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1. INTRODUCTION 
 
The partial stability and stabilization problems (or, 
briefly, the PSt and PSb–problems) naturally arise in 
applications either from the requirement of proper 
performance of a system or in assessing system 
capability. In addition, a lot of actual (or desired) 
phenomena can be formulated in terms of these 
problems and be analyzed with these problems taken 
as the basis. The following multiaspect phenomena 
and problems can be indicated:  
− adaptive stabilization;  
− spacecraft stabilization (especially stabilization 

by rotors);  
− drift of the gyroscope axis; 
− Lotka-Volterra ecological principle, e.t.c. 
 
Also very effective is the approach to the problem of 
stability (stabilization) with respect to all variables 
based on preliminary analysis of partial stability 
(stabilization).  
 
A.M.Lyapunov (1893), the founder of the modern 
theory of stability, was the first to formulate the 
problem of partial stability. Later, work by 
V.V.Rumyantsev (1957) drew the attention of many 
mathematicians around the world to this problem. 
Some idea of the present state in this area may be 
obtained, for example, from Rumyantsev and 
Oziraner (1987), Vorotnikov (1993,1998), Fradkov 
et.al (1999), Vorotnikov and Rumyantsev (2001).  
 
The PSt–problem is closely connected with two 
intensively investigated stability problems: stability 
with respect to two measures (Lakshmikantham and 
Liu, 1993) and polystability (polystability with 
respect to part of the variables) (Martynyuk, 1998). 
In addition, in the last years essentially more 
common and difficult problem of input to output 
stability have been singled out (Sontag and Wang, 
1999, 2001). 

The partial control problems, including game-
theoretic control problems with respect to part of the 
variables are to the same (and even greater) extent 
natural for theory and applications. Scientifically and 
methodically, it is not devoid of interest to treat these 
problems together with the PSt and PSb–problems; 
see Vorotnikov (1998).  
 
The paper has the following structure:  
− general situations leading to investigation PSt and 

PSb–problems; 
− classification of the PSt–problems; 
− the basic methods for solving of the PSt(PSb)–

problems; 
− partial stabilization of the steady motions of a 

rigid body by rotor; 
− distingvishing characteristics of PSt–problems; 
− partial control problems. 

 
 

2. GENERAL SITUATIONS LEADING TO 
INVESTIGATION PSt- PROBLEMS 

 
Summing up the approaches to research within the 
scope of the PSt-problems and weighing the 
prospective ones, we shall attempt to distinguish the 
basic motives for investigating the problems. We 
consider it reasonable that the following general 
problems should be primarily numbered among them. 
 
(1) Investigation of the stability of systems with so-

called "superfluous" variables. This problem is 
closely related to the practically always 
inevitable problem of finding "essential" 
variables for a dynamic system under in-
vestigation. 

 
(2) Investigation of those systems whose PSt-

property is sufficient for them to operate 
adequately. 
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(3) Analysis of situations in which the PSt-property 
is either natural, desirable, or even necessary. 

 
(4) Investigation of the PSt-problems when a system 

is inherently unstable with respect to all the 
variables. Assessment of capabilities of a system 
being designed in "non-nominal" situations is 
often meant in this case. 

 
(5) Solution of the PSt-problems when investigation 

of stability with respect to all the variables 
presents difficulties or when it is necessary to 
estimate (with respect to certain variables) the 
transient of a system stable with respect to all the 
variables. 

 
(6) Solution of the PSt-problems as an auxiliary one. 

Here, stability with respect to certain variables 
often implies stability with respect to the re-
maining variables. In other cases, stability with 
respect to all the variables may turn out to be 
conveniently proved through successive 
investigation (possibly by different methods) of 
several PSt-problems. 

 
Similar reasons also cause the investigation of the 
PSb-problems. 
 
 

3. CLASSIFICATION OF THE PSt-PROBLEMS 
 
The following basic types of PSt-problems are 
presently considered: 
− the Lyapunov-Rumyantsev PSt-problem; 
− the problem of stability of "partial" equilibrium 

positions (with respect to all the variables); 
− the PSt-problem of stability of "partial" 

equilibrium positions; 
− the problem (PSt-problem) of polystability. 
 
 

3.1. Lyapunov–Rumyantsev PSt-problem 
 
Let there be given a nonlinear system of ordinary 
differential equations of perturbed motion  
 

.),(  ),,( 00XxXx ≡= ttD  (1) 
 
The variables constituting the phase vector x of 
system (1) are divided into two groups 

TTTT zyx ),(= : 
- the y-variables with respect to which the stability 

of the unperturbed motion x = 0 is to be 
investigated; 

- the remaining z-variables. 
 
Specifically, this partitioning depends on the nature 
of the problem under study. As a rule, we assume 
that the choice of y-variables has already been made 
by the time that a partial stability problem should be 
analyzed. This means that the PSt–problem is a 
problem of stability with respect to a prescribed part 

of the variables; z-variables are correspondingly 
called the "uncontrollable" variables. 
 
We denote by x(t) = x(t; 0t , 0x ) the solution of 
system (1) subject to the initial conditions 0x = 
x( 0t ; 0t , 0x ). 
 
In the theory of stability with respect to part of the 
variables, the following assumptions are usually 
made (Rumyantsev and Oziraner, 1987):  
 
(a) the right-hand sides of system (1) in the domain 
 

,0≥t   ,|||| h≤y   ,|||| ∞<z  (2) 
 
are continuous and satisfy conditions of uniqueness 
of solutions (for example, the local Lipschitz 
condition). 
 
(b) solutions of system (1) are z-continuable 
(Corduneanu, 1964), i.e., any solution x(t) is defied 
for all t ≥ 0 for which ||y(t)|| ≤  h. 
 
