � C∞ � � n � � n �
� n ; � n � and f2 � C∞ � � n � � n � � n ; � � � are known
and satisfy f1

�
0 � 0 � 0 �$� 0 � f2

�
0 ��� 0, F1

�
x1 � x2 � x3 �%�

L
� � � �&� n � (the set of all continuous linear maps from� � into � n ), G1

�
x1 � x2 � x3 ��� L

� � m �&� n � and G2
�
x1 ���

L
� � m �&� � � are known and G2

�
x1 � is full rank for all

x1. The uncertainty in the system is represented by
A
�
t � , a Lebesgue measurable matrix-valued function,

and the nonlinear functions h1 � h2 � C∞ � � � � n �
� n � � n � � � � � m � � �0 ; � n � .
The uncertainty in subsystem (2) is characterized by
the following hypothses:
For a linear map L, the notation ' L ' denotes(

maxσ
�
LTL �*) 1

2 , where σ
�,+ � denotes spectrum.

H1: (a) For all t, there exists κ0 �-� 0 � 1
2 ' P0 ' # 1 � and

A0 � L
� � � �&� � � such that

A
�
t ��� A0 � Â

�
t ��� .. Â

�
t �/.. � κ0 �

A0 is known and σ
�
A0 ��0�1 # , where P0 2 0 is the

unique, symmetric solution of the Lyapunov equation

P0A0 � AT
0 P0 � I� � O � (3)

and I� � O � are the � � � identity and zero matrices.

(b) For all
�
t � x1 � x2 � x3 � y � u � ,

h2
�
t � x1 � x2 � x3 � y � u � 0 ��� 0 3

3. THE REDUCED-ORDER UNCERTAIN
SYSTEM

Setting µ � 0, system (1-2) degenerates to the set of n
functional differential equations

ẋ
�
t ��� f1

�
x
�
t ��� x � t � ρ ��� I � x � τ ���

� F1
�
x
�
t ��� x � t � ρ ��� I � x � τ ��� y � t �

� G1
�
x
�
t ��� x � t � ρ ��� I � x � τ ��� u � t �

� h1
�
t � x � t ��� x � t � ρ ��� I � x � τ ��� y � t ��� u � t ��� µ � (4)

subject to the constraint

f2
�
x
�
t ����� y

�
t ��� G2

�
x
�
t ��� u � t ��� 0 3 (5)

The degenerate system (4-5) is a dynamical system
that can be expressed in the form

ẋ
�
t ��� f̃

�
x
�
t ��� x � t � ρ ��� I � x � τ ���

� G̃
�
x
�
t ��� x � t � ρ ��� I � x � τ ��� u � t �

� h̃
�
t � x � t ��� x � t � ρ ��� I � x � τ ��� u � t ����� (6)

where f̃
�
x1 � x2 � x3 � : �

f1
�
x1 � x2 � x3 �4� F1

�
x1 � x2 � x3 � f2

�
x1 � ,

G̃
�
x1 � x2 � x3 � : �

G1
�
x1 � x2 � x3 �4� F1

�
x1 � x2 � x3 � G2

�
x1 � ,

h̃
�
t � x1 � x2 � x3 � u � : � h1

�
t � x1 � x2 � x3 � φ � x1 � u ��� u � 0 � ,

φ
�
x1 � u � : ��� f2

�
x1 �4� G2

�
x1 � u,

and is known as the reduced-order system. The func-
tion φ is determined uniquely in view of hypothesis
H1(a).

