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Abstract: The method “equivalent linearization” of nonlinear conflict–controlled 
systems and a nonlinear game problem of reorientation of an asymmetric rigid body 
under uncontrollable disturbances and uncertain parameters are considered. Direct 
estimates of disturbance domain that is admissible for reorientation and depend on the 
given constraints imposed on the controls and the initial position of the body are found. 
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1. INTRODUCTION 

 
The approach (Vorotnikov, 1994a, 1997, 1998) to the 
problem of transferring a non-linear dynamical 
system, subject to perturbations, to the null 
equilibrium position in finite time by means of 
bounded control is considered. Only the levels of 
uncontrollable perturbations are known, and are not 
assumed to be small. This approach allows one to 
conduct "an equivalent linearization" of the initial 
nonlinear problem and obtain its solution on the basis 
of the linear game theory (Krasovskii, 1970). Controls 
are nonlinear piecewise continuous functions of phase 
variables and also involve parameters which are 
refined for each particular initial position of the 
system. This is performed by iteratively checking the 
prescribed levels of controls over the set of possible 
states of auxiliary linear conflict-controlled systems. 
Conceptually, the approach is close to decomposition 
methods (Chernousko, 1990; Siljak, 1990) as well as 
to methods of feedback  linearization of nonlinear 
controlled systems (Isidori, 1985; Nijmeijer and van 
der Schaft, 1990; Vorotnikov, 1991). 
 
Within the framework of the approach proposed two 
methods for solving of nonlinear reorientation 
problem  of an asymmetric solid body subjected  to 
uncontrollable  interferences was developed in 
Vorotnikov (1994b, 1995, 1996, 1997, 1998).  The 
first one (Vorotnikov, 1994b, 1996,1998) uses the 
direct estimations of levels of "auxiliary interferences" 
in the auxiliary linear systems. The second method 
(Vorotnikov, 1995, 1998) is based on the principle of 
"assignment and subsequent confirmation" (ASC 
principle) of levels of such interferences, which was 
introduced in Vorotnikov (1995). 
 
The structure of controls  is simpler if the second 

variant is used. In particular, they involve no 
components compensating gyroscopic moments of a 
body. This is achieved at the sacrifice of the simplicity 
of the structure of "auxiliary interferences" in 
emerging linear systems. 
 
The first method also allows one to consider the game 
problem of the passage of a body through a prescribed 
angular position in a three-dimensional inertial space 
(Vorotnikov, 1998, 1999a). Under the same restriction 
imposed on control, the reorientation time in the case 
is substantially shorter than that in reorientation in the 
equilibrium state. 
 
These methods were further developed in Vorotnikov 
(1999b). Direct estimations of the levels of 
interferences which are admissible in reorientation and 
vary with restrictions imposed on controls have been 
found.  Such estimates are useful at the stage of 
evaluating the possibility of using the controls to 
ensure the required reorientation.  If these estimates 
hold with a "reserve", then the guaranteed 
reorientation time can further be found (the second 
stage of solving) with iteration algorithms 
(Vorotnikov, 1994b, 1995, 1996, 1997, 1998). 
 
The estimates for admissible levels of interferences 
are obtained at component-wise restrictions imposed 
on the vector of controls, which determine a 
rectangular domain of admissible controls. Such 
restrictions correspond to three pairs of fixed (with 
respect to the axes linked to the body) jets. In distin-
ction to these results in Vorotnikov (1999c) the 
domain of admissible controls is bounded by an 
ellipsoid and in Vorotnikov (2001) by an sphere.  
 
At last, the method which is based on the ASC-
principle have been modified in Vorotnikov (2000) for 
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the case when the solid have uncertain parameters (the 
principal central moments of inertia). 
 
The approach to nonlinear game problem of 
reorientation seems to be constructive because the 
strict solving of nonlinear game problems presents 
considerable difficulties. The control obtained are 
robust. They ensure correct reorientation of a body (by 
one spatial turn) in a finite time. In connection with 
mention should be made of the problem of the motion 
control of the airplane subjected to interferences: 
windshear and others (Miele, et al., 1986; Botkin, et 
al., 1989; Leitmann and Pandey, 1991; Bulirsch,  et 
al., 1991). 
 
In this paper this approach is further developed in 
following directions: 
 
1) the method which is based  on the  ASC-principle is 
simplified and a estimate for reorientation time is 
obtained; 
 
2) the case of a relay controls (bang-bang controls) is 
considered; 
 
3) a more common case of solid parameters 
uncertainty is discussed. 