Definition 1 (Lyapunov, 1983; Rumyantsev, 1957; 
Corduneanu, 1964). The unperturbed motion x = 0 of 
system (1) is said to be 
 
(1)  y-stable (y-St), if for any numbers ε > 0, t0 ≥  0, 

there is a number δ( ε, t 0 ) > 0 such that from 
||x0||< δ  it follows that ||y(t;t 0 ,x0)||< ε  for all t > 
t0 ; 

 
(2) uniformly y-stable, if in definition (1) number δ  

does not depend on t 0 ; 
 
(3) asymptotically y-stable, if it is y-St and, besides, 

for each t0 ≥ 0, there is a number ∆ (t0 )>0 such 
that each solution x ( t ; t 0 , x 0 )  with ||x 0 || < ∆  
satisfies the condition 

 
,0||),;(||lim 00 =xy tt    ;∞→t  (3) 

 
domain ||x 0 || < ∆  being contained in the 
domain of y-attraction of the point x = 0 for 
the initial time t0 ;  
 

(4) uniformly asymptotically y-stable, if in 
definition (3) number ∆  does not depend on 
t 0  and relationship (3) holds uniformly with 
respect to t 0 , x 0  from the domain t0 ≥  0, ||x 0 || 
< ∆ ; 

 
(5) exponentially asymptotically y-stable (Cordu-

neanu, 1971), if there exist constants ∆  > 0, M 
> 0, and α  > 0 such that each solution 
x ( t ; t 0 , x 0 )  of system (1) satisfies the inequality 

 
,||)(||||),;(|| )(

000
0tteMtt −−≤ αxxy    .0tt ≥  

 



When studying the y-stability of the unperturbed 
motion x = 0 of system (1), in principle, one need 
not monitor the behavior of z-variables (provided 
certain general conditions are observed). In the 
coupled system (1), however, they exert an 
important influence on the "main" y-variables. 
Let us distinguish the factors that determine the 
admissibility of the "uncontrollable" z-variables 
(Vorotnikov, 1998). 
 
(1) Allowance for the  "worst"  case scenario 

(general conditions being the same) in the 
variation of  "uncontrollable" variables.   This 
entails the assumption ||z||< ∞  and, 
consequently, the study of y-stability of the 
unperturbed motion x = 0 of system (1) in 
domain (2). 

 
Such considerations may prove overcautious. 
Indeed, one does not use inequalities | jz |< h 
that are valid (or admissible) for certain z-
components or relationships like |),(| xtfi < h. 
Such relationships may considerably facilitate 
examining the system for y-stability. In a sense, 
allowance for the "worst" case scenario is 
comparable with the game-theoretic approach. 
 

(2) Allowance for specification of requirements 
imposed on the "uncontrollable" variables. An 
alternative to the "worst" case scenario. This ap-
proach has various meanings. 

 
Rationalizing the formulation of the PSt–
problem. This requires "subjecting" the system 
to certain general estimates (possibly including 
integral estimates) for the "uncontrollable" 
variables. This significantly simplifies the 
solution. An example is the study of the 
stability of the motion of bodies containing 
cavities filled with liquid (Moiseev and 
Rumyantsev, 1968). 
 
"Built-in" possibilities for facilitating the 
solution of PSt–problems. Put differently, the 
use of additional relationships linking the 
components of the phase vector of system (1). 
The validity of such relationships must 
somehow be confirmed when solving the 
problem. This approach provides the basis, for 
example, for the method of solving PSt–
problems by constructing auxiliary systems 
being developed in Vorotnikov (1991, 1998). 
 

(3) Allowance for availability of estimates (even 
though rough) for "uncontrollable" variables. 
In such cases the PSt–problem for system (1) 
can be reduced to a problem of stability with 
respect to all the variables in an auxiliary 
system of differential equations of the same 
dimensions (Zubov, 1962). 

 
 

3.2.Stability of "partial" equilibrium position 
 

Let there be given a nonlinear system of ordinary 
differential equations 
 

=yD Y(t,y,z),   =zD Z(t,y,z), 
Y(t,0,z) ≡ 0. 

(4) 

 
Definition 2 (Rumyantsev, Oziraner, 1987). The set 
y = 0 of system (4) is said to be 
 
(1) stable, if for any numbers ε  > 0, t0 ≥  0, there is 

a number  δ(ε, t0) > 0 such that from ||y0|| < δ , 
||z0|| < ∞  it follows that ||y(t;t0,x0)|| < ε , t ≥  t0; 

 
(2) uniform stable, if in definition (1) number δ  

does not depend on t0 ; 
 
(3) asymptotically stable, if it is stable and, besides, 

for each t0 ≥  0, there is a number ∆ (t0) > 0 such 
that each solution with ||y0||< ∆ , ||z0||< 
∞ satisfies the condition (3). 

 
(4) uniform asymptotically stable, if in definition (3) 

number ∆  does not depend on t0 and 
relationship (3) holds uniformly from the 
domain t0 ≥  0, ||y 0 || < ∆ , ||z0||< ∞ . 

 
 

4.THE BASIC METHODS FOR SOLVING OF 
PSt(PSb)-PROBLEMS 

 
These methods are following: 
− Lyapunov's functions method (LFM); 
− analysis of PSt (PSb)-problems in linear 

approximation. 
 
The applicability of the LFM to the PSt-problem has 
been considerably extended along the following 
lines: 
− by introducing various types of "limiting" 

systems (Andreev, 1991, Hatvani, 1991); 
− by constructing various types of auxiliary systems 

(Zubov, 1962, Vorotnikov, 1991, 1998); 
− by refining the notion of a V-function sign-

definite with respect to part of the variables 
(Vorotnikov,1993,1998) and by reducing the 
admissible domain of variation of "uncontrolled" 
variables (Vorotnikov,1999); 

− by using the LFM in conjunction with asymptotic 
averaging (Khapaev, 1993). 

