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Abstract: Iterative feedback tuning (IFT) is a model free control tuning method
using closed loop experiments. For single-input single-output (SISO) systems only
2 or 3, depending on the controller structure, closed loop experiments are required.
However for multivariable systems the number of experiments increases to a maximum
of 1 +m x p, where m x p is the dimension of the controller. In this contribution
several methods are proposed to reduce the experimental time by approximating the
gradient of the cost function. The local convergence for a method which uses the same
technique as in IFT for SISO systems is analyzed. It is shown that even if there are
commutation errors due to the approximation method, the numerical optimization

may still converge to the true optimum.
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1. INTRODUCTION

In the early 1990s the interaction between identi-
fication and control was brought into focus. The
issue has been how to perform the identification
such that the performance for the derived model-
based controller improves. As a part of this re-
search many iterative identification and control
schemes, e.g. (Zang et al., 1995), have been de-
veloped. These schemes iteratively perform plant
identification and controller design in closed loop.

As a continuation and alternative to those meth-
ods, Iterative Feedback Tuning (IFT) was de-
veloped and first presented in (Hjalmarsson et
al., 1994). It is a model-free control optimization
method and in (Hjalmarsson et al., 1994) it is
shown that for linear time-invariant (LTT) single-
input single output (SISO) systems and certain
signal-based control criteria, e.g. LQG, the con-
troller optimization with respect to the control
parameters can be done only using measurements
from the plant in closed loop with the current
controller.

During the last years IFT has been used for
many applications, e.g. robust control of a sim-
ulation model of a flexible transmission sys-
tem (Hjalmarsson et al., 1995), the flexible arm
of the Laboratiore d’Automatique de Grenoble
(Ceysens and Codrons, 1997), vibration attenu-
ation (Meurers and Veres, 1999). It has also been
applied by the chemical multinational S.A. Solvay
to tune PID controllers for temperature control in
furnaces, in distillation columns, flow control in
evaporators etc., see (Hjalmarsson et al., 1997).

Many of the processes in these applications ex-
hibits some kind of nonlinear behavior. Even
though the original IFT scheme was developed
for LTI systems it seems that the method per-
forms well for those processes as well. The author
of (Hjalmarsson, 1998) tries to explain why and
when the original IFT algorithm also may work
for nonlinear systems.

The idea of IFT is transformed into a nonlin-
ear context in (Sjoberg and Agarwal, 1996) and
(De Bruyne et al., 1997), where it is shown that
the gradients can be computed from experimental



data by performing additional experiments. The
drawback is that the number of experiments with
these methods are proportional to the number of
parameters. To reduce the number of experiments
identification-based methods to approximate the
gradient are proposed in (De Bruyne et al., 1997)
and (Sjoberg and Agarwal, 1997). A hybrid ver-
sion between the ideas of the original IFT and
the model-based approximations is presented in
(Sjoberg and Bruyne, 1999), where a model of the
linearized closed loop system is introduced in or-
der to compensate for the errors that occurs when
the original IFT is used for nonlinear systems.

The IFT scheme for LTI multi-input multi-
output (MIMO) systems is thoroughly treated
in (Hjalmarsson, 1999). MIMO systems have the
common problem with nonlinear systems that a
large number of experiments is required to com-
pute the gradient of the control cost. In this paper,
we will discuss some methods to approximate the
gradient in order to make the algorithm less time
consuming. The analysis will be in a linear context
although the use of IFT is more interesting in
the setting with a nonlinear plant and a linear
controller.

The paper is organized as follows. In Section 2 a
short review of IFT is given. Section 3 presents
some new and some well known ways of approx-
imating the gradient needed for the optimization
in the IFT scheme. Some preliminary analysis of
the different methods are performed in Section 4
Simulation examples are given in Section 5 and
Section 6 offers some conclusions.

2. IFT - ITERATIVE FEEDBACK TUNING

In this section a short review of iterative feedback
tuning (IFT) is given. For further details we refer
to (Hjalmarsson et al., 1998).