The Euclidean inner product (on � n or � � as appropri-
ate) and the induced norm are denoted by 5 + � + 6 and ' + ' ,
respectively. Let L f v : � p � � n 7 � denote the Lie
derivative of a scalar field x 87 v

�
x � : � n 7 � along

the vector field f � C∞ � � p ; � p � . In particular, if f :� n 7 � n and v : x 87 v
�
x � : ��5 x � P1x

6
, then

�
L f v � � x ���5 P1x � f � x � 6 . The reduced-order system is characterized



by the prescribed triple ( f̃ � G̃ � h̃) for which the follow-
ing hypotheses are assumed to hold:

H2: (a) There exist x 87 f̃i
�
x � � � n , with i � 1 � 2 � 3,

such that

(i) f̃
�
x1 � x2 � x3 ��� f̃1

�
x1 ��� f̃2

�
x2 ��� I

�
f̃3
�
x3 ��� τ � ;

(i) .. f̃
�
x1 � x2 � x3 � .. � ν0 � ν3

m

∑
i � 1

I
��� �

Lg̃iv � � x3 � � � τ �
� ν2

m

∑
i � 1

� �
Lg̃iv � � x2 � � � ν1

m

∑
i � 1

� �
Lg̃iv � � x1 � � ,

where g̃i
�
x � denotes the ith column of the matrix G̃

�
x � ;

(iii) given any symmetric, positive definite Ki � � n � n

(i � 1 � 2) and continuous, symmetric matrix-valued
function x 87 Q

�
x �%� � n � n , with Q

�
x ��� 0 for all x �� n and, if it exists, lim 	 x 	�
 ∞ infQ
�
x � 2 0, there exists

a unique symmetric matrix P1 2 0 which satisfies, for
all x, the following Riccati-type matrix equation:

P1
�
D f̃1 � � x � � � D f̃1 � T � x � P1

� K1 � � D f̃2 � T � x � P1K # 1
1 P1
�
D f̃2 � � x �

� τ
�
K2 � � D f̃3 � T � x � P1K # 1

2 P1
�
D f̃3 � � x ���

��� Q
�
x ��� (7)

where the notation
�
D f̃ � � x � denotes the Fréchet deriva-

tive of f̃ at x, i.e. the Jacobian matrix of f̃ .

(b) G̃
�
x1 � x2 � x3 � is independent of x2 and x3, i.e.

G̃
�
x1 � x2 � x3 �%� G̃

�
x1 � , and there exist a real constant

κ � � � , with � � : � � 0 � ∞ � , such that, for all x � � n

and all i,
κ
� �

Lg̃iv � � x � � ��' P1x ' 3
(c) There exist p : � � � n � � n � � n � � � � � m 7 � n

and q : � � � n � � n � � n � � � � � m 7 � m such that

h̃
�
t � x1 � x2 � x3 � u ��� q

�
t � x1 � x2 � x3 � u �
� G̃
�
x1 � p � t � x1 � x2 � x3 � u ���

and there exist real constants αi � α̂i � βi � β̂i � γi � γ̂i � δi � δ̂i �� �0 , known continuous functions ξi : � 7 � 0 � ξ 
 and

ξ̂i : � 7 � 0 � ξ̃ 
 , with ξ � κξ̃ �	� 0 � 1 � , such that, for all�
t � x1 � x2 � x3 � u � ,

(i)
�
pi
�
t � x1 � x2 � x3 � u � � � αi � βi

� �
Lg̃iv � � x1 � �� γi ' x2 ' � δi ' x3 ' � ξi

�
t � � ui

�
;

(ii) ' q � t � x1 � x2 � x3 � u � ' � m

∑
i � 1



α̂i � β̂i

� �
Lg̃iv � � x1 � �

� γ̂i ' x2 ' � δ̂i ' x3 ' � ξ̂i
�
t � � ui

� �
,

where ui � qi denote the ith components of u and q,
respectively.

Remark: The vector fields p � q are said to represent
the matched and unmatched components, respectively,
of the uncertainty in the nonlinear reduced-order time-
delay system.

4. DESIGN OBJECTIVE AND CLASS OF
FEEDBACK CONTROLS

It is desired that a memoryless feedback control
function, x

�
t � 87 c̃

�
x
�
t ��� , be designed so that (a) the

reduced-order system has the property of global uni-
form ultimate boundedness (see (Michel and Wang,
1995), Chapter 3 for a definition), (b) under additional
hypotheses, the full-order system has the same stabil-
ity property in the presence of singular perturbations
for all µ � � 0 � µ � � , where µ

�

is some computable real
constant.