 
An analysis of PSt–problems in linear approximation 
can be found in Vorotnikov (1998, 1999). 
 
 

4.1. The basic theorems about partial stability in 
context of MLF 

 
In Sections 4.1-4.3 we will consider following 
functions: 1) functions ( )ra , ( )rb , ( )rc  which are 



continuous, monotone increasing for [ ]hr ,0∈ , and 
such that ;0)0()0()0( === cba  2) a scalar function 

( ),, xtV  ( ) 0, ≡0tV  which is continuously 
differentiable in domain (2). 
 
Theorem 1 (Rumyantsev, 1957). Suppose that for 
system (1) a scalar function V exist such that the 
following conditions hold in domain (2) 
 

V(t,x) ≥  a(||y||),   VD (t,x) ≤ 0.  
 
Then the unperturbed motion x = 0 of system (1) is 
y-stability. If, in addition (Corduneanu, 1964) 
 

V(t,x) ≤  b(||x||),   
 
then the unperturbed motion x = 0 of system (1) is 
uniformly y-stability. 
 
Theorem 2 (Rumyantsev, Oziraner, 1987). Suppose 
that for system (4) a scalar function V exist such 
that the following conditions hold in domain (2) 
 

a(||y||) ≤  V(t,x) ≤  b(||y||),  VD (t,x) ≤ 0.  
 
Then the set y = 0 of system (4) is uniformly stability. 
 
 

4.2.The unified conditions of solving PSt-problems 
 

Conditions of solving the Lyapunov-Rumyantsev 
PSt-problem and the problem stability "partial" 
equilibrium positions can be made the same, if the 
notions of stability in these problems are modified in 
the following away. 
 
Definition 3 (Vorotnikov, 1998, 2002). The 
unperturbed motion x = 0 of system (1) is said to be 
uniformly y- stable for large z0, if for any numbers ε  
> 0, t0 ≥ 0 and a given number L > 0, there is a 
number δ ( ε , t0, L) > 0 such that from ||y 0 || < δ, 
||z0||< L it follows that ||y(t;t0,x0)|| < ε , t ≥  t0. 
 
Definition 4 (Vorotnikov, 2002). The set y = 0 of 
system (4) is said to be uniformly stable for large z0, 
if for any numbers ε > 0, t0 ≥ 0 and a given number 
L > 0, there is a number δ ( ε , t0, L) > 0 such that 
from ||y 0 || < δ, ||z0||< L it follows that ||y(t;t0,x0)|| < ε , 
t ≥  t0. 
 
Theorem 3 (Vorotnikov, 2002). Suppose that for 
system (1) and (4) a scalar function V exist such that 
the following conditions hold in domain (2) 
 

V(t,x) ≥  a(||y||),   V(t,0,z) ≡  0,  )(),( xx btV ≤ , 

V� (t,x) ≤ 0. 
 
Then: 1) the unperturbed motion x = 0 of system (1) 
is uniformly y-stability for large z0; 
 

2) the set y = 0 of system (4) is uniformly stability for 
large z0. 
 
 
4.3. A method of reducing the admissible domain of 

variation of "uncontrolled" variables 
 

One modification (Vorotnikov, 1999) of LFM for 
solving PSt–problems reduces to adjusting the 
structure of the domain in which the Lyapunov 
functions are constructed. To elucidate: the domain 
(2) usually considered in studying −y stability of the 

position ( ) 0zyx ==
TTT ,  of system (1) is 

contracted, being replaced by a domain 
 

,0≥t ( ) ,, ht ≤+ xWy ∞<z , (5) 
 
where ( )xW ,t  is some vector function, which 
depends on t and the phase variables of system (1). In 
this case, naturally, the new condition 

( ) ht ≤+ xWy ,  must be verified while the 
problem is being solved. 
 
The main point in studying the problem of 

−y stability in domain (5) is that the −y stable 

position ( ) 0zyx ==
TTT,  of system (1) is always 

actually stable not only with respect to y but also 
with respect to certain functions ( )x,tWW ii = . 
However, it is not always clear in advance just what 

−iW functions are involved. In such a situation, 
suitable −iW functions are naturally treated as an 
additional vector-valued Lyapunov −W function for 
the most rational substitute (5) for domain (2). When 
that is done it is not necessary to analyze the 
derivative of the −W function along trajectories of 
system (1), which is an added argument in favor of 
this approach. 
 
Such an approach not only facilitates the construction 
of Lyapunov functions with appropriate properties, 
but also enables one to prove −y stability using 
functions which, even when ( ) ( ) 1dimdim == zy , 
need not be of fixed sign (Vorotnikov, 1998) either 
with respect to y  in Rumyantsev's sense 
(Rumyantsev, 1957; Rumyantsev and Oziraner, 
1987) or in Lyapunov's sense. 
 
The following theorem is developing of main 
Rumyantsev theorem (Rumyantsev, 1957) about 
partial stability. 
 
Theorem 4 (Vorotnikov, 1998). Suppose that for 
system (1) a scalar function V and vector function 
W  exist such that the following conditions hold in 
domain (5) 
 

( ) ( )( );,, xWyx tatV +≥  (6) 



( ) .0, ≤xtV�  (7) 
 
Then the unperturbed motion 0x =  of system (1) is 
y-stability. 
 
Discussion of Theorem 4. A V-function satisfying 
inequality (6) in domain (5) also satisfies inequality 

||)(||),( yx atV ≥ in this domain, but not in domain 
(2). Consequently, it is not y-sign-definite in the 
sense of Rumyantsev (1957), Rumyantsev and 
Osiraner (1987). 
 