The idea in IFT is to tune a controller with known
structure only using experiments on the controlled
system. The unknown system is assumed to be
described by the following discrete time system,

Y, = Gouy + vy, (1)

where G is assumed to be a linear time-invariant
multivariable system, y, € R? is the output, u; €
R™ is the input and v; € RP is some stochastic
disturbance. The sub index t denotes the discrete
time instants. To simplify the presentation the
control system has only one-degree of freedom, i.e.

us(p) = C(P)(r: — y:(p)), (2)

where the controller C(p) is a m X p transfer
function matrix parameterized by some parameter
vector p € RS. The reference r; is an external
vector. Notice that signals originating from mea-
surements on the closed loop system are functions
of p. To ease the notation the time argument will
from now on be omitted. The control objective is

Fig. 1. Setup for exact gradient experiments

to minimize some design criterion. In IFT, almost
any signal based criterion can be used. Here, for
simplicity the following quadratic criterion will be
considered:

N
T(p) = 5 F [Z gk<p)T@k<p)] (3)
k=0

where §(p) = y(p) — y, is the difference between
the achieved output and the desired output y,.
The expectation E[-] is w.r.t. the disturbance v;.
The optimal controller parameterized by p° is
defined by

p® = argmin J(p), (4)

which under convexity assumptions is the same as
to find the solution to

oJ(p 1 N Oy, (p T

S

p

k=1

(5)
With computed gradients the solution can be
obtained by gradient based methods, e.g. the

Gauss-Newton search algorithm:

. . 8T
Pt = - P

where R; is an approximation of the Hessian of
J(p) and ~; is the adjustable step-length. The key
contribution in the IFT algorithm (Hjalmarsson
et al., 1994) is that an unbiased gradient of %&f)

can be obtained by performing experiments on the
plant in feedback with the controller.

p N

With the achieved sensitivity function and the
complementary sensitivity function, respectively
defined by, So(p) = [I+GoC(p)]~" and To(p) =
So(p)GoC(p), the expression for the output y(p)
from the system (1) in feedback with the controller
(2) is

y(p) = To(p)r + So(p)v. (7)
The gradient of y(p) w.r.t. the ith entry of p,
denoted by y'(p), is then

y'(p) = So(p)GoC' (p)(r — y(p)) (8)

where C'(p) = % and y(p) is the output
collected from the closed loop system operating
under normal operating conditions. Defining the
control error as e(p) = r — y(p), then ideally the
gradient of y(p) is obtained running the closed
loop experiment shown in Fig. 1. In practice a
perturbed estimate §'(p) = y'(p) + So(p)v is
obtained due to the non-zero disturbance. It can
be shown (Hjalmarsson et al., 1994) that an un-

biased estimate of 8.J(p)/dp, i.e. E[8J(p)/dp] =



0J(p)/0p is obtained if v is a stochastic station-
ary signal with zero mean. With this setup one
has to perform one gradient experiment for each
parameter in the vector p. For SISO systems (8)
can be rewritten as

y'(p) =C(p)'C'(p)So(p)GoC(p)e(p) (9)

since the operators commute. Thus, to obtain the
gradient signal 8%(” ) only two experiments are
needed independent of the number of parameters.
The first one collects y(p) under normal operating
conditions and in the second one the control error
e(p) is fed as the reference and the output of this
experiment is then filtered through C(p) 1C’(p),
which is done off-line since C(p) is a known
function of p.

For MIMO systems the operators in (8) typ-
ically not commute. However, it is shown in
(Hjalmarsson, 1999) that the maximum number
of required gradient experiments is m X p, i.e.
equal to the dimension of the controller. Despite
this reduction, the experiment may be prohibitive
long from a practical point of view since the ex-
periments are performed on the true plant and
possibly disturbing the normal operational condi-
tions. Hence it is of great interest to further reduce
the number of experiments. It is the objective of
this paper to discuss some options that exists for
doing this.

3. GRADIENT APPROXIMATIONS

One way to reduce the number of experiments
further is to approximate the signal 8%5,” ) There
is a large theory of inexactness in optimization,
contributions related to IFT are e.g. (Bruyne and
Carrette, 1997) for linear systems and (Sjoberg
and Bruyne, 1999) for nonlinear systems. In the
analysis of the original IFT scheme for nonlinear
systems (Hjalmarsson, 1998) the author make a
remark, that in practice for many systems, IFT
seems to be robust w.r.t. the gradient estimate.
The most important property of the estimate is
that it is a descent direction.