The design of the feedback controls emulates the work
in (Corless, 1991) and (Binning and Goodall, 1999).
The feedback controller x 87 c̃

�
x � � � c̃1

�
x ��3�3�3 c̃m

�
x � 
 T

is defined by

c̃i
�
x � : ��� � 1 � ξ � κξ̃ � # 1 � aiχi

�
x ��� biωi

�
x � 
 � (8)

where
x 87 χi

�
x � : � � Lg̃iv � � x � ,

x 87 ωi
�
x � : � si � � 1 � ξ � κξ̃ � # 1biχi

�
x ��� ,

si : � 7 � is any C1 function which, for every z �� z1 ��3�3�3 � zm 
 T, satisfies

zisi
�
zi ��� �

zi
� � εi � �

si
�
zi � � � 1 �

and ai � bi � εi � � � are design parameters. The func-
tionals ωi are chosen to counteract the uncertainty in
the reduced-order system.
Remark: An example of a function satisfying the con-
ditions on si is

si
�
zi ��� � � zi

� � εi 
 # 1 zi 3

5. BOUNDARY-LAYER SYSTEM

Consider the change of variables Φ � y � φ̃
�
x � , where

φ̃
�
x � � φ

�
x
�
t ��� c̃ � x ��� . Introducing the rescaled time

variable τ � � t � t
� ��� µ , where t

� � � is fixed, and
Φ̃
�
τ � : � Φ

�
t

� � µτ � , it can be shown that the be-
haviour of the full-order system at µ � 0 is charac-
terized by the system

Φ̃ � � τ ��� A
�
t

� � Φ̃ � τ ���
which is known as the boundary-layer system. Hy-
pothesis H1(a) guarantees that the boundary-layer sys-
tem is asymptotically stable.

6. THE FEEDBACK CONTROLLED
REDUCED-ORDER SYSTEM

For any two compact sets A � B 0 � n , the notation
A � B is introduced to denote that the compact
set A is contained in an open set which, in turn, is
contained in the compact set B. With state feedback
u
�
t ��� c̃

�
x
�
t ��� and c̃ defined by (8), the reduced-order

system (6) can be expressed as

ẋ
�
t ��� f̃1

�
x
�
t ����� f̃2

�
xt
� � ρ ����� I

�
f̃3
�
x ��� τ �

� m

∑
i � 1



pi
�
t � x � t ��� xt

� � ρ ��� I � x � τ ��� c̃i
�
x
�
t �����

� c̃i
�
x
�
t ��� � g̃i

�
x
�
t ���

� q
�
t � x � t ��� xt

� � ρ ��� I � x � τ ��� c̃i
�
x
�
t ������3 (9)



The desired stability property is obtained by using
essentially the same approach as that of (Binning and
Goodall, 2000). Examining the behaviour of the time
derivative of the functional

xt 87 v1
�
xt � : � v

�
x
�
t ���

��� 1

0
� t

t # ρ
5 x � r ��� R � zx

�
r ��� x � r � 6 dr dz

� � 1

0
� τ

0
� t

t # s
5 x � r ��� S � zx

�
r ��� x � r � 6 dr dsdz

� m

∑
i � 1

ηi � t

t # ρ

� �
Lg̃iv � � x � r ��� � 2 dr

� m

∑
i � 1

ζi � τ

0
� t

t # s

� �
Lg̃iv � � x � r ��� � 2 dr ds �

where R
�
z � : � � D f2 � T � z � P1K # 1

1 P1
�
D f2 � � z � ,

S
�
z � : � � D f3 � T � z � P1K # 1

2 P1
�
D f3 � � z � ,

ηi � κ .. P # 1
1 ..
�
γi � κγ̂i � , ζi � κ .. P # 1

1 ..
�
δi � κδ̂i � , then,

along solutions to (9), one obtains, using Leibnitz’s
formula for differentiation of integrals, the following
result.

