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Abstract: The aim of this paper is to establish a dependable approach to the identification
of continuous-time models from sampled data. Some equation-error structure-based methods
of the CONTSID (CONtinuous-Time System IDentification) Matlab toolbox that directly
estimate continuous-time transfer function models from discrete-time data are compared
with some classical discrete-time model identification techniques of the Matlab System
IDentification (SID) toolbox. CONTSID is equipped with tools based on the developments
over the past three decades and is noncommercial. The results of extensive numerical
experiments presented in this paper suggest that direct approaches, that is, those in which
continuous-time models are directly identified are superior to the indirect methods in which
discrete-time models are first identified and then transformed into continuous-time models.
It is also clear from this investigation that for identification problems in a wider context, that
is, with choice between discrete-time and continuous-time models, it is desirable to have a
set of tools, whose dependability is greatly enhanced by unifying all relevant approaches.
Copyright c�2002 IFAC
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1. INTRODUCTION

Identification of continuous-time (CT) models is a
problem of considerable importance in various dis-
ciplines such as economics, control, fault detection
and signal processing. Early efforts in identifying
CT linear time-invariant (LTI) systems began with
CT models in their native continuous time domain.
Subsequently, rapid developments in digital data sys-
tems and computers caused a major shift in the ap-
proaches with a go-completely-digital trend. Discrete-
time (DT) became the working domain in the field of
system identification and identification of DT models
from sampled input/output data became the main ap-
proach. The identification techniques for DT models

with discrete-time data are well documented (Ljung,
1999), (Söderström and Stoica, 1989) and widely ap-
plied. However, the last three decades have witnessed
considerable development in CT approaches to system
identification from sampled data (see (Pintelon et al.,
2000), (Söderström and Mossberg, 2000), (Bastogne
et al., 2001) for very recent references).

There are two ways to obtain a CT model. An indi-
rect way, suggested by the DT model identification
methodology is to estimate from sampled data a DT
model first and then convert it into a CT model. A
direct approach, suggested by the CT model identifi-
cation methodology, consists in identifying directly a
CT model from the discrete-time data. The basic pro-
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blem of the direct approach is in handling of the non-
measurable time-derivatives. Many methods to cir-
cumvent the need to reconstruct these time-derivatives
have been devised. A comprehensive survey of these
techniques has been first given by (Young, 1981) and
then by (Unbehauen and Rao, 1987) and (Unbehauen
and Rao, 1990). A book has also been devoted to these
so-called ’direct’ methods (Sinha and Rao, 1991). The
CONtinuous-Time System IDentification (CONTSID)
toolbox has been developed on the basis of these me-
thods (Garnier and Mensler, 2000).

This paper examines the direct approaches included
in the non-commercial Matlab CONTSID toolbox and
indirect approaches available in the commercial Mat-
lab System IDentification (SID) toolbox in the light
of the results of an extensive simulation experiment in
which each approach is subjected to a set of Monte
Carlo simulations. The methods are assessed with re-
ference to their performance in terms of accuracy and
most importantly dependability. The latter criterion
refers to ’stability rate’ which means the number of
runs that yield a stable model.

The paper is organized in the following way. Sec-
tion 2 briefly reviews direct and indirect approaches
available to estimate a continuous-time model from
sampled data. Section 3 outlines the CT and DT model
identification methods that are considered in this in-
vestigation. Section 4 describes the simulation con-
ditions and section 5 summarizes and compares the
results. Discussions and conclusions are given in sec-
tion 6.

2. RELEVANCE OF CONTSID TOOLBOX
METHODS

Much has been written in the literature on the rele-
vance of CT models, see for instance (Unbehauen and
Rao, 1990), (Rao and Sinha, 1991). As previously
mentioned, the existing methods to determine a CT
model from sampled data are usually classified into
two broad categories: direct and indirect approaches.

