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Abstract.
The estimation of Hidden Markov Models has attracted a lot of attention recently, see results
of (Le Gland and Mevel, 2000), (Leroux, 1992), (Mevel and Finesso, 2000). The purpose of
this paper is to lay the foundation for a new approach for the analysis of the maximum-
likelihood estimation of HMM-s, using representation of HMM-s due to (Borkar, 1993).
Useful connection between the estimation theory of HMM-s and linear stochastic systems
is established via the theory of L-mixing processes developed in (Gerencsér, 1988).
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1. INTRODUCTION

Hidden Markov Models have become a basic tool for
modeling stochastic systems with a wide range of ap-
plicability in such diverse areas as robotics telecom-
munication, econometrics and protein research.

The estimation of the dynamic of a Hidden Markov
Model is a basic problem in applications. A key ele-
ment in statistical analysis of HMM-s is a strong law
of large numbers for the log-likelihood function. In
previous works stability theory of Markov chains and
the subadditive ergodic theorem were used (Le Gland
and Mevel, 2000), (Leroux, 1992), (Mevel and Fi-
nesso, 2000). Although these tools are very powerful,
they do not yield a LNN with guaranteed rate of con-
vergence. An alternative tool that can be widely used
in system identification is theory of

�
-mixing pro-

cesses. The relevance of this theory will be established
in this paper using a random-transformation repre-
sentation for Markov-processes (see (Kifer, 1986),
(Borkar, 1993) ). The advantage of this approach is
that, potentially a more precise characterization of the
estimation error-process can be obtained, which, in
turn, is crucial for the analysis of the performance of
adaptive prediction, see (Gerencsér, 1990).

2. HIDDEN MARKOV MODELS

Hidden Markov Models are based on a Markov chain�����
	
which describes the evolution of the state of a

system. Given a realized sequence of state variables���
��	
, observed variables

�����	
are conditionally in-

dependent, with the distribution of
��

depending on
the corresponding state

� �
. In many estimation prob-

lems the distribution of
 �

is assumed to belong to a
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parametric family and the state space is assumed to
finite. The original model was introduced in (Baum
and Petrie, 1966).

We are going to introduce the exact definition of the
Hidden Markov Modell � ���������� .
Definition 2.1. Let � ��������� be a finite space ho-
mogenous Markov chain. We can observe an �  � ����

process, where
�

is a Polish space. We assume
that the probability of observations are conditionally
independent� �  ��� �!� ��"#"�"�
$ �%�'&'( � ��� � � �#"�"#")�*$ � �+$,� ��-.0/ $

� �  . �%� . ( � . � � . �1"

Although the observed space can be any Polish space
we are going to talk about the discrete or Euclidean
cases only. Through the article we assume the ob-
served space

�
is discrete.

We will use the following notations� � �2 �%� 2 ( ��2 � ��23� � � � � 2 ( ��2'�4�� � �5( ��� �7618 � � �:9 � � � �%;�<0=!> � 6 . � � ���4"
An easy statement can be obtained

Proposition 2.1. If � ������
��� is a Hidden Markov pro-
cess, then ? � � � �*����
�
� is a Markov process

For further notation let @BA C be the transition matrix
of the unobserved Markov process � � � � ,DFE �3GIH � � � � �3GJHK�ML�(  � ��"#"#"�+$N�4"
(D �3GIHK� � D H�3GIH �#"#"�"1� D�O�3GIH�QPR" )

The filter process is generated by the Baum-equation
introduced in (Baum and Petrie, 1966)

D �3GIHK�7S �T@ �#9 �  � � D � �1" (1)

where
S

is the normalising operator to make D �3GIH a
probability vector.

In (Le Gland and Mevel, 2000) the following basic
theorem is proved:

Theorem 2.1. Let @UA C and let V and V3W are different
starting points, which are compatible with

�$
. ThenX D � �TV �ZY D � �[V]\ �#X_^%` �Qa Ycb3� � "

3. REPRESENTATION OF MARKOV PROCESS

The material of this section is based on (Borkar, 1993)
and (Bhattacharya and Waymire, 1999).