Theorem 1. Suppose hypotheses H1-H2 hold and ai

and bi are chosen so that
ai 2 âi : � βi � κ .. P # 1

1 ..
�
γi � τδi �

� κ


β̂i � κ .. P # 1

1 ..
�
γ̂i � τδ̂i � � ,

bi 2 b̂i : � αi � κα̂i.
Then a : � min

i

 ai � âi � 2 0, b : � min

i

 bi � b̂i � 2 0,

and the uncertain system (9) is globally uniformly
ultimately bounded within every compact set A sat-
isfying Eε � A , where Eε is the compact set Eε : ��

x � � n : v
�
x ��� r2

ε � ,
rε : ��� εκ2

2maσmin
�
P1 ��� 1

2

and ε : � 2
m

∑
i � 1

εi 3

Proof. Since, along solutions to (9) and for almost all
t,

v̇1
�
xt ��� �	� x

�
t ��� � 1

0
Q
�
zx
�
t ��� x � t � dz 
 � ε

� 2a
m

∑
i � 1

�
χi
�
x
�
t ��� � 2 � 2b

m

∑
i � 1

�
χi
�
x
�
t ��� � �

then, as a consequence of H2(c) and standard argu-
ments, the result follows. �
Remark: Clearly the ‘size’ of the set Eε can be made
as small as desired by choosing the design parameters
εi appropriately.

7. LYAPUNOV ANALYSIS FOR THE
FULL-ORDER SYSTEM

In this final stage it is shown that, using the memory-
less feedback (8), the full-order uncertain system (1-

2) is globally uniformly ultimately bounded with re-
spect to some compact set. The methodology follows
that of (Corless and Ryan, 1991) (see, also, (Binning
and Goodall, 1999)) in which a Lyapunov analysis is
used for delay-free systems. Consider the functional
defined by�

xt � y � t ��� 87 vµ
�
xt � y � t ��� : � v1

�
xt ��� ξµv2

�
xt � y � t �����

where ξµ � � � , a real constant dependent upon the
singular perturbation parameter, is to be specified,

v2
�
xt � y � t ��� : � v0

�
x
�
t ��� y � t ����� m

∑
i � 1
� t

t # ρ

�
χi
�
x
�
r ��� � 2dr

� m

∑
i � 1

� τ

0
� t

t # s

�
χi
�
x
�
r ��� � 2 dr ds

and v0
�
x � y � : �
� y � φ̃

�
x ��� P0
�
y � φ̃
�
x ����� . Along solu-

tions to (1-2) and for almost all t,

v̇µ
�
xt � y � t ����� Vµ

�
t � xt � y � t �����

where

Vµ
�
t � xt � y � t ��� : � v̇1

�
xt �

� ξµ � � � ∇xv0 � � x � t ��� y � t �����
a
�
t � x � t ��� xt

� � ρ ��� I � x � τ ��� y � t ��� c̃ � x � t ����� µ � �
� µ # 1 � � ∇yv0 � � x � t ��� y � t �����

b
�
t � x � t ��� xt

� � ρ ��� I � x � τ ��� y � t ��� c̃ � x � t ����� µ ���
� m

∑
i � 1

�
χi
�
x
�
t ��� � 2 � m

∑
i � 1

�
χi
�
x
�
t � ρ ��� � 2

� τ
m

∑
i � 1

�
χi
�
x
�
t ��� � 2 � m

∑
i � 1

� t

t # τ

�
χi
�
x
�
r ��� � 2 dr ��3

H3: (a) For all
�
x1 � x2 � x3 � , there exists k1 � � � such

that ' F1
�
x1 � x2 � x3 � ' � k1.

(b) There exists a continuous function w : � �0 7� 0 � ϖ 
 , with ϖ 2 0 and w
�
0 ��� 0, such that' h1

�
t � x1 � x2 � x3 � y � u � µ ���

h1
�
t � x1 � x2 � x3 � y � u � 0 � ' � w

�
µ � .

(c) There exists a known scalar k2 � ���0 such that, for
all y1 � y2 � � � and

�
t � x1 � x2 � x3 � µ ��� � � � � n � � n �

� n � ���0 ,

' h1
�
t � x1 � x2 � x3 � y1 � c̃ � x1 ��� µ ���

h1
�
t � x1 � x2 � x3 � y2 � c̃ � x1 ��� µ � ' � k2 ' y1 � y2 ' 3

Under hypotheses H2-H3, one may deduce the follow-
ing lemma.