In indirect approaches, a DT model is first identified.
The desired CT model parameters are then obtained by
transferring the DT model back to the CT. A clear ad-
vantage of the indirect methods is that well understood
identification methods can be applied (Söderström and
Stoica, 1989), (Ljung, 1999). Examples of such me-
thods are the maximum likelihood and prediction er-
ror methods, which are known to give consistent and
statistically efficient estimates under very general con-
ditions. However, these approaches often require com-
putationally costly minimization algorithms, without
even guaranteeing convergence. Moreover, it is well
known that, with rapidly sampled data, the DT model
identification methods encounter problems due to nu-
merical ill-conditioning, as the poles of the DT model
cluster around the point � � � (Sinha and Rao, 1991).
This also shows that conventional DT methods are

not in harmony with the CT spirit, as in the limit of
reduced sampling period they do not converge to the
corresponding CT model. A way to partly overcome
this problem is to use, for example, the Æ-operator
(Middleton and Goodwin, 1990). Further, the question
of parameter translation between a DT description and
a CT representation is non-trivial. The zeros of the DT
model are first not as easily translatable to CT equi-
valents as the poles (Aström et al., 1984). Secondly,
due to the discrete nature of the measurements they do
not contain all the information about the CT signals.
To describe the signals between the sampling instants
some additional assumptions have to be made, for
example, assuming that the excitation signal is cons-
tant between the sampling intervals (zero-order hold
assumption). Violation of these assumptions may lead
to severe estimation errors (Schoukens et al., 1994).
And finally, non-uniformly sampled data cannot be
handled directly.

On the other hand, direct CT model identification
approaches available in the CONTSID toolbox are
particularly well suited in the case of:

� multi-scale systems;
� fast sampled data;
� non-uniformly sampled data.

Two additional advantages can also be mentioned:

� they have an implicit pre-filtering stage. Data
pre-filtering is indeed known to be an important
prerequisite and can be considered as implicit in
the direct approaches.

� they are not sensitive to the input type (ZOH or
bandlimited assumption).

Some of these advantages of direct approaches, which
can be considered as weaknesses for indirect methods,
will be illustrated in the numerical simulation study
presented below.

3. COMPARED METHODS

3.1 Direct methods included in the CONTSID toolbox

These methods usually work in two steps. The first
step arises out of the input/output time-derivative mea-
surement problem. The need to generate these time-
derivatives is eliminated by applying linear transfor-
mations to the sampled input/output data. In the se-
cond step, the CT model parameters are estimated
using some parameter estimation scheme. The pre-
filtering feature may be characterized by three types
of approaches : the methods of linear filters, the me-
thods of modulating functions and the integral me-
thods. Three linear transformations belonging to each
class have been selected here, namely the Generalized
Poisson Moment Functionals (GPMF) approach, the
Fourier Modulating Function (FMF) method and the
Linear Integral Filter (LIF) technique. The three cho-
sen linear transformations are coupled with an instru-



mental variable (IV) method using an auxiliary model
(Young, 1981). The routines denoted as IVGPMF,
IVFMF and IVLIF, are available in the Matlab CON-
TSID toolbox (Garnier and Mensler, 2000).

3.2 Indirect methods considered from the SID toolbox

Version 5 of the SID toolbox was used. The chosen
CONTSID toolbox techniques will be compared with
the indirect approach using four classical DT model
identification techniques of the Matlab System Iden-
tification toolbox: IV4, N4SID, OE and PEM . Note
that in the case of the PEM algorithm, an ARMA noise
model of order 2 is considered.

Note also that the SID toolbox includes the possibility
of estimating directly CT model from sampled data.
The algorithm is restricted to the PEM routine which
can be used to determine a CT canonical state-space
model. In the case of band-limited input signal, the
inter-sample behavior can be set to ’FOH’, which can
improve the model estimation (see IDDEMO11 in the
SID toolbox demonstration program for further infor-
mation). Routines are also available in the CONTSID
toolbox to estimate directly state-space models (see
IDCDEMO demonstration program).

4. SIMULATION CONDITIONS

4.1 System used for the simulation study

The system considered is a linear fourth-order non-
minimum phase system with complex poles whose
Laplace transfer function is
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with � � �, � � �s, ���� � �� rad/s, �� � ���,
���� � �	
���, �� � ����.

This is an interesting system from two points of view.
It first can be considered as a multi-scale system
since it has one fast oscillatory mode with relative
damping ���� and one slow oscillatory mode with
relative damping ���. Secondly, the system has a zero
in the right half plane. The Bode plot of the system is
displayed in figure (1).