Let the state space d be discrete,
�fe d Y
g d the

space of mappings. Let assume, that
�

is measureable

with a probability measure h on it. Finally let i � be
i.i.d mappings according to h . In this case the process� $ � d ,

���3GJH � i �3GIH4�*� is Markov.

Conversely if we have a Markov-process with transi-
tion probabilities

� � �j��kl� (
�m� d �nk:��o �Td � ,

where
o �Td � is the algebra of Borel-sets, and

� � �I�#"p�
is a probability measure on

o �qd � -n) then we can find
its representation in the form

� � �j��kl� � h � i e i �r�k�	
with a measure h on

�� � �j��kl� � h � i e i �s�rk�	
see (Kifer, 1986) . The representation can be given in
a constructive way but it it should be noted that it is
not unique.

Next we are going to introduce the notion of Doeblin
condition (see (Bhattacharya and Waymire, 1999))

Definition 3.1. Given a Markov chain � ���
�t� d . If
for u �r� d and vxw o �qd � the inequality

� � �j� v �zyb3{ �[v � is true, where
b A|C and

{
probability measure

we say that the Doeblin condition is satisfied.

In fact
b

shows the weight of the i.i.d. factor of a
Markov chain. The following lemma (see (Bhattacharya
and Waymire, 1999)) shows the relation between
the Doeblin condition and the representation of the
Markov chain.

Lemma 3.1. The Doeblin condition is valid for an� ����� Markov chain if and only if there exists an i.i.d.
representation i � with

� �[i �r�~}J����y�b , where
}J�

is
the set of the constant mappings.

Proof. First let us assume that there exists a represen-
tation i � . In this case

� � �j� v � � � �[i H ��� v �~y� ��i H �|� v ( i H �M} � � � �[i H �|} � �ty hc�[v �Qb , whereh is the probability measure.

On the other hand assume that the Doeblin condition is
valid. In this case we can choose an

�
or a i mapping

with probability
b

or a Y�b respectively according to
{

.i is received from a representation of a Markov chain
with kernel function� � �j� v �ZYcb3{ �[v ��Qa Ycb3��� H � � � �j� v �1" �
Theorem 3.1. Let us assume that the Doeblin condi-
tion holds for a Markov chain

� �
. In this case there

exists an invariant distribution
S

, and the following
inequality is valid( � � � �j� v �ZY S �[v � ( ^ �Qa Y�b3� � u�v ��o �Td �1"
Proof. see in (Bhattacharya and Waymire, 1999)

�
Now let � ��������+� be a Hidden Markov process and
assume that the state space

�
and the observed space

are discretes.



Lemma 3.2. Let us assume that the Doebin condition
is valid for the Markov chain

� �
. In this case the

Doeblin condition is valid for � ������
�
� as well.

Proof. Let i � be the representation of the Markov
chain as in lemma (3.1). It means there exists a se-
quence of i.i.d. mappings i � such that

���!GIH �
i �3GIH4�*� with

� �[i ����}J����y:b A�C and i � is
independent from the starting point

� $
.

Let us look now at the observations. Let

� � �I��kl� be
the transition kernel of the original Markov chain

�
,

where
���B�

and
k w � . In this case just like in

the previous cases there is an h probability measure
on the space

��Y
g�
for which

� � �I��kl� � h �3��e�_�r�rk�	
.

With the notation
�� � �������

we get
���3GJH �

i �3GIH4�*� , and so
��!GIH � ���3GIH i �3GJH���� . So if i ���}I� � ��g��~� , then
��� i ���U}J� � ��g��� , and the

lemma is proved.
�

The Doeblin condition can be defined in more general
form.

Definition 3.2. If there exists h y a such that��� � �j� v ��y|b3{ �Tv � is valid for u ��� d and v�wo �Td � with some probability measure
{

then we say
that the general Doeblin condition is valid in order h .

Proposition 3.1. (Bhattacharya, Waymire) Let
���

be
a Markov chain. The general Doeblin condition is
valid if and only if there exists a sequence of i.i.d.
mappings i � such that

� �[i � "#"�" i Hs��}I����y�b andi � is the representation of
���

.

