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Abstract: This paper deals with the observation and control of a class of nonlinear
systems. A cascade observer for a class of state affine nonlinear systems is proposed.
Considering an output feedback tracking controller, a stability analysis of the resulting
closed-loop system is given. The proposed observed-based controller is then shown to
be closed loop stable and is applied to an induction motor industrial setup to show

the proposed methodology.
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1. INTRODUCTION

The use of induction motors is widespread in
industry, due to their reliability, ruggedness, and
low cost. However, they are difficult to control
for several reasons. They are nonlinear, coupled,
multivariable processes. The rotor electrical state
variables are usually unavailable for measurement,
and the motor parameters can vary considerably
from their nominal values, which degrades the
control performances.

In this paper, one considers the problem of de-
signing a control input in order to track a de-
sired output reference when the state is not fully
measurable. Several solutions have been proposed
by using nonlinear techniques to design controls
laws, e.g. differential geometric approach (Marino
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et al., 1993), sliding-modes methods (Utkin et
al., 1999), backstepping (Dawson et al., 1998),
passivity (Ortega et al., 1998) and adaptive tech-
niques (Marino et al., 1999). For nonlinear sys-
tems with stable zero dynamics, and assuming
that all components of the state are measurable,
a state feedback controller can be designed such
that the state is bounded and the tracking error
converges to zero.

However, the vector state, in general, is not com-
pletely measurable and it should be estimated.
Nonlinear observer design for a particular class
of state affine nonlinear systems is considered.
Moreover, the stability analysis of the closed-loop
system, when the controller is a function of the
estimated state, is performed for particular classes
of nonlinear systems.



The paper is organized as follows: an observer for
a class of nonlinear systems in cascade is intro-
duced in section 2. A feedback control for this class
is given in section 3. In section 4, a stability anal-
ysis of the closed loop system is performed. The
induction motor case is considered in section 5. In
section 6, the proposed observer-based controller
is applied to an industrial experimental induction
motor setup. Finally, some conclusions are given.

2. NONLINEAR OBSERVER

In this section, one presents a cascade observer
for a class of nonlinear systems. Consider the
following multi-variable nonlinear system:

where X € RV is the state vector of the system,
u € RM is the control vector and y € RF is
the output vector. Assume there exists a change
of coordinates which transforms (1) into another
system represented by:

Xl :Al(uay)Xl +gl(uaan1) (2)
Xz:Al(uay)Xz+gl(uaan17 ’Xi)’ Z:27 L
yi:CiXi; izl,... ,n.

where X; = col(21,i, %24, .., Tr; i) € R™, Y 0 ni =

N, y; € RPi, Y7 p; = P, the matrices A;
€ R™*"i =12 ...n,are

Ai(u,y) =
Opi ali(ua y) Opi T Opi
Opi Opi Q2 (’LL, y) T Opz
Op; 0p; 0p; a(m—l)i(u:y)
Opi Opi Opi T Opi
where a;; € RP*Pi, j=1,2,...,r; —1 and 0y, is

the p; X p; null matrix. The vector fields g; € RP?,
1=1,2,...,r;, are
91i(vi, T1,4)
gQi(via‘Tl,iaxQ,i)
gi(uaanla"'aXi): .
Inii (Vi T1,3, 24T i)

where v; = (u,y, X1, -+, Xi—1).

The output matrix is C; = (I, Op, ---
where I,,; denotes the p; x p; null matrix.

Op; )

Moreover, it is assumed that each subsystem is
observable and verifies the following assumptions:

H1 There exist positive constants ci;, ¢2;, 0 <
c1; < ¢y < 00,1 = 1,...,m; such that for all
X; € R"; 0 < culp, < afi(u,y)aji(uy) <
coily; <oo,j=1,..,r—1.

H2 The functions g;(u,y, X1,...,Xi),i = 1,...,n
are globally Lipschitz w. r. t. (Xi1,...,X;) and
uniformly w. r. t. u and y.

H3 sup f’Au,y)F;%u,y)H < L;;, where L is a
0;>1
positive constant and
ri—1
F,’(U,y) = diag{lpiaali(uvy)a ey H aji(uay)}
j=1

fori=1,.,n.