4.2 Configuration of the trials

In order to study the sensitivity of direct and indirect
approaches to the sampling period ��, noise level, and
input type, three different parameters were used:

�� � �over-sampling� ”normal”�

noise � �deterministic� white (�� dB)�

input � �PRBS�Multi-sine�

This leads to several trials whose features are summa-
rized in table 1.

4.3 Sampling period

Assuming that the frequency bandwidth of interest is
limited to ����, two different sampling periods may
be considered. The choice of �� � �� ms corresponds
to what has been called a ”normal sampling” choice
for DT model identification which represents

�
�

�

�
of

the Shannon maximum sampling period
�

�
����

�
. In

the over-sampling case recommended for CT model
identification, the sampling time is set to �� � ��
ms, which represents

�
�

��

�
of the Shannon maximum

sampling period.

4.4 Input signals

In order to investigate the sensitivity to the input
type of CT and DT model identification methods,
two signals are considered: a PRBS (Pseudo-Random
Binary Signal) of maximum length, respecting the
zero-order hold assumption and multi-sine signals,
respecting the band-limited assumption. These signals
are generated in order to excite the system in its
frequency bandwidth.
Multi-sine. The input signal is chosen as the following
sum of five sinusoidal signals:

���� � ������ � ��������� � ��������� � �������� � ���������
(2)

The observation time is set to � � 	��. Because of
the two sampling periods, two multi-sine signals are
generated of 7500 and 1250 points respectively.
PRBS of maximum length. The characteristics of the
signal whose amplitude switches between�� and ��,
are the following: the number of stages of the shift
register is set to � � ��, p= 7, (where p is such that
the PRBS signal is constant over intervals of length
p), which makes a number of points � � 	�
� in the
case of over-sampling while � � � and � � � which
makes a number of points � � ���� in the case of
”normal” sampling.

4.5 Stochastic cases

Most of the runs have been conducted using noisy
output by adding a zero-mean white gaussian noise
signal ����� to the noise-free output ������ (with �� �
���) such that



	� input noise name

Influence
of 	�

over-
sampling

Multi-
sine

noise-free trial1

10 dB trial2

”normal”
sampling

noise-free trial3

10 dB trial4

Influence
of the
input
type

over-
sampling

PRBS
noise-free trial8

10 dB trial9

Multi-
sine

noise-free trial1

10 dB trial2

”normal”
sampling

PRBS
noise-free trial10

10 dB trial11

Multi-
sine

noise-free trial3

10 dB trial4

Table 1. Features of the trials
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Monte Carlo simulations with 100 experiments are
used for a Signal-to-Noise Ratio (SNR in dB) equals
to �� dB. The SNR is defined as

��� � �����
�
�
��

� (4)

where �� and �
� represent the average power of the
additive noise on the system output and of the noise-
free output respectively.

In the noise-free case, the three linear transformations
are coupled with a simple least-squares algorithm
while in the noisy case, they are associated with an
IV algorithm based on an auxiliary model.

4.6 Criteria

The criteria selected for the performance evaluation
are the mean average square error (���) of the
output and the empirical standard deviation (��) of
the average square error (��) of the output defined by
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where �� and �� represent the noise-free output of
the system and the simulated output of the estimated
model respectively. Simulation results, with these two
indices being representative of the quality of perfor-
mance, will be presented here. A third performance

index will also be considered. It represents the ”stabil-
ity rate” of the methods, that is, the number of stable
models ������� estimated during the Monte Carlo sim-
ulations. Note that estimated unstable models were not
used to compute the above performance indices.

4.7 CT model structure selection

Whatever the input type, a CT model of the following
form was considered (� is the differential operator):
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4.8 DT model structure selection

In the case of the multi-sine input signal which is
a band-limited excitation signal, a DT model of the
following form was considered ( �� is the backward
shift operator):
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In the case of the PRBS input signal respecting the
ZOH assumption, the form of the DT model to be
estimated is the following:
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Note also that in the case of the four DT model
identification methods, the MSE of the output has
been computed from the estimated DT model and not
from the CT model converted from the estimated DT
model.

4.9 CT method user parameter choice

The choice of the user parameters for the three CT
model identification methods has to be exercised a
priori. To analyse its influence, Monte Carlo simula-
tions of 100 experiments were carried out in which the
value of the design parameters were varied in the case
of trial2 and trial4 simulation conditions. The value
which minimized the MSE for the output for each
technique was retained. For the minimal-order GPMF
approach, the user parameter ! which is the cut-off
frequency of the identical first order filter element
�

���
, has been chosen to ���� rad/s (with " � !).