Lemma 2. Along solutions to (1-2),

v̇1
�
xt ��� �	� x

�
t ��� � 1

0
Q
�
zx � xdz 
 � ε

� 2
m

∑
i � 1

�
ai � âi � � χi

�
x
�
t ��� � 2

� 2 � κ1
(
v0
�
x � y �*) 1

2 � κm # 1ϖ � b � m

∑
i � 1

�
χi
�
x
�
t ��� � �

where κ1 � κ
�
k1 � k2 ��� � m ( σmin

�
P0 �*) 1

2 � , almost ev-
erywhere.



H4: (a) The Fréchet derivative of φ̃ satisfies

..
�
Dφ̃ � � x � .. � ..

�
Dφ̃ � � x � g̃i

�
x � .. � k3 � k3 � � � �

for all x and for all i;
(b) There exist known scalars λ1 � λ5 � ���0 such that,
for all µ � � � and

�
t � x1 � x2 � x3 � y � � � � � n � � n �

� n � � � ,
.. h2
�
t � x1 � x2 � x3 � y � φ̃ � x ��� µ � .. � µ



λ1 .. y � φ̃

�
x1 � ..

� λ2 � λ3 ' x1 ' � λ4 ' x2 ' � λ5 ' x3 ' � 3
Define

κ2 : � 2m # 1
�
λ1 � k3

�
k1 � k2 ����� σmax

�
P0 �

σmin
�
P0 ��� 1

2

� ( σmax
�
P0 �*) � k3ν2

� κ .. P # 1
1 ..

�
λ4m # 1 � k3 max

i
� γi � γ̂i 
 � � 2

� τ
(
σmax
�
P0 �*) � k3ν3

� κ .. P # 1
1 ..

�
λ5m # 1 � k3 max

i
� δi � δ̂i 
 � � 2

,

κ3 : � m # 1 � 1 � 2κ0 ' P0 ' � ( σmax
�
P0 �*) # 1,

κ4 : � ( σmax
�
P0 �*) 1

2 � λ3κm # 1 .. P # 1
1 .. � k3ν1

� k3 max
i

 βi � β̂i � ai

�
1 � ξ � ξ̃ � � 1 � ξκξ̃ � 1 � � ,

κ5 : � ( σmax
�
P0 �*) 1

2



λ2 � k3 � ϖ � ν0 �

m

∑
i � 1

�
αi � α̂i � bi

�
1 � ξ � ξ̃ � � 1 � ξ � κξ̃ � # 1 � � � 3

Lemma 3. Suppose H1-H4 hold. Along solutions to
(1-2),

v̇2
�
xt � y � t ����� � 1 � τ � m

∑
i � 1

�
χi
�
x
�
t ��� � 2

� m

∑
i � 1


 �
κ2 � κ3µ # 1 � v0

�
x
�
t ��� y � t ���

� 2κ4
�
χi
�
x
�
t ��� � ( v0

�
x
�
t ��� y � t ���*) 1

2
�

� 2κ5
(
v0
�
x
�
t ��� y � t ���*) 1

2 �
almost everywhere.

Hence, as a consequence of Lemmas 2 and 3,

Vµ
�
t � xt � y � t ���$� �	� x

�
t ��� � 1

0
Q
�
zx � xdz 
 � ε

� m

∑
i � 1


 �
2ai � 2âi � ξµ

�
1 � τ ��� � χi

�
x
�
t ��� � 2

� 2
�
κ1 � ξµκ4 � � χi

�
x
�
t ��� � ( v0

�
x
�
t ��� y � t ���*) 1

2

� ξµ
�
µ # 1κ3 � κ2 � v0

�
x
�
t ��� y � t ��� �

� 2
�
b � κm # 1ϖ � m

∑
i � 1

�
χi
�
x
�
t ��� �

� 2ξµκ5
(
v0
�
x
�
t ��� y � t ���*) 1

2 3
Let ξµ � π � µ

µ � � 1
2
, where π 2 0 and µ � µ

�

, then,

since ξµ � π ,

2ai � 2âi � ξµ
�
1 � τ � 2 2ai � 2âi � π

�
1 � τ � .