Example 1. Consider the motion of a point of unit 
mass in a constant gravitational field, constrained to 
move on the surface 
 

( ) ( )( ) 14
2

4
1

2
2

2
1213 11  ,,

−
++== xxxxfxxfx

 
(8) 

 
in three-dimensional −321 ,, xxx space, with the 3x -
axis pointing vertically upward.  
 
The kinetic and potential energies are 
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x
fxxT CCCC ,

0const  ),,( 21 >==Π gxxgf . 
 
Putting ( ) 2211 ,,, xzxxx == CCy  and introducing 
auxiliary functions ,  , 21xxWПTV =+=  we obtain 
 

( ) ( )( )  ,1
2
1 1422

1
2
2

2
1

−
++++≥ WWxgxxV ��

0 ≡V . 
(9) 

 
Consequently, conditions (6) and (7) hold in (5) for 
sufficiently small h. As a result, the equilibrium 
position of the point 
 

3,1  ,0 === ixx ii C  (10) 
is −y stable by virtue of Theorem 4. 
 

 
 
Fig. 1. The level surfaces cf =  of −f function (8). 
 

At the same time, the V –function is not sign-definite 
whether relative to y  in the sense of Rumyantsev 
(1957), Rumyantsev and Oziraner (1987) ( 0→V  for 

,021 == xx ��  ∞→2x  and any fixed 1x ) or in 
Lyapunov's sense ( 0=V  for 211 xxx �� ==  and any 

2x ). 
 
By (9), the position (10) is also −W stable. 
Summing up in view of (8), we conclude that this 
position is stable with respect to 2121 ,,, xxxx ��  
(including the case of large 20x ). 
 
The level surfaces cf =  of −f function (8) under 

021 == xx �� are shown in Figure 1. 
 

Theorem 5 (Vorotnikov, 1999). Suppose that for 
system (1) a scalar function V and two vector 
functions U  and W  exist such that the following 
conditions hold in domain (5) 
1. ( ) ( )( );,, xWyx tatV +≥  

2. ( ) ( )( );,, xUx tbtV −≤�  

3. ( ) ( );, yxU ct ≥  
4. a number ( ) 0,0 >0xtM  exists such that, for 

each of the functions iU�  either MUi ≤�  or 

.MUi −≥�  
 
Then the unperturbed motion 0x =  of system (1) is 
asymptotically −y stable. 
 
Discussion of Theorem 5. 1) If 0W =  Theorem 5 
extends the corresponding results in Salvadori 
(1974), Rumyantsev and Oziraner (1987). 
 
2) If 0W ≠ , then not only V and V�  but also U  
need not be sign-definite, either with respect to y  (in 
Rumyantsev's sense) or in Lyapunov's sense. In 
addition, condition 4 may be verified in domain (5) 
but not in domain (2), and this extends the 
possibilities for using the theorem. 
 
3) If yU = , condition 4 reduces to the requirement 
that each component of the vector function Y, 
defining the right-hand side of the first group of 
equations in system (1), should be bounded above or 
below. Therefore, when yU = , 0W = , Theorem 5 
reduces to a theorem Peiffer and Rouche (1969) 
which extends the classical result of Marachkov to 
the case of partial asymptotic stability. 
 
4) The approach of using an additional Lyapunov 
vector function has also been used in Vorotnikov 
(1997a, 1998) to strengthen a number of theorems 
(Risito, 1970; Rumyantsev and Oziraner, 1987) on 
partial asymptotic for an autonomous system (1) (of 
the type of the Barbashin - Krasovskii theorem) 
 



Example 2. Let system (1) be 
 

( ) +++−= 2
211211 2 zzyeyyy t

D  

3
2
211 zzzy+ ,  

( )2
322212 2 zzyeyyy t−−−=D , 

,22 1
2
131 zyezz t−=D   ,2

2
12 zyez t=D  

13 2zz −=D . 

(11) 

 
Let us consider the problem of asymptotic ( )21, yy –
stability of the unperturbed motion 021 === izyy , 

3,1=i  of system (11). To do this, we introduce 
Lyapunov functions 
 

( ) ( )2
32

2
21

2
2

2
1 zzzzyyV +++= , 

( ),, 21 WW=W    ,211 zzW =    ,322 zzW =  

( ),, 21 UU=U    ,2
11 yU =    2

22 yU = . 
 
Positive constants 1, Ml  and 2M  exist such that the 
following relations hold in domain (5) 
 

( )Wy +≥+++= aWWyyV 2
2

2
1

2
2

2
1 , 

( ) ( ) ≤+−≤−+−= 2
2

2
121

2
1

2
2

2
12 yylWWyyyV�  

( )Ub−≤ ,     ( )yU c≥ , 

( )211
2

112111 22 WWyWyeyyyUM t +++−=≤− C , 

( ) 2
2

222122 22 MWyeyyyU t ≤−−−=C . 
 
Consequently, the functions W,V  and U  satisfy all 
the conditions of Theorem 5. Hence the equilibrium 
position 021 === izyy , 3,1=i  of system (11) is 
asymptotically ( )21, yy –stable. 
 
Note that the relation ( )2

2
2
1 yylV +−≤C  is not 

guaranteed in domain (2), that is, the function VC  
need not be y -sign-definite in Rumyantsev's sense. 

 
 

4.4. Generalization of the Lyapunov - Malkin 
theorem 

 
Let us we present system (1) as two groups of 
equations 
 

( ) ( ) ( ),, zy,Yzyy ttBtA ++=D  
( ) ( ) ( )zy,Zzyz ,ttDtC ++=D , 

(12) 

 
where A, B, C and D are matrix functions of t  
appropriate dimensions, whose elements are 
functions continuous in [ )+∞∈ ,0t . The non-linear 
perturbations Y and Z  are continuous and satisfy 
the conditions of the existence and uniqueness 
theorems in the domain 0const,0 >=≤≥ ht x . 
 