However, for convergence, it is more important
that the quality of the estimate is good in a vicin-
ity of the optimum than in the surroundings. We
will here suggest some methods to approximate
8%—53”) for MIMO systems.

Rewrite (8) as

W) — 50(p)GaC(P)C () C Pelp)
=To(p) Clp) 'C'lo)elp) (10
Ai(p)

The following approximation techniques are con-
sidered:

(1) 222) = T5(p) Ai(p)e(p)
Here To(p) is an identified model of the
closed loop system. This idea was presented
in (Bruyne and Carrette, 1997). The identi-
fication is assumed to be simplified by the
assumption that the closed loop system is
typically of low order and that nonlinear
effects in Gy is reduced by the feedback.
Some of the drawbacks is that the method
relies on the identified model, possibly ex-
tra signals need to be injected to excite the
system during identification and it requires
more knowledge of the user to perform the
identification properly.
o9(p) _ )

(2) 22 — T,4,(p)e(p)
Here T'; is the reference model defined by
Y4 = Tqr. This method is a naive alternative
to the previous presented. When T (p) is far
from T 3 we cannot expect the approximation
to be good. However, it has the nice property
that when Ty(p) tends to T4, the approxi-
mation error decreases.

(3) %52 = Ai(p)To(p)e(p)
This is the same approach as was used for
SISO systems. For MIMO there is almost
always an error due to the commutation error
between A;(p) and To(p). The motivation
for using this method is that if T3A;(p) =
A;(p)T 4, then when T(p) tends to Ty the
commutation error decreases.

(4) 222 = T4 Ai(p)To(p)T ;" e(p)
When T3A;(p) # A;(p)T4 this is an alter-
native method. When Ty(p) tends to Ty,
To(p)T;"' tends to the identity which, ob-
viously, commutes with all matrices. An im-
plementation issue is that T;l in many cases
is non-causal. Then the non-causal filtering
T, e(p) can be performed off-line. An alter-
native is to make an all-pass approximation
of Td-

(5) 25 = T4 (p) Ai(p)To(p)To(p) ‘e(p)
This method is inspired by the previous one.
The difference between this method and the
first one is that the control error is filtered
through To(p)To(p)~!, which also means
that this method needs one more online ex-
periment than the first one.

The list of different gradient approximations can
be extended much further, e.g. we can think of
estimating T'o(p) based on an identified model Gy
of the plant. This approach is used in (Trulsson
and Ljung, 1985). The main drawback is that
the plant might be both nonlinear and of high
order which complicates the identification and the
following control design.

Notice that there is a difference in the number
of experiments between the methods presented
above. In every method at least one online exper-
iment is needed to generate e(p). The last three
also include a second online experiment where the



signal e(p), T; e(p) or To(p)~te(p), depending
on method, is filtered through the closed loop
system T'g(p). Method 1 and 5, possibly also need
some extra onhne experiments to carry out the
identification of T'g(p). Finally, the gradient sig-

nal 6%—5)”) is obtained by off-line filtering through

A;(p), TqA;(p) or Ty(p)Ai(p) for each element
¢ in p. This can be compared with 1+m X p online
experiments for the true gradient.

4. ANALYSIS OF LOCAL CONVERGENCE

The local convergence for the gradient approxima-
tion method 3. introduced in the previous section
will be studied. In order to focus on the essence
of the problem we will throughout the rest of the
paper use the assumption that the noise is zero,
which gives y(p) = To(p)r. The purpose of the
analysis is to provide some insight in what the
problems might be with the proposed gradient
approximation method. The analysis will be based
on the so-called ODE analysis (Ljung, 1977) which
relate the evolution of an iterative algorithm like

0J(p?)
o (11)

to the trajectories of a differential equation. The
corresponding ODE to (11) is

8J(p)
Op

The idea is that when the step size y; tends to zero

the numerical iteration method will asymptoti-

cally behave as the corresponding ODE. Consider
the approximation of the gradient