 
 

2. STATEMENT OF THE PROBLEM 
 

Consider Euler dynamic equations 
 

11323211 )( vuxxAAxA ++−=D ,  

22311322 )( vuxxAAxA ++−=D , (1) 

33212133 )( vuxxAAxA ++−=D ,  
 
which describe  the angular notion of a solid body 
with respect to its center of mass. Here, ix  are the 
projection of angular velocity on major central axes of 
inertia of the body, iu  are the projection of controlling 
moments on the same axes, and iA are the principal 
central moments of inertia. Moments iv characterize 
the external forces and uncontrolled disturbances. 
Here and below, 3,1=i ; and summation in i from 1 
to 3 is assumed. Let us denote by ux,  and v  the 
vectors that consist, respectively, of ix , iu  and iv . 
 
In addition to (1), let us consider the kinematic 
equations that determine the orientation of the body in 
Rodriges-Hamilton variables 
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Variables 0λ , iλ  that constitute the vector λ  obey the 
equation 
 

+2
0λ 12 =∑ iλ . (3) 

 
Controls K∈u  are selected within the class K of 
piecewise continuous functions ),;,( 00 λxλxuu =  

( 00 ,λx  – initial states) with constraints 
 

.0const  || >=≤ iiu α  (4) 
 
Disturbances 1K∈v  can be realized as arbitrary 
piecewise continuous functions ][tvv =  under the 
constraints 
 

.0const  || >=≤ iiv β  (5) 
 
Problem 1. Find the controls K∈u  that for 
arbitrary 1K∈v  transfer the body in finite time from 

initial state ( ) 0
0 λλ =t  to a prescribed ( ) 1

1 λλ =t  one. 
Both of these are rest states: 
 

( ) ( ) 0xxxx ==== 1
1

0
0 tt . 

 
The time moment 01 tt > is not fixed. Without losing 

the generality, we assume ( )0,0,0,11 =λ   
 
 

3. THE FIRST METHOD FOR SOLVING 
PROBLEM 1 

 
Controls 
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are implied in Vorotnikov (1994b, 1996, 1998) for 
solving Problem 1. (Only one is explicitly written; the 
rest  are obtained by a cyclic permutation of indices 
1→ 2→ 3.) 
 
As the result, a linear conflict-controlled system 

 
**

..

iii vu +=λ  
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can be constructed where 
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Let us interpret *

iu  and *
iv  as auxiliary controls *

iu  

and disturbances *
iv , respectively. 

 



We propose using the game theory solutions of the 
linear system (7) as a basis for constructing a solution 
of original nonlinear Problem 1. Parameters of the 
form, i.e., auxiliary control *

iu , are determined from 
solutions of corresponding game theory problems. 
 
Using the inequalities Cauchy-Schwarz, under (8) we 
obtain following expressions 
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−
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Let us solve the problem of fastest possible transfer of 
the system (7) to position 

0
.

== ii λλ  (10) 

 
by means of auxiliary controls *

iu , and under arbitrary 

admissible *
iv . 

 
We will interpret this problem as differential game, in 
which a player controls *

iu  and tries to decrease the 

transition time iτ , while the "opponent" controls *
iv  

and attempts to increase iτ  
 

For the problem to be solvable, the admissible levels 
of *

iu  must exceed the levels of *
iv . We introduce the 

corresponding constraints as 
 

,  || **
iiu α≤ ,  || ***

iiiiv αρβ =≤   10 << iρ . (11) 
 
The procedure by which the level *

iα  are assigned is 
considered below. Here, we assume the levels fixed, 
so that conditions (11) are net. 

 
The game theory problem for (7) under constraints 
(11) reduces (Krasovskii, 1970) to the fastest response 
problem for systems 
 

( ) ,  1 *
..

iii uρλ −=        . || **
iiu α≤  (12) 

 
The boundary conditions are the same as for (7). 
System (12) result from (7) under condition 

**
iii uv ρ−= , which are the "worst" *

iv  - optimal 
control strategy of opponent. 

 
The solution of fastest  response problem for systems 
(12) is well-known. Thereby the value 
 

( ),max iττ =   ( ) 2
1
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 −=

−
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determines the guaranteed  time τ , after which  the 
position (10) can be reached. If ,**

iii uv ρ−≠  the 
transition time to (10) does not exceed τ  and a sliding 

regimes of motions along the switching curves for *
iu  

take place. 
 
Algorithm 1 for solving Problem 1.   
1) Selecting the form (6) for controls iu . 