An observer for systems in cascade is given by

Z1 = A1(u,y)Z1 + g1 (u,y, Z1) (3)
+M;(u,y)C1(Z1 — Xq)
Zi=Ai(w,9)Zi + 9i(w,y, Zo, -, Zy)
+M;(u,y)Ci(Z; — X;), 1 =2,...,n
where M;(u,y) = F;l(u,y)A;ilKi, i1=1,...,nare
the gains of the observer, Ag; = diag{g1Ip., 72 Ip:,
+-1,.} with 8; > 0, K; is such that the matrix

ceey ngi
Opi Ipi e Opi
(A;—K;C;) is stable and A; =
Opi Opi B Ip,-
Opi Opi e Opi

From H1, the matrix I'; is nonsingular.

Theorem 1: Assume that the system (2) satisfies
assumptions H1, H2 and H3. Then, there exist
Oo; > 0,1 =1,...,n such that for all 6; > 6y;, the
system (3) is an exponential observer for system

(2)-
Proof: See (DeLeon et al., 2000).

3. FEEDBACK CONTROL DESIGN

Consider nonlinear system (1), suppose that the
system has relative degree r and is observable.
From Frobenius’ Theorem, there exists a diffeo-
morphism & = T'(z) = col(T1(X) — Vg, T2(X))
that transforms the original nonlinear system into
the following one:

f_r = Agr + B {a(frafnfr) + B(fr;gnfr)u}
25 : fn—r = Q(gragn—r)
y==%&
(4)
which is state feedback linearizable with in-
dex r, where & = col((,6n—r) € R", Vg =

col(yr, yg), crs ygfl)), yr is the desired reference
signal, and T (X) = (h(X), Lh(X), ..., L} 'h(X)),
T2(X) = (@r41(X), .., pn(X)). The functions ¢;
are such that Lyp;(X) = (dp;(X),g) = 0, for

i=r+1,..,n.



We assume the zero dynamics of the system given
by &n—r = Q(0,&,—,) stable. Then, there exists
a smooth feedback control u = u(&,&,—r) =

671(67‘, E’I’L*'I‘)(_a(f’r; é.nfr) + U), Wlth V= _Kf’l“)
such that (A— BK) is Hurwitz, making the origin
(&, €n_r) = 0 asymptotically stable.

4. ANALYSIS OF STABILITY OF THE
CLOSED-LOOP SYSTEM

In this section, the stability of the system (1) with
the control law function of the estimated state
given by the observer (3) is studied.

Let us consider the estimation error equations
é=(A(u,y) — F_l(u,y)AglKC) e+ Y(u,y,e Z)

where the measurable outputs are y = CX =
col(y1,Y2-.-,yn) = col (C1 X1,C2 X, ..., Cr Xy,), the
estimation error e = col(ey,...,e,), the state
estimate Z = col(Z1,Za, ..., Zy,), and

A(u,y) = diag (A1 (u,y) — Ffl(u,y)Aa_llKlCl, v
An(u,y) = T (4, 9) A4, KnCr)
T(U, Yy,e, Z) = COl(gl(uﬂ Y, Zl)

gn(uaya Zla (K3} Zn) - gn(uaya Zl — €1, ..

Now, define the augmented system

{X = 1(X) + 9(X)u(2),
e= (A(’Ll,y) - Fil(uay)

and using the following change of coordinates
§=col(&,En—r) = col (T1(X)

e=col(er,...,en)

= col(T'1 (u, y)Agre, ...