We assume that the following conditions are satisfied 
(Rumyantsev and Oziraner, 1987) 
 

( ) ( ) ,,, 0z0,Y0,0Y ≡≡ tt  
( ) ( ) 0z0,Z0,0Z ≡≡ ,, tt , 

( ) ( )
0

,,
⇒

+
y

zy,Zzy,Y tt
 

as  0→+ zy . 

(13) 

 
Theorem 6 (Vorotnikov, 1999). Let the trivial 
solution of the linear system 
 

( ) ( ) ,zyy tBtA +=D ( ) ( )zyz tDtC +=D  (14) 
 
be uniformly stable in Lyapunov's sense and 
(simultaneously) exponentially asymptotically 

−y stable. Then, if conditions (13) are satisfied, the 
unperturbed solution 0,y =  0z =  of the non-linear 
system (12) has the same stability property. 
 
Discussion of Theorem 6. 1) Theorem 6 extends 
certain results in Rumyantsev and Oziraner (1987); 
Vorotnikov (1998), Malkin (1966). In Vorotnikov 
(1998) the matrix functions A, B, C and D are 
independent of t; also in Malkin (1966) additionally 
B ≡ 0, D ≡ 0 (all elements of the matrices B and D 
vanish identically). In Rumyantsev and Oziraner 
(1987) the matrix functions A, C and D depend on t , 
but B ≡ 0 and, in addition, all elements of the matrix 
functions A and C are bounded for [ )+∞∈ ,0t . 
 
2) Confining themselves to the case 0≡B , in 
Rumyantsev and Oziraner (1987) considered the 
more general class of −Z non-linearities, while in 
Vorotnikov (1998) the more general class of 

−Y non-linearities is considered. In Vorotnikov 
(1998), however, the matrix functions A, C and D do 
not depend on t. 
 
Example 3. The equations of angular motion of a 
rigid body about its center of mass under the action 
of linear torques are 
 

( ) ( ),* xXxx += tLC ( ) ,,, T
121 zyy=x  

( ) ( ) ,,[ 11
1

21312
1

132
* zyJJJzyJJJ −− −−=X  

( ) T
21

1
321 ]yyJJJ −− , 

(15) 

 
where 121 ,, zyy  are the projections of the angular 
velocity vector x  of the body onto the principal 
central axes of inertia, iJ  are the principal central 
moments of inertia, and L is a 3 × 3 matrix whose 
elements are functions of [ )+∞∈ ,0t  characterizing 
the action of linear torques of dissipative and 
accelerating forces on the body.  
 



Suppose the trivial solution ( ) 0x == T
121 ,, zyy  of 

the linear system 
 

( )xx tL=D  (16) 
 
is uniformly stable in Lyapunov's sense and 
(simultaneously) exponentially asymptotically 
( ) −21, yy stable. 
 
The structure of the non-linear terms in system (15) 
is such that they satisfy conditions (13). Therefore, 
we conclude from Theorem 6 that the 
aforementioned stability property for linear system 
(16) also holds for the equilibrium position 

( ) 0x == T
121 ,, zyy  of non-linear system (15). 

 
Note that system (15) does not satisfy all the 
conditions of the Lyapunov - Malkin theorem as 
stipulated in Rumyantsev and Oziraner (1987); 
Vorotnikov (1998), Malkin (1966). 
 
 
5. PARTIAL STABILIZATION OF THE STEADY  

MOTIONS OF A RIGID BODY 
 
In applications, stabilization of the steady motions of 
a rigid body (such as a spacecraft) is frequently 
achieved by means of rotating masses attached to the 
body: flywheels and or power gyroscopes. In the 
stabilization process, these masses "take upon 
themselves" perturbations which occur as a result of 
the body's deviation from a given state (Junkins and 
Turner, 1986; Vorotnikov, 1998). 
 
We will show, however, that if the steady motions of 
the rigid body are stabilized only partially (that is, 
with respect to part of the variables), which is 
sufficient in many cases of practical importance, then 
the masses attached to the body may only "transfer" 
(without "taking upon themselves") perturbations to 
the part of the variables not controlled by the 
stabilization. 
 
Suppose we have an asymmetric rigid body, with the 
axis of rotation of a uniform symmetric flywheel 
attached along one of the principal central axes of 
inertia of the body. The angular motion of the 
(gyrostat) system about its center of mass is 
described by the equations (Vorotnikov, 1998) 
 

( ) ( ) ,1323211 uxxJJxAJ −−=− D  
( ) ϕDD 31311322 xAxxJJxJ −−= , 
( ) ,21213133 ϕDD xAxxJJxJ −−=  

( ) 111 uxA =+ DDDϕ , 

(17) 

 
where iJ  are the principal central moments of inertia 
of the gyrostat, ix  are the projections of the angular 
velocity vector of the main body onto the principal 
central axes of inertia is  of the gyrostat, 1A  and ϕD  

are the axial moment of inertia and angular velocity 
of the flywheel's own motion and 1u  is the 
controlling torque applied to the flywheel.  
 
Equations (17) have the solution 
 

,021 == xx ,0const3 >== ωx  
,0=ϕD 01 =u  

(18) 

 
corresponding to permanent rotation ("twist") of the 
main body of the gyrostat at a constant angular 
velocity co about the 3s  axis. In this motion the 
flywheel, whose axis of rotation is attached along the 

1s  axis, is fixed relative to the main body, while the 
direction of the vector K  of angular momentum of 
the gyrostat coincides with the direction of the 3s  
axis. 
 