2) Estimation of *
iv ; see (9).  

3) The preliminary choice of *
iα . This predetermines 

the values iτ .  
4) Verification of the constraints (4) on iu , along the 
trajectories of linear systems (7). In this case we 
having in mind the relations 
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If inequalities (4) do not hold or, conversely, there is a 
wide margin in their validity, we should continue the 
search fox appropriate τ . Otherwise, it is the choice 
of τ  that determines the guaranteed response time. As 
result, we obtain an iterative algorithm for Problem 1.  

 
Let us find the restriction which must be imposed on 

ii βα , and 0
0λ , to ensure the possibility of solving 

Problem 1 by means of controls (6). Introduce the 
notations  

( ),min iΓ=Γ    ( ) ( ) .1 12
1

2020
0

−
−

−





 +=Γ iiii Aαλλ  

 
Theorem 1 (Vorotnikov, 1999b). Let the admissible 
levels iβ  of disturbances iv  be evaluated by the 
inequality 

( ) .
3
32

1
21 Γ<




∑

−
ii Aβ  (14) 

Then Problem 1 can be solved by means of controls 
(6) satisfying restriction (4) given. 
 
 

4. THE SECOND METHOD FOR SOLVING 
PROBLEM 1(WITH THE USE OF THE ASC 

PRINCIPLE) 
 
The above-proposed method have been modified in 
Vorotnikov (1995, 1997, 1998) toward obtaining 
controls that are simpler then (8) and, consequently, 
more convenient in practice. Namely, controls 
(Vorotnikov, 1995, 1997, 1998) 
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are employed for solving Problem 1 as well. In this 
case, auxiliary linear system (7), in which *

iv  have 
the form 
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is extracted from closed system (1)-(3) and (15). 
 
Direct estimations of the form (16) present difficulties. 
However, it is possible to obtain the solution to 
Problem 1 by the following algorithm. 

 
Algorithm 2 for solving Problem 1. 
1) Selecting the form (15) for controls iu . 
2) Preliminary choice of guaranteed reorientation 
time τ  and assignment of levels *

iβ . This 

predetermines the values .,*
ii ρα  With control time 

equalized in each iλ  so that ττ =i  we obtain 

+= **
ii βα 20 ||4 −τλi . 

3) Checking the validity of inequalities ** || iiv β≤  in 
the state set of systems (7).  
4) Verification of the constraints (4) on iu  along the 
trajectories of linear systems (7). 
 
If inequalities (4) do not hold or, conversely, there is a 
wide margin in their validity, we should continue the 
search for appropriate τ  and *

iβ . Otherwise, it is the 
choice of τ  that determines the guaranteed response 
time. 

 
Theorem 2 (Vorotnikov, 1999b). Let the admissible 
levels iβ  of disturbances iv  be evaluated by the 
inequality (14). Then Problem 1 can be solved by 
means of controls (15) satisfying restriction (4) given. 
 
 
5. THE CASE, WHICH DOMAIN OF ADMISSIBLE 

CONTROLS IS BOUNDED BY AN ELLIPSOID 
 
In this subsection, in distinction (4),(5) , we suppose 
 

,* α≤u ( )0const,* >=≤ βαβv , (17) 

 
where 
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Theorem 3 (Vorotnikov, 1999c). Let the admissible 
domain of disturbances  iv  be evaluated by the 
inequality 

.||
3
3 0

0 αλβ <  (18) 

 
Then Problem 1 can be solved by means of controls 
(6) or (15) satisfying restriction α≤*u  given. 
 

Let us note that it is possible restrictions of the type 
(17) to replace a restrictions in the form (Vorotnikov, 
2001) 
 

,a≤u ( )0const, >=≤ babv , (19) 

where 

[ ] 2
12

∑= iuu ,     [ ] 2
12

∑= ivv . 
 

 
In this case we have 
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6. DISCUSSION OF THE PROPOSED  
METHODS 

 
1. The construction (6) and (15) is just of possible 
constructions 
 

( ) ,3,0  , ,,1 *)( == jfu j
i

j
j uλx

λ
 (20) 

 
which enable one to select auxiliary linear control 
systems of the type (7) from the closed system (1)-(3), 
(20) for a specific choice of )( j

if . The set of indices 
in (7) depends on the index of λ  in the denominator 
in (20). The index 0=j  corresponds to 

  ,3,1=i ,3,2,01 =→= ij  e.t.c. A similar "arsenal" 
of techniques based on (20) enables one, in principle, 
to solve the reorientation problems for any boundary 
conditions. Taking this into account, for the case 

( )0,0,0,11 =λ  under consideration we can, without 

loss of generality, assume that 2
10

0 ≥λ . 