— VR, T2(X))

’ F’l’l(ua y)AG’ﬂe’ﬂ)

the above system can be rewritten in the form

. o1 (X
& = a6+ 208 4(x0) (u(z) — ()],
ZA : £n7r~: Q(Nfrafnfr)
€= Ae+ T(U, Y€, fra fnfr)-
where
!1 — diag (91211,... 6, A )
= col (Fl(u T (u, y)er,
+G1 (’LL, Y, Zl) - Gl(uv Y, X1)7 L] +Gn(u7 Y, Zla
_Gn(ua Y, Xl: L] Xn) + Fn(ua y)]-—‘gl(ua y)en)

with AZ = {AZ — KzCz} and Gi(u,y, Zl, ey Zz) —
Gi(uvanla aXz) = Fz(uay)AGz{gz(uaya Zla KAL) Zz)
_gi(uaanla 7Xl)}7 i=1,..,n

For the stability analysis of X 4, the following
assumptions are introduced:

H4 The zero dynamics &,_, = Q(0,&n_,) is
stable.

- gl(uaya Zl - 61), ELE)
Zn —en)).

A(,_IKC) e+ Y(u,y, e 2)

b Zn)

H5 Set Z,X € B(0,p) the ball centered in 0

and radius p > 0. There exist a scalar nonneg-

at'lve locally Lipschitz constant function L(p) =
L3( ) such that

8T1
H )= )| < 2 el
oT:
where g < Lato), | ZHE < L),
u(Z) ~ u(X)l| < Lop) el and Li(p), i = 1,23,

are Lipschitz constants.
H6 The Lyapunov function candidate
L(&r,€) = W (&) + V(er,e2) (5)

where W(¢,) = €T PE, = [Ty (X)~Va]T PITy(X) -
yR] and V(G) = V(61,62) = Vl(el) + ‘/2(62),
satisfies the following inequalities

Buller N W (& (t) = &7 P& < Ball& (@)1,

oW 2
A <~

where ATP + PA = —Q.
The Lyapunov function V () is such that
ar [l < V(e) < az [|e]’ (6)

O (Ae+ Ty e b)) < o [l

where ai,ﬂi,i =1,2,3, are positive constants. Let
Q1

be p1 = 5’“2
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Theorem 2: Consider the system Xnr (1) ob-
tained via change of coordinates and an input-
output state feedback linearizing control u de-
pending on the state estimated given by the ob-
server (8). Under the assumptions H1, H2, H3,
HJ, H5 and HG6, the dynamics of the whole sys-
tem X4 is locally asymptotically stable. More
precisely, the dynamics of the tracking error &
and the estimation error € converge exponentially
to zero and an estimation of the attraction re-

gion is given by {€, € R"" - |6 (0)]| < 2} x
{e€ R : [le(O)] < 2} -

Proof: For the sake of simplicity, one assumes
that 4 = 2. Taking the Lyapunov function candi-
date

L&, €) = W (&) + Ver, 2)
Set —[T1(X) = Vr]"QIT1(X) — Vr] < —nW (&),
where 7 is a positive constant.

The derivative of W (&) w. r. t. time, it follows
that

W) < e @
PN laTl Hn X)) lu(2) = u(X)]].




From assumption H5:

d” 5’" = —2/W(E) +L(p)

Since the derivative of V' is given by
V =Vi(e) + Va(e)
— (61k1 — Ly = Nuy) [lea I3,
— (B2k — Las — Nao) |leal[p, + Ha M [ler]lp, €]l p,
< =i lleallp, = 02 lleallp, + Ha DMy |lex|p, [le2ll p,

for 81 = 01k1—L11—N11 > 0and 63 = Osks — Loy —
Nss > 0 where ||G1(u,y,Z1) —Gl(u,y,Xl)H <
N1y ||61||7 ||G2(u,y,Z1, Z2) - GQ(uaanlaX2)|| <
N21 ||61|| + N22 ||€2||, Nll,N21 and N22 are LipS-
chitz constants, H, is a constant from assumption
H1 and kg 1s a p051t1ve constant. Given that

llex]] [le2]] < 7 el t53
follows that

)lell. (8)

||62|| for any a > 0. It

. . . 2
V(e) = V(Cl) + V(CQ) S — ((51 — H2N21 %) ||61||§31

1
((52 — H2N212 > ||€2||P2 .
Choosing a, 81 and 8, such that the above inequal-
ity verifies
V(e(t)) = =b(0) [[ellp < —c()V (e(t))

with 8 = (61,0,), where b(8) and ¢(6) are positive
functions of . Then,

V(e(t)) < V(e(0)) exp(—

and with (6), one obtains

c(6)?) (9)