Introducing new variables ( ),2,1== jxy jj  ,3 ϕD=y  

,31 ω−= xz we set up a system of equations for the 
deviations from solution (18) 
 

( ) ( ) ( ) ,11232111 uzyJJyAJ −+−=− ω�  
( )[ ]( )ω+−−= 13111322 zyAyJJyJ � , 

( ) ( ) ( ) ,1
1

111223311 uAJzyJJyAJ −++−=− ω�

( )[ ] 23112113 yyAyJJzJ +−=� . 

(19) 

 
Let us consider the problem of partial stabilization of 
the motion ( ) 0,,, 1

T
121 === zzyy 0x  of system 

(19): −y stabilization by means of the control 1u . In 
this context, stabilization with respect to 21, yy  
means that one must suppress small precessional and 
nutational oscillations of the angular momentum 
vector K  of the gyrostat about the is  axes attached 
to the body. Additional stabilization with respect to 

3y  means that in the process of the ( )21, yy -
stabilization, the flywheel only "transfers" the small 
perturbations to the "additional rotation" of the 
gyrostat about the 3s  axis of rotation. 
 
Proposition (Vorotnikov, 1998). If 32 JJ ≠  solution 
of the −y stabilization problem for unperturbed 
motion  ,0y =  0 1 =z  of system (19) yields the 
control law 

yPu =1 , (20) 
 
where P is some constant 1×3 row-vector. 
 
Let us consider the linear subsystem describing the 
behavior of the −y variables of the linear part of 
system (19). If  32 JJ ≠ , this subsystem is 
completely controllable. Therefore the coefficients of 
the vector P in (20) may be chosen so that the trivial 
solution 0  , 1 == z0y  of the non-linear part of 



system (19) will be uniformly Lyapunov-stable and 
(simultaneously) exponentially −y stable. 
 
The right-hand sides of system (19) vanish at 0y = . 
Therefore, by Theorem 6, the stability property 
specified for the linear part of system (19) will also 
hold for the unperturbed motion 0   , 1 == z0y  of 
the non-linear system (19). 
 
Remark. In technical terms, implementation of 
control law (20) reduces to the following. As long as 
the gyrostat is performing the given motion (18), the 
flywheel is at rest (control drive switched off). In the 
event of small perturbations, special devices produce 
a control torque (20) and transmit it to the flywheel. 
As a result, the main body of the gyrostat returns in 
time to its original steady rotation, and the flywheel 
to its state of rest. 
 
Example 4. Let us consider a computer simulation 
system (19), (20) in the case ,9001 =J  ,6002 =J  

,5003 =J  ),(  100 2
1 mkgA ⋅= ),(  4.0 1−= sω  =10y  

),( 1.0 1
20

−= sy .01030 == zy  We suggest that 
).(  11 mNu ⋅≤  In this case ( ) 1.1  ;5.3  ;5.3 −−−=P  

( ). smN ⋅⋅  
 

Fig. 2-6. Function yi ( 3,1=i ), u1, z1. 
 
Practical full damping of disturbances with respect to 
variables ,, 21 yy  as well as practical full stopping of 
flywheel takes about 1500 (s). 
 
Function yi ( 3,1=i ), u1, z1  are shown in Figures 2-6. 

 
 

6. DISTINGVISHING CHARACTERISTICS OF 
PSt-PROBLEMS 

 
The point is that the PSt-theory deals with rather 
delicate properties of the system. The necessary 
"persistence" of these properties depends on a larger 
number of factors than do the properties of "overall" 
stability. What is required is a deeper understanding 
of the nature of PSt-problems, of the laws governing 
the performance of PSt-systems, and of the 
mechanisms through which PSt-properties may be 
achieved (or lost). One needs also to recognize 
pitfalls along the path to practical application of 
alluring possibilities of PSt-problems. 
 
Now we formulate a few assumptions (Vorotnikov, 
1993, 1998) that afford a deeper understanding of 
the special features of PSt-system performance. 
 
1. The predictability of structural changes as a 
precondition for normal PSt-system performance. 
This assumption is motivated by the greater sen-
sitivity of the PSt-property (as compared with 
stability with respect to all the variables) to 
changes in system structure. The implication is that 
the idea of "robustness" in the PSt-theory cannot be 
as general as it is in the theory of stability with 
respect to all the variables. This is natural, because 
PSt-theory is concerned with more "delicate" cases, 
in which "improved" or "better" stability is simply 
impossible. In addition, as was already noted, PSt-
properties are sometimes not just desirable but 
absolutely necessary, whereas universal auxiliary 
function of the PSt-problem can be revealed in 
establishing various properties of the system 
regarding its "robustness." 
 
A better understanding of the problem may also be 
gained by clarifying the nature of the relationships 
among notions that determine whether PSt-
properties are preserved. Among the latter are PSt-
properties in the presence of constantly acting 
perturbations (CAP) and parametric perturbations. 
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2. The PSt-problem in the presence of CAP is not 
generally equivalent to the PSt-problem of preserving 
stability even under small parametric perturbations. 
This is even the case for linear autonomous systems. 
Though partially stable in the presence of CAP, such 
systems may lose their stability when even a slight 
"stir" is given to certain coefficients. This does not 
occur in the problem of stability with respect to all 
the variables. 
 
Owing to this conclusion, any decision about 
whether to use the results of PSt-theory must be 
made at the design stage in each specific case. Here 
it is important to have constructively verifiable 
conditions for preserving PSt-properties at the 
researcher's disposal 
 
At the other end of the "fragility" scale for PSt-
properties one has the following. 
 
3. A system that loses the PSt-property is 
nevertheless frequently "coarse" in the Andronov-
Pontryagin sense. In principle, the phase portrait of a 
"coarse" system is invariant under minor "stirs" of 
the parameters. Hence the loss of PSt-properties in 
such cases implies only a certain "rotation" of the 
phase portrait in the corresponding phase plane. 
 