 
2. Structure (6) and (15) of controls contains the factor 

1
0
−λ , that within a formal approach gives rise to a 

"singularity". However, in the course of control, 
]1 |,[| 0

00 λλ ∈ . As a consequence, the singularity 
mentioned above does not arise. 

 
 

7. A MODIFICATION OF THE SECOND METHOD 
OF SOLVING FOR PROBLEM 1 

 
Conditions (14) and (18) guarantees the solution of 
Problem 1 by using the controls (6) and (15) for 
sufficiently large (although, finite) value of τ . 
Assume, for example, the condition (18) holds with a 
reserve, i.e., 

∆−= αλβ ||
3
3 0

0 , (21) 

where 0>∆  is certain number. 
 



In this case the method of solving for Problem 1, 
which is based on the ASC-principle, can be 
simplified. 
 
Algorithm 3 for solving Problem 1. 
1) Selecting the from (15) for controls iu . 

2) The choice *
iα  in the form 

αλαα ||
6
3 0

0
** ==i , 

which guarantee, that restriction α≤*u  will be 
fulfilled. 
3) Preliminary choice of guaranteed reorientation time 

iττ = , which predetermines the values *
iβ . 

4) Checking the validity of inequalities **
iiv β≤  in 

the state set of systems (7) for *
iv  of the form (16). 

 
If inequalities **

iiv β≤  do not hold or, conversely, 

there is a wide margin in their validity, we should 
continue the search for appropriate τ . Otherwise, it is 
the choice of τ  that determines the guaranteed 
response time. 
 
It is possible to obtain a estimation for value of τ . 
 
Theorem 4. The estimation of the τ  have the form 

1** 22 −∆=≤ λττ , 
where 
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8. BANG-BANG CONTROLS 
 

In distinction to subsections 3-7, let us obtain the 
solving for Problem 1 by means of a relay controls iu  
(bang-bang controls). 
 
In this case controls 
 

*2 iii uAu =  (22) 
 
are considered. A linear conflict-controlled system of 
the type (7) can be constructed, if 
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1101

*
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and ASC-principle is used. Let restrictions on iu , and 

iv , have the form (4), (5). 
 

( ),min **
iΓ=Γ   1* −=Γ iii Aα . 

Theorem 5. Let the admissible domain of 
disturbances iv  be evaluated by the inequality 
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where 

( ) ( )200
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Then Problem 1 can be solved by means of controls 
(22) satisfying restriction (4) given. 
 
The construction (6) and (15) is just of possible 
constructions 
 

*2 jji uAu = ,  3,1, =ji  
 
which enable one, without loss  of generality, assume 
that 2

10
0 ≥λ  in the case ( )0,0,0,11 =λ  under 

consideration. 
 
In more details these results see in Vorotnikov 
(submitted for publication). 
 

 
9. REORIENTATION UNDER UNCERTAIN 

PARAMETERS OF SOLID 
 

Let the principal central moments of inertia iA  are 
constants, but vary within the ranges 
 

+− ≤≤ iii AAA  (23) 
 
where +−

ii AA ,  a given number. The major central 
axes of inertia are the same in any cases (23). 
 
Suppose following constraints under iu  and iv  

,** α≤u ( ),0const,** >=≤ βαβv  
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Under (23) we have −− += iiii AAA δ , where 

[ ] ,0 +∈ ii δδ , ( )( ) 1
1

−=
−−++

iii AAδ . Introduce the 

notation ( ) 1* 1max −+= ii δδδ  and consider the 
controls 
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Theorem 6 (Vorotnikov, 2000). Let the admissible  
domain of disturbances iv  be evaluated by the 
inequality 

.||
3
3 *0

0 αδλβ













−<  (25) 

 
Then Problem 1 can be solved by means of controls 
(24) satisfying restriction α≤**u  given. 
 
Inequality (25) is applicable if .033 *0

0 >− δλ  

Without any loss of generality, we can assume that 

2
10

0 ≥λ ; hence, the values of iδ  vary within the 

range ( ) .4051,03630
1

=−<≤
−

iδ  
 
A more common case of parameters uncertainty 
(when not only the moments of inertia but the 
principal central axes of inertia) are inaccurately 
specified, see in Vorotnikov and Rumyantsev (2001), 
Vorotnikov (2002). 
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