V(€(0)) o t

lle@Il < xp(—c(6)3)-

aq

Replacing the above term in (8) and integrating,
it follows that

\/ (&)< \/W 0) exp( 77;)
+ 2000 T expl-ng){1 - exp(-3)}
. @) —n
with v = 5

Choosing ¢(f) > 1, which means that the observer
dynamics is faster than the system dynamics, then

VITE) < VIT(0) expl(-n5) (10)
_v(e(o)) ¢
+ L(p) o exp(=1)3)-

From (9) and (10) it is concluded that L(&,,¢€) is
Lyapunov stable.

Now, the stability domain of D of the sys-
tem Y 4 is characterized. From assumption H6,
a1, s, B1,02 > 0 exist and satisfy the following
inequalities

ar e’ <V azlle®I® (1)

Bll& I <W(&) < Ball& @) (12)
Choosing
&)l < /55 = Virg: Ol <\ /o8 = ving.

(13)

Replacing (11) and (13) in (9):

el < | "D expe)) <[22 1oy < 2.

t
Qaq 27— Qaq
Similarly for ||&,(t)]|, one obtains

VA Ia®l < VITE) < V60 + 22

Q2
ol +— o l[e(0)]]-

Hence, for p > 0, 3 ¢(fp) > 0, such that V
c(0) > ¢(6p) and
L(p) <1

O -V = 2
Using (12) and (13) in (10), it follows that

1€ DI < —== {\/ﬂ_ﬂlér I+ i 2o )II}

This proves the attractivity of the origin of the
system.

5. APPLICATION TO AN INDUCTION
MOTOR

The controller and observer are designed using
the standard («, 8) non linear model (Marino et
al., 1993):

Sne i X = f(X) + gu (14)
’Y'Lsa + ¢ra + pr¢rﬁ
—Yis3 — prqu + ¢Tﬁ
M . 1
JX) = Tlsa = 7 fra = pwcbrﬁ
T T,
M 1
T_Zsﬁ + pwdra — T¢¢B
M T 1
§L (Gratss = Praisa) = §w - 57 |
T
0 000
g = 9 s 1
0 000

oL,



where X = collisa,isg, bra;drg,w] and u =
col [usq,usp]. The states of the system are the two
phases components of the stator current and of
the rotor flux and mechanical speed. The inputs
are the stator voltages. It is assumed that the
unknown load torque is constant (not measured)
and the nominal values of the rotor resistance and
the other parameters of the model are known. The
variables and parameters of the motor model are
given in Table 1.

Tab. 1: Model variables and parameters

M, L,, Ls mutual, rotor, stator inductances
im,isﬁ stator currents Ty := %
”
¢ra,Prg  rotor fluxes
. . M
w mechanical speed | K := T.T.
Usa, Us stator voltages
2
Ry, Rs rotor, stator oi=1— M
) I LsLy
resistances
. Ry | R,M?
T, load torque vi=gt oL, L7
J inertia
f viscous damping
coefficient
P pole pair number

5.1 Observer design

The design of the cascade observer (3) for the in-
duction motor is introduced (i = 2). The observer
of the electrical subsystem is given by

—~I. 0
i [ KN((U) Yi2x2 U2x2
7 = Z M Z
! <02><2 O2x2 L TI2><2 N(w) !
LIQH 291k112x2 0 ( )
+| oL u—| 02ky __ Z1 — X4
03><2 —K N l(w) 0

where X7 = col (isa, 158, Ora, $rp), the output is

y1 = col (isa;isﬁ)a Zy = col (gsaa%sﬁv (i)raa Qgrﬁ)v
1
— pw
N(w) = T 1 | and (K1, k2,61) are constant
o

design parameters.
Now, the observer of the mechanical subsystem is

given by

1 ~
. [0 = ¢ _ 611 O _
2=(07) 7+ () (L) e
with Xy = col(w,7), the output is y» = w,

Zy = col (0, 71), Y = %(ér&isﬁ - (Z)rﬁisa) — %w
and (I1,15,6-) are constant design parameters.