4. L-MIXING PROCESSES

Now we are going to introduce a class of processes
(see (Gerencsér, 1988)) called

�
-mixing processes,

which have proved to be extremely useful in the sta-
tistical theory of linear stochastic systems (see e.g.
(Gerencsér, 1990)). First of all we need the definition
of d -boundedness.

Definition 4.1. The real stochastic process � � ( � y C )
is d -bounded if for u�V y a

d��,�[� � �¡ �¢�£��¤ $+¥ H�¦ � ( � � ( �_§ ¨
Let ��© � � and �[© G� � be two sequences of monoton in-
creasing and monoton decreasing ª -algebras, respec-
tively such that © � and © G� are independent for u�� .

Definition 4.2. The stochastic process � � is
�

-mixing,
if it is d -bounded and with« � ��¬ � �� )¢�£��¤� ¥ H�¦ � ( � � Y ¥ � � �j( © G� �  � ( � �

} �[V � �:®¯ / $ « � ��¬ � § ¨ "
holds.

The following lemma is very useful to check whether
a process is

�
-mixing or not.

Lemma 4.1. Let
�

be a random variable with ¥ ( � ( � §¨ for u�V , °�w�© a ª -algebra and ± is a ° measur-
able random variable. In this case we have¥ H�¦ � ( �²Y ¥ � � ( ° � ( � ^%³ ¥ H)¦ � ( �²Y ± ( � "
The following lemma shows the importance of the

�
-

mixing processes.

Proposition 4.1. Let
�����´�

a Markov chain (
�

is a
discrete space), and assume that the Doeblin condition
is valid for h � a , further let µ e���Y�g·¶ be a
bounded, measureable function. In this case µ�� ����� is
an
�

-mixing process.

Proof. Let ��A¸h and � Y h � ¬ . Our aim is to
approximate the process µ�� ���F� . Let ¹ � � ª ��� $ � i 2teº ^ � 	 and ¹ G� � ª � i 2�e º y ��»�a 	 . First of
all we approximate

���
with

� G� \ � , where
� G� \ � �i �¼"#"�" i � GIH�� � and

� �
is a constant. Certainly

� G� \ �is ¹ G� measurable. It is easy to see that with the help
of the previous lemma the process µ�� � � � is � -mixing.�
Next we consider an extension of the original Markov
chain, similar to the extension of � � � � �!� � by � D � �
Now let

���
be a Markov chain on

�
and the Doeblin

condition holds with h � a . Let ½ e
�¿¾ÁÀÂY�g�À
a function, where

À
is a normal space. Let us look at

the recursion Ã �3GIH � ½Z� �
�5� Ã �F� ( Ã $ �7Ä , ��� arbitrary)
and denote the solution of it by Ã � � Ä � . First of all we
introduce a definition for exponential stability:

Definition 4.3. The mapping ½Z� �I� Ã � is uniformly ex-
ponential stable if for every sequence

������	 Ã � is
bounded (independent from

������	
) andX Ã � � Ä �ZY Ã � � Ä \ ��X�^%` �Qa Y�b3� � X Ä Y Ä \ X,�

where
`_��b AfC are independent from the sequence��� � 	

.

We notice that we get a special case if
À

is the
º

dimensional Euclidean space and
���

is a
º ¾ º

matrix,
in this case the recursion is ? �3GIH � v � ? � , where? $ �¸Ä and v ���ÆÅ . The question how to chooseÅ

to get a uniformly exponential stable process was
answered nowadays.

Theorem 4.1. Consider the process
�����
� ? ��	 , where? �3GIH � ½Z� ����� ? ���1� ? $ �·Ä , and

� $ � ? $ are
independent from

� i � 	 ( � y a ) (
� i � 	 is ob-

tained from the representation of the Markov chain



� �
). Let µ�� �j� Ã � be a bounded, measurable Lipschitz-

continuous function in Ã . In this case Ç �´� µ�� � � � Ã � �
is an

�
-mixing process.