4. The possibility of the invariance of PSt-properties 
in the presence of arbitrarily large CAP in certain 
channels of system (1). This question is related to the 
general problem of invariance  

 
 

7. THE PARTIAL CONTROL PROBLEMS 
 

The problematics of PSt- and PSb-problems are 
closely related to the problem of control with respect 
to part of the variables (partial control) in a finite 
time interval. Being rather natural for many 
controlled systems, this problem has long been 
studied in the literature. Apart from, the term "control 
with respect to part of the variables" (Krasovskii, 
1968; Vorotnikov, 1998; Kovalev, 1994) there are a 
number of widely used terms: 
− "control in output" (Desoer and Vidyasagar, 

1975); 
− "control with free endpoints" (Pontryagin et al., 

1962); 
− "control in configuration space" (Roitenberg 

1987); 
− "control on manifolds" (Zubov, 1980). 
 
Besides, the control problems of the "hard 
encounter" type also relate to problems of control 
with respect to part of the variables. In such problems 
it is required to ensure a rendezvous of two 
controlled objects with arbitrary velocities at the time 
of encounter. In particular, these problems relate to 
military applications: hitting mobile and immobile 
targets. A new class of the problems of the "hard 
encounter" type is distinguished in Vorotnikov 
(1997b, 1998). These are the problems of reorienting 

a spacecraft without damping its final angular 
velocity. As a result, a spacecraft just "passes" 
through a given angular position without making a 
stop in it. 
 
We also note that the problems of control with 
respect to part of the variables (and the problems of 
partial stabilization) naturally arise when a controller 
falls into the class of dynamic regulators. In this case, 
the variables characterizing the state of the main 
object are taken as the controlled variables (or the 
variables being stabilized). 
 
Two principal situations that provide motives 
stimulating the research of these problems can 
distinguished: 
 
(1) when it is sufficient to solve control problems 
only with respect to part of the variables 
characterizing the state of a system and 
 
(2) when controllability of a system with respect to 
all the variables is not possible at all (for example, 
because the system possesses some first integrals). 

 
A number of methods are known for investigating the 
problems of control including those of optimal 
control) with respect to part of the variables for 
nonlinear systems, among which are the following: 
−  Pontryagin's maximum principle for problems 

with free endpoints (Pontryagin et. al., 1962). 
−  methods of the theory of games in the case of 

control in the presence of uncontrollable 
interference (Krasovskii and Subbotin, 1988); 

−  the asymptotic method (Akulenko, 1994); 
−  the method of oriented manifolds (Kovalev, 

1994); 
−  the method of nonlinear transformations of the 

variables combined with a special choice of 
control structure (Vorotnikov, 1997b, 1998). 

−  Lyapunov function method (Fradkov, et. al., 
1999). 

 
 

8. THE PROBLEM OF REORIENTATING A 
SPACECRAFT 

 
Consider Euler dynamic equations 
 

1323211 )( uxxJJxJ +−=D ,  

2311322 )( uxxJJxJ +−=D , (21) 

3212133 )( uxxJJxJ +−=D ,  
 
which describe  the angular motion of a solid body 
with respect to its center of mass. Here, ix  are the 
projection of angular velocity on major central axes 
of inertia of the body, iu  are the projection of 
controlling moments on the same axes, and iJ are the 
principal central moments of inertia. Here and below, 

3,1=i ; and summation in i from 1 to 3 is assumed. 



Let us denote by x,  u  the vectors that consist, 
respectively, of ix , iu . 
 
In addition to (21), let us consider the kinematic 
equations that determine the orientation of the body 
in Rodriges-Hamilton variables 

 

( )∑−= ,2 0
.

iix λλ  

,2 3223011
.

λλλλ xxx −+=  

,2 1331022
.

λλλλ xxx −+=  

.2 2112033
.

λλλλ xxx −+=  

(22) 

 
Variables 0λ , iλ  that constitute the vector λ  obey 
the equation 
 

+2
0λ 12 =∑ iλ . (23) 

 
Controls K∈u  are selected within the class K of 
functions ),;,( 00 λxλxuu =  ( 00 ,λx  – initial states) 
with constraints 
 

.0const  || >=≤ iiu α  (24) 
 
Problem 1. Find the controls K∈u that transfer the 
body in a finite time from the initial state ( ) 0

0 λλ =t  

into the final state ( ) 1
1 λλ =t . The initial state is the 

rest state ( ) 0xx == 0
0t . The angular velocity 

( )1
1 txx =  can be arbitrary at the moment 1tt = . The 

moment 1t  is not fixed. 
 
The time moment 01 tt > is not fixed. Without losing 

the generality, we assume ( )0,0,0,11 =λ .  
 

Controls 
( ) ++= − *

1
2
1

2
0

1
011  [2 uJu λλλ  

( ) ( ) +−++ ]  *
32031

*
23021 uu λλλλλλλλ  

,
2
1

1
21

011 MxJ i −+ ∑
−λλ  

( ) (123)    32321 xxJJM −=  

(25) 

 
are implied in Vorotnikov (1997b, 1998) for solving 
Problem 1. (Only one is explicitly written; the rest  
are obtained by a cyclic permutation of indices 1→ 
2→ 3.) 
 
As the result, a linear controlled system 

*
..

ii u=λ  (26) 

can be constructed. 
 

In accordance with the goals of Problem 1 as applied 
to system (26), we solve the control problem for a 

subset of variables on the fastest attainment of 
position 
 

0=iλ . (27) 
 
The final values of iλC , can be arbitrary. By virtue of 
this fact, in view of the sense of Problem 1, controls 

*
iu  should simultaneously bring the variables iλ , 

into position (27). 
 