Therefore, design

ai 2 ai : � âi � 1
2 π
�
1 � τ � (10)

and let a � mini � ai � ai 
 , then

Vµ
�
t � xt � y � t ����� �	� x

�
t ��� � 1

0
Q
�
zx � xdz 
 � ε

� m

∑
i � 1
� ω � Mµ ω � � 2

�
b � κm # 1ϖ � m

∑
i � 1

�
χi
�
x
�
t ��� �

� 2ξµκ5
(
v0
�
x
�
t ��� y � t ���*) 1

2 �
where ω � 
 � χi

�
x
�
t ��� � ( v0

�
x
�
t ��� y � t ���*) 1

2 � T and

Mµ ��� a � � κ1 � ξµ κ4 �� � κ1 � ξµκ4 � ξµ
�
µ # 1κ3 � κ2 � � 3

It can be shown that there exists µ
� 2 0 such that

det
�
Mµ � 2 0 for all µ � � 0 � µ � � . Selecting real φ 2 0,

then, since κ3 2 0 (in view of H1(a)),

µ
�

: ��� aκ3 � aκ2 � 4κ1κ4 
 # 1 � κ1κ4 �� 0

aκ3 � aκ2 � φ 
 # 1 � otherwise 3
is one such possibility (see (Corless and Ryan, 1991)),
where

π : �	�


� 


�
κ1κ # 1

4 � κ1κ4 �� 0

κ2
1 φ # 1 � κ1 �� 0 � κ4 � 0

φκ # 2
4 � κ1 � 0 � κ4 �� 0

φ � κ1 � 0 � κ4 � 0 3
Thus, for µ

�

and π defined above and designing bi so
that

b 2 m # 1κϖ � (11)

it follows that

Vµ
�
t � xt � y � t ����� � η µ vµ

�
x
�
t ��� y � t ���

� ζ µ
(
vµ
�
x
�
t ��� y � t ���*) 1

2 � ε �
where vµ

�
x � y � : � v

�
x ��� ξµv0

�
x � y � ,

ηµ : � m .. M # 1
µ .. # 1

min � κ # 2σmin
�
P1 ��� ξ # 1

µ 

and ζ µ : � 2ξ

1
2

µ κ5.
Since

vµ
�
xt � y � t ����� � � x

y � φ̃
�
x � � � P̃µ � x

y � φ̃
�
x � � 
 ,

where P̃µ : � � P1 O
O ξµ P0 � , standard arguments can be

employed to show that there exists µ
� �"� � such

that the full-order uncertain system has the desired
behaviour, provided µ � µ

�

.

Theorem 4. Suppose hypotheses H1-H4 are satis-
fied and µ � � 0 � µ � � is fixed. If ai and bi are de-
signed so that (10) and (11), respectively, hold, then
the uncertain system (1)-(2), with u

�
t � � c̃

�
x
�
t ���

(defined in (8)), is globally uniformly ultimately
bounded within every compact set A satisfying
Wµ � A , where Wµ is the compact set Wµ : �� �

x � y ��� � n � � � : vµ
�
x � y ��� r2

µ � and

rµ : � 1
2

η # 1
µ � ζ µ � � 4ηµ ε � ζ

2
µ � 1

2 � 3



In fact, the asymptotic behaviour of the solution of the
controlled full-order system tends to that of the con-
trolled reduced-order system, as seen in the following
corollary.

Corollary 5. For each µ � � 0 � µ � � , x
�,+ � is ultimately

bounded within every compact set B, with Eµ � B

and Eµ : � ( x � � n : v1
�
x � � r2

µ ) , on every solution�
x
�,+ ��� y �,+ ��� of (1-2) and, in addition, the ‘Hausdorff’

distance, d
�
Eµ � Eε � , between Eµ and Eε satisfies

lim
µ � 0

d
�
Eµ � Eε ��� 0 3
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