Proof. Let ��A�h , ¬ � � Y h , © � � © G� , and
� G� \
�

be the same as before. Let the approximation of ? �
be the following: ? G24GJH \

� � ½Z� � G2 \
� � ? G2 \

� �
, where? G� \

� � Ã � is constant. Certainly, in this case ? G� \
�

is© G� measurable.

Let hsW � � YÆÈ  É�Ê . The probability that there is no
coupling until hrW is small (in other words there is
no constant mapping in the representation), because� � � G�zË \

�ÍÌ� � � Ë ��^ �Qa Y%b3��Î�Ï ÐNÑ . Let us denote the
event, when there is no coupling until � by

9
, so9 w �#Ò e·� G� \

� Ì� ����	
Now let us look at the other case, namely

9�Ó
.In this

case
� G2 \
� � � 2

for all
º y hsW .

Consider now the following two processes:? G24GJH \ � � ½Z� � 2 � ?
G2 \ � � with starting point ? � Ë \ �? 24GIH � ½Z� ��2]� ? 23� with starting point ? � Ë

Using the lemma 4.1 it is easy to see the statement of
the theorem.

�
At the end let us apply these general results for our
Hidden Markov Model. The state space

�
is finite and

for the transition matrix @Ô@¿A²C as we mentioned
before. In this case the Doeblin condition is valid for� �

and also for the pair � � � �� � � , where
 � � �

is
an arbitrary observable space (Polish space). With the
notation D .� � � � � �´�BÕ1(  � � H �#"�"#"1��+$,� we have the
Baum-equationD �!GIHK� S �q@ P 9 �  � � D � � � ½Z�  � � D � �
.

Using the theorem 2.1 in (Le Gland and Mevel, 2000)
we get

Proposition 4.2. If @ÖA�C , then � ����� � �
� D ��� is an
�

-
mixing process.

Let us now turn to the maximum likelihood estimation
of HMM-s. Write

×ÙØ > � � �!� � H ��"#"�" � $!��Ú'� �� � H¯2 / H ×0Ø >
� � �'2F( �'2 � H �#"�"#" � $!��Ú'� » ×0Ø > � � � $'�)Ú'�1�

and ×0Ø > � � � 2 ( � 2 � H,��"#"�" � $ ��Ú'� �¯ 8 ×0Ø >R6 8 � �]2 �
� � � ( �'2 � H �#"�"#"�� � $3��Ú'� �

¯ 8 ×ÙØ >R6 8 � �'2 � D 8 2 "
Write µ�� � � D � � ¯ 8 ×0Ø >Û648 � � � D 8 " (2)

First we ask, under what condition does the limit

aÀ ×ÙØ > � � ����#"�"#"#�� $ ��ÜÝ� � aÀ O¯2 / H µ�� � 2]� D 23�
exist. Although Proposition 4.1 is not applicable sinceµ is not bounded extension to a class of unbounded
function is possible. Ultimately it is hoped that an
extension to µ given by (2) is possible, and then the
argument of (Gerencsér, 1992) are applicable. Thus it
is conjectured and strongly supported that we have:

let ÞÚ O be the ML estimate of
Ú �

, then under suitable
technical conditions

ÞÚ O Y�Ú ���¡ß¼à � À � H �1Y
Y � ¶ � � � H aÀ O¯� / HÁáá Ú

×0Ø > � �  �5(  � � H �#"�"#"1��+$]�)Ú � �4�
where

¶ �
is the Fisher-information matrix.

A key point here is that the error term is
ß à � À � H � ,

which ensures that all limit theorems, that are known
for the dominant term, which is a martingale, are also
valid for ÞÚ O Y�Ú � .

5. CONCLUSION

We have established a link between the statistical the-
ory of Hidden Markov Models and linear stochastic
systems via the concept of

�
-mixing processes. This

has been made possible by using a random transfor-
mation representation of HMM-s. To demonstrate the
usefulness of this connection a very precise charac-
terization of the error of the parameter-estimations of
HMM-s has been formulated, as a strongly supported
conjecture.
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