Pt =pl — v,

dp/dt = — (12)

aj(p) 097 .
~op =E “op y(p)]
-B 9%%9-<1'(> tr@r] (13)

Notice that if there exists a parameter p¢ such
that To(p°®) = Ty then this is a stationary point
for the design criterion and furthermore %}’:C) =
%}’:C). The question is whether this is a stable

stationary point or not. A sufficient condition for

the ODE (12) to be locally stable is that the
linearized system
d 9.J(p)
dp/dt = ———— 14
p/ op ap " (14)

is stable at the stationary point, i.e. the eigenval-
ues of 8‘9’) 8{9(”: ) must have positive real parts.

Introduce the general linear reference model
Ty1(e™) ... Tyn(e™)
Ta(e™)=| 't . (15)
Tha(e™) ... Thn(e™)

and the linear controller

Cll(pllaeiw) Cln(plnaeiw)

C(p,e™) = : - :
Cr1(Pp1,€™) oo Con(Ppn,€)
(16)
where
Cz'j(Pz'jaei )= Pz]r( “), (17)

pi; = [pijo pij1 --- pijm]" and

T(e®) = [1e ™ ... e ™ ]T. Without loss of
generality, the complexity of each element in (16),
m, is assumed to be equal for all elements. The
controller parameters are collected in the vector
p = [ph - pL ph ... pL 17, ie. each ele-
ment in (16) is assumed to be individually param-
eterized. Let ®.(w) denote the spectrum of e(p°).
Furthermore let A and A* denote the conjugate
and the conjugate transpose of A, respectively.
From now on, the frequency argument will be
omitted.

Theorem 1. Assume there exists a parameter vec-
tor p = p° such that Ty (p°) = T'q where T4 is de-
fined by (15). If ®.(w) = oI and if the controller
is defined by (16) then p = p° is a stable sta-
tionary point to the ODE (12) using the gradient
approximation ‘Z’;(p) Cil(p)%ﬁz)To (p)e(p) if
the matrix

Ti@T;+T;T;>0 (18)

forallw € [ —m, m]. Here ® denotes the Kronecker
product.

Proof: A sufficient condition that the real parts

a aJ(p%)

of the eigenvalues of 5, are positive is that

0050 00"
is positive definite. Introduce
_ oC
Aup) = ()P ()
Pjkl

andlet C™' =[a; ... a,] where a; is a column
vector. Since each element of (16) is individually
parameterized, A ;i will be of rank one and thus
can be expressed as

Ajkl = e‘ilwa_,-ekT (21)

where e, is the unit vector with the kth element
equal to one. Using those expressions, an arbitrary

element of aj(p ) can be expressed as
9 3?3(10)

—F T —Tgr

6pjkl l 6prst ( 0(p) d) p=p©

= E [(Arsi(p°)Tae(p%)) " TaAjn(p%)e(p°)]

’ B () (Apat (p°)T )" oo,

1
=5 Tr T A n(p°
(22)

-



Assuming ®.(w) = oI, which means that that
the reference is low-pass filtered white noise and
skipping all arguments,

TrTaAju(ArstTa)"
= "= T(Tya el The,al)
=e el T e a’T 4a;
= eii(lft)“’Tksa:Tda,j.
Using the definition (19) and (23), we obtain
o 1 ™

Jpp(PC) = o

(23)

Mde (24)

where M ; is the factorization
M;=Tp E*(Td ®T; +T; ®Td)EI‘j‘3 (25)

H

with I'p and = being block diagonal matrices with
each diagonal block element equal to T’ and C ™%,

respectively. If € R™* then
1 ™

5 | FE*)H(WF(E®) dv (26)

el J,x =
where F(e™) = TTp is a multiple input single
output filter and thus z7J,, > 0 with equality
if and only if £ = 0. This holds under the
assumption that H > 0 for all w € [—m, 7].
Furthermore H > 0 if and only if Ty @ T+ T ®
T4 > 0 since E is quadratic and has full rank for
all w € [ —m, 7]. This concludes the proof. O

This result shows that even if the operators
C~!'C'" and Ty do not commute, the descent
method (11) might still be locally convergent us-
ing this approximation method. Although, some
caution has to be taken as will be illustrated in
the next section. If the controller is diagonal, the
structure can be exploited to make the condition
in Thm. 1 less conservative.