5.2 Control design

A multivariable input-output linearizing state
feedback is designed for the system (14). The
tracking control is given by

_ [ Usa \ _ -1 _L2h1 (Z) + Vg
U—<u3ﬁ> =D (Z)<—L§h2(Z)+vb>
pK ,  pK
_7¢Tﬁ 7¢roz

D(Z) = | X
2R1‘K¢ra 2R1‘K¢1‘B

such that the output y = col(hy, hs) asymptoti-
cally tracks a reference signal Vg, where h; = w,
he = ¢2, + qﬁfﬁ are considered as the outputs to

be controlled and Vg = col(w, (1), ||¢-(t)|]°) are
the reference signals to be tracked for the speed
and for the square of the flux norm, respectively.
It is assumed that the reference signal and its
derivatives are bounded for all £ > 0 and

=t (0r(8) =)+ Kz [ (or(t) = )
+ b (n(0) = ) +51(0)

o= (lon®I” = (%4 +6%5))
s [ (1o = (8. +325) ) de
kg (16001 = (8 +82)) + 60|

where (kq1, ka2, ke3) and (kpa1, kb2, kp3) are con-
stant design parameters.

Using Theorem 2 closed-loop stability is ensured.

6. EXPERIMENTAL RESULTS

In order to illustrate the performance of the pro-
posed scheme, some experimental results on a 4-
pole, 7.5 kW, three-phase induction motor are
shown. The induction motor load is simulated
by a 7.5 kW DC motor fed by an inverter with
current circulation which provides four quadrants
operation (see (Lubineau et al., 2000)).

The controller is tested on a wide operating do-
main with the following benchmark: the speed
increases with constant acceleration up to nominal
speed. A torque load is applied at nominal speed.
Then the rotation sense is inverted. A constant
torque of same sign as before is then applied to
show the behavior of controller when the motor is
set in energy generation operating point. Torque
disturbance is maintained until speed is set back
to zero and the flux reference is constant. In ex-
periments, the observer parameters are k; = 0.7,
kz = 012, 91 = 45, ll = ].].0, l2 =30 and 02 =3.
The parameters of the controller are chosen as
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Fig. 1. Rotor speed and motor torque.
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Rotor flux norm error (ref. flux — est. flux) [s]
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Rotor speed error (ref. speed — mes. speed) [s]

Fig. 2. Tracking errors.

T T T =
— = measured speed B
—— estimated speed

—40fF — — torque reference for DC motor |»

— estimated load torque
I T T T

T
1 2 3 4 5 6 7 8 9
Load torque [s]

Fig. 3. Estimated speed and load torque.

follows: k.1 = 3100, k.o = 15000, k.3 = 170,
kpe1 = 22500, ky, = 225000, and kps = 310.
Figure 1 shows rotor speed and motor torque. It
includes torque due to acceleration and torque due
to load. Figure 2 shows tracking errors on flux and
speed. The flux tracking error is given between
the reference and the estimate. The speed error
is less than 7% of nominal speed despite torque
disturbances. Finally, the observer performance is
illustrated. Figures 3 and 4 show the estimated
speed and load torque, the latter one corresponds
to the case w = 0 and W = Wnom-

[ n

155} i /AN
7 i
3 150F '“v ]
8 i
1451 N ! i
i M
— — measured speed
140 u —— estimated speed ’
P L L L L I L L

1 2 3 4 5 6 7 8 9
Rotor speed [s]

L = — torque reference for DC mator i
40 3
—— estimated load torque

1 1 1 1 1
1 2 3 4 5 6 7 8 9
Load torque [s]

Fig. 4. Estimated speed and load torque
(W=0, w=Wnom)-

7. CONCLUSIONS

In this paper, an observer-based controller for a
class of nonlinear systems is proposed and shown
to be closed-loop stable. It is applied on an in-
dustrial 7.5 kW induction motor. The real-time
experiments show the efficiency of the developed
controller for a broad domain of operating con-
ditions including low and high speed, as well as
motor and generator behavior, with respect to
standard methods.
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