The user parameter of the FMF method has been set
to ��� � ��	
���. The user parameter of the LIF
method, which depends upon the sampling interval of
the data, has been chosen to � � �� when �� � ����s
and � � � when �� � ����s.



5. COMPARATIVE SIMULATION RESULTS

5.1 Performance evaluation in the time-domain

The simulation results are displayed in table 3. It may
be noticed from the table that in a noise-free context
(trials 1, 3, 8 and 10), all methods accurately identify
the system, even if the SE are higher in the case of
CONTSID toolbox approaches. This is due to errors
introduced in the implementation stage of all direct
approaches which need numerical approximations of
either integral or analog filtering. These errors can be
however controlled with the sampling time.

5.1.1. Influence of the sampling periodResults ob-
tained in case of trials 2 and 9 in table 3 can be used
to study the effects of over-sampling. The study of
the stability rate for the different techniques points
out to the clear difference between direct and indirect
methods in the case of over-sampling. Not only the
DT methods more often lead to unstable models (this
is especially true for IV4 and N4SID algorithms), but
also when the identified model is stable, its behavior
is significantly different from that of the the actual
system (��� is higher). These results confirm the
fact that while CT model identification methods are
very efficient here, indirect methods using DT model
identification techniques may encounter problems due
to numerical ill-conditioning effects in the case of
rapidly sampled data.

5.1.2. Influence of the input type In case of multi-
sine input (trials 2 and 4), as expected, CT model
identification methods perform much better than DT
model identification techniques. When the conditions
of experiments become more favourable to DT model
identification techniques (that is for a PRBS input
and �� � ����� - see results for trial11), the diffe-
rence in the performance between CT and DT model
identification methods become less significant; the CT
methods (and more particularly the IVGPMF method)
having nevertheless the best global performances in
the case of the considered example.

5.2 Performance evaluation in the frequency-domain

To evaluate the quality of the estimated models in
the frequency-domain, Bode plots of stable estimated
models are plotted on figures (1) and (2). Due to lack
of place, only Bode diagrams for the IVGPMF and
OE methods in the case of trial2 are plotted. These
plots confirm the superiority of the direct CT model
identification techniques.

Note again that in the case of the DT model identifica-
tion method, the Bode plots have been computed from
the estimated DT models and not from the CT models
converted from the estimated DT models.

IVGPMF IVFMF IVLIF IV4 N4SID OE PEM

Trial2 0.5 0.3 0.9 0.6 3.6 13.8 23.4

Trial11 0.15 0.22 0.08 0.11 0.65 0.76 0.97

Table 2. Computational time for the diffe-
rent methods

5.3 Computational efficiency

Here, computational efficiency of the different me-
thods is investigated in terms of the computational
time to run each algorithm. The computational time
for all methods in the case of trial2 and trial11 are
given in table 2. All simulations have been executed
on a 800 Mhz Pentium computer with 192 Mhz of
internal memory with Matlab 6.1. The main conclu-
sion is that there is a significant difference between
the direct CT methods which are least-squares based
and DT methods except the IV4 routine. The three
CT methods require approximately the same amount
of time to produce the estimates. They are computa-
tionally very efficient compared with PEM and OE
routines which are much more time-consuming as it
is well-known.

6. DISCUSSION AND CONCLUSION

In this paper, direct methods of the CONTSID toolbox
and indirect methods of the Matlab SID toolbox to
estimate CT models from sampled data are compared
in various conditions of simulation. The results of
this study clearly show that the indirect route to CT
model identification is not fully dependable. Although
DT model based methods have proved to be highly
successful and useful for many purposes, it is desi-
rable not to use them as an intermediate step on the
path towards CT models. This suggests that system
identification tools deserve to be enhanced in their
capacity; they should offer wider choice of both mo-
dels and methods. It is appropriate to have a system
of tools unifying the various approaches so that it
becomes dependable in a situation characterized by a
diversity of needs. The SID and CONTSID toolboxes
are complementary. With an appropriate unification
arrangement, they can form a unique system of tools
for system identification that will be comprehensive,
more dependable and effective.
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