To solve this problem, we must first set the admissi-
ble levels for *

iu . Following (24), we introduce the 
appropriate constraints in the form 
 

0const  || ** >=≤ iiu α .  
 
When choosing the constants * iα , we must take into 
account two circumstances: (i) the simultaneous 
attainment of position (27) by all variables iλ ; and 
(ii) the feasibility of constraints (24) for the initial 
controls iu . 
 
For fixed * iα , the solution to the optimum-response 
problem in a subset of variables for system (26) is 
provided by controls (Pontryagin et. al., 1962) 
 

i
** sgn- λα iiu = , (28) 

 
Relations 

( ) 2
1

1*0 || 2




=

−
ii αλτ   

 
determine the minimum time τ , which is necessary 
to attain position (27) (and is the same for all 
variables iλ ). 
 
The trajectories of the linear system (26), (28), which 
correspond to the case 0x =0 , have the form 
 

tiii )(sgn- 0* λαλ =D , 20*0 )(sgn
2
1- tiiii λαλλ = . (29) 

 
Algorithm for solving Problem 1. 
1) Construct controls iu , with *

iu  of the form (28) 
according to (26). 
 
2) Assign the levels * iα  for auxiliary controls *

iu  

assuming the fixed values of 0
iλ ; and equalize the 

control time for all variables iλ . The levels * iα  
determine the corresponding value of τ . 
 
3) Check the feasibility of the given constraints (24) 
as applied to original controls iu . In order to do this, 
we use equalities 



( ) ( ) ++++= −
2

.

30211
.

2
1

2
0

1
01 [2 λλλλλλλλλx

( ) ]3
.

2031 λλλλλ −+         (123), 
(30) 

 
which are obtained by solving equations for iλD  in 
(22) in terms of ix . Taking into account (30), we 
conclude that the checking is feasible on trajectories 
(29) of the linear system (26), (28). Note that the 
calculations are simplified by using the relationship 
 

})(])({[4 221
0

2
∑∑∑ += −

iiiix λλλλ DD .  

 
If the estimates (24) do not hold, or, on the contrary, 
hold with an excess, it is necessary to continue the 
search for appropriate values of * iα . Otherwise, the 
reorientation is realized in time τ . 
 
As a result, we obtain an iterative algorithm of the 
solution to Problem 1. For each fixed set of values of 

0
iλ , this algorithm can be easily implemented in real 

time. 
 
Remark. The control structure" (25) contains a 
factor 1

0
−λ , which, formally speaking, generates a 

"singularity". However, a more detailed subsequent 
analysis shows that the relation ]1 |,[||| 0

00 λλ ∈  holds 

in the process of control when ( )0,0,0,11 =λ . 
Therefore, the virtual singularity does not actually 
appear. If ( )0,0,0,11 ≠λ  or if the value of 0

0λ  is small, 
then it is sufficient to generate new controls by 
applying the permutation of indices to (25) or to use 
a combination of controls obtained in this way. The 
final choice of controls iu , is performed iteratively, 
which is characteristic for many modern methods of 
applied control theory. Within the approach 
proposed, the iterative search for controls is simple 
and can be performed in real-time conditions. 
 
Theorem 7 (Vorotnikov, 1997b, 1998) For all values 

0λ  and 1λ , Problem 1 is solved by using arbitrarily 
small controls iu  of the form (25), (28) or controls 
obtained from these by a permutation of indices.  
 
Example 5. For a solid body for which 1J = 4 ×  104, 

2J  = 8 ×  104, and 3J  = 5 ×  104 )( 2mkg ⋅ , we 
consider a triaxial reorientation from position 
 

0x =0 , 0λ  = (0.701; 0.353; 0.434; 0.432) 
 
to that of 

( )0,0,0,11 =λ . 
 
The value of 1x  is arbitrary. 
 

In the case 0xx == 10 , reorientation is completed in 
a single spatial turn with time τ  = 70 (s) by using 
controls (25) with 1α  = 32.6, 2α  = 80.1, 3α  = 68.0 

)( mN ⋅ . Controls iu , are piecewise continuous and 
involve a single switching at the moment t = 35 (s). 
In the same time interval τ  = 70 (s), reorientation is 
performed within the framework of Problem 1 in a 
single turn, as well, and using the values 1α  = 29.9, 

2α = 40.1, 3α  = 24.9 )( mN ⋅ . The controls are 
continuous and vary within the range -29.9 ≤  1u  ≤  -
16.3, -40.1 ≤  2u ≤  -24.4, -24.9 ≤  3u  ≤  2.4 

)( mN ⋅ . Equal reorientation time is attained within 

the framework of problem 1 for the value of ∑ iα , 
which is lower by 41.6% than that obtained in the 
case of 0xx == 10 . 
 
Calculations also show that for max 1α ≤  80.1 

)( mN ⋅ , reorientation is performed within the 
framework of Problem 1 in 49.5 (s). The controls are 
continuous, and only 2u  reaches the limiting value, 
whereas -32.6 ≤  1u  ≤  -59.8, -49.9 ≤  3u  ≤  4.6 

)( mN ⋅ . With the same "geometrical" constraints 
imposed on iu , the time gain in the reorientation 
within the framework of Problem 1 is 29.3% (see 
Figure 7). 
 

 
 

Fig. 7. Solid lines show the controls iu , with a 
discontinuity at t = 35 (s), which solve the 
reorientation problem for 0xx == 10  at time τ  = 70 
(s). Broken lines show the continuous controls iu , 
which solve Problem 1 at time τ  = 70 (s). Solid lines 
at 0 ≤  t ≤  35 (s) continued as broken lines at 35 ≤  t 
≤  49.5 (s) show the continuous controls iu , that 
solve Problem 1 at time t = 49.5 (s) for max ≤iα  
80.1 )( mN ⋅ . 
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