Theorem 2. Assume there exists a parameter vec-
tor p = p¢ such that To(p°) = T4 where Ty
is defined by (15). If ®.(w) = ol and if the
controller is defined by the diagonal of (16) then
p = p° is a stable stationary point to the ODE

(12) using the gradient approximation ?9%5,) =
_1,,8C -
C 1(p)W.(kpl)To(P)e(P) if
T;® Td + TZ; ® T; (27)

is positive definite for all w € [—m, w]. Here ®
denotes the Hadamard product.

Proof: The outline follows the proof of Thm. 1.
Using the diagonal structure of the controller, (23)
becomes

trTqAj i (ArmTq)"
SiDeT;a; T gay (28)
— e_l(l_t)wC;le;,HTjTP

=e
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Fig. 2. Solid line-exact method, dashed line-
approximation method 3, dotted horizontal
line-optimal p.

and again J pp(P°) can be written as (24), but now

MJ = I‘Déil(Td ® Td + Tg ® T;)C’lI‘*D
(29)

Then J,,(p°) > 0if T40T¢+TF T > 0 for all
w € [—m, w]. This follows from the factorization
(29) and the proof of Thm. 1. O

Remark: Tt is easy to realize that if the complex-
ity of the controller determined by m tends to
infinity, the conditions Ty @ Ty +T; @ Tq > 0
and Tq © Ty + TS © T% > 0, respectively, for
all w € [—m, 7], becomes both a necessary and
sufficient condition for J,,(p°®) being positive def-
inite. When m — oo, then 2”T'p can be any
arbitrary filter. Particularly, if 2 is chosen such
that T p = §(w—wo) F(e™), the integral in (26)
will collapse. Here d is the Dirac delta operator.
Since wy is arbitrary, the conditions must hold for
alwe[-m 7).

5. NUMERICAL ILLUSTRATION

In this simulation example we will use the approx-
imation method 3, i.e. ag_lgf) = A;(p)To(p)e(p).
The process to be controlled is the following two
by two system

—-2.25 2.25

_ ) 1
Go=| _g5,%3 052 - 0.6 (30)
22 -142404 22 —-142z+04

which has a non-minimum phase zero in 1.2. The
reference model is defined by

0.9
0
Ta=|*"% 94024 |- B
22 —1.62+0.64
The system is controlled with the P-controller

C(p) = [Op 5 8” which has only one param-
eter free to tune. The parameter is updated by
the descent algorithm (11). The optimum is in
p¢ = 0.1. As we can see in Fig. 2, by proposing
such a reference model, the optimum becomes an
unstable stationary point. Theorem 1 confirms
that there might be problems with this setup.
The non-minimum phase zero in T'y; makes the
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Fig. 3. Solid line-exact method, dashed line-
approximation method 3, dotted horizontal
line-optimal p.

matrix Ty Ty + T; ® T4 not positive definite
for all w. However, the non-minimum phase zero
is not a fundamental problem for the gradient
approximation method. By choosing another ref-
erence model, method 3 will converge to the true
optimum, i.e. T'o = T'4. This can be seen in Fig. 3,
where T'; is chosen as

0.15 .
| z=085
Top=|* —022+024 |- (32
22 —1.62+0.64

Since we use a P-controller, a necessary and
sufficient condition that Jp,(p¢) > 0 is that

K

1
Py TiT;+T;QTqdw (33)

—m

is positive definite. The expression (33) becomes
indefinite for T 4; but positive definite for Tg,.

6. CONCLUSIONS

In this paper we have examined several methods
to approximate the gradient in IFT for MIMO
systems. The local convergence for the approxi-
mation method in which operators are commuted
in the same way as is done in IFT for SISO
systems is further analyzed. The analysis shows
that the optimum of the cost function, under cer-
tain conditions, also is a stationary point for the
approximation algorithms, but not always stable.
Furthermore, the numerical gradient search may
still converge to the true optimum even if the
commutation error is non-zero.
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