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Abstract: The results of numerical and real experiments with the mechatronics set-up are
desribed. The experimental mechatronics set-up consists of single and coupled double
pendulum-like electromechanical system connected to the personal computer. The mathe-
matical models of mechanical and electromagnetic processes in the system, data exchange
interface and software for laboratory experiments are described. The analysis and control
design problems for the system are difficult because only period of oscillations is available for
online measurement and only pulse control torque can be applied. The algorithms for typical
analysis and design problems (swinging and parameter estimation) are presented and studied
both numerically and experimentally. Pulse-width modulated algorithm with the time shift for
swinging the pendulums is described. The results of the paper lead to better understanding
features of theexcitability index– new characteristics of resonance properties of nonlinear
dynamical systems.Copyright c
 2002 IFAC
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1. INTRODUCTION

Control problems for complex oscillatory systems at-
tract significant interest during recent years. One rea-
son of it is possibility of a variety of applications
(vibrational and laser technologies, telecommunica-
tions, etc). An important role for the development
and testing of new control methods is played by lab-
oratory equipment. Mechanical oscillatory systems
(e.g. pendulum systems) are also of special inter-
est for control education as examples of simple sys-
tems that may exhibit complex nonlinear behavior.
That is why mechanical pendulum-like controlled toys
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drew much attention of control community recently
(Åström and Furuta, 2000), (Christiniet al., 1996),
(Dunnigan, 1998), (Furutaet al., 1999), (Miroshnik
and Bobtsov, 2000), (Shiriaevet al., 2001).

An interesting example of one- and two-pendulum
computer-controlled systems (“chaotic toys”) has been
developed in the Institute for Problems of Mechanical
Engineering in St.Petersburg (Konoplev and Konju-
khov, 1997), (Andrievskyet al., 1999), (Andrievsky
and Boykov, 2001). Each toy consists of two coupled
pendulums, one inside another. The outer pendulums
can be joined by means of an elastic link.

In this paper the system of (Andrievskyet al., 1998),
(Andrievsky and Boykov, 2001) reconsidered and
used for numerical and laboratory experiments. The
novelty of the paper is taking into account pecularities
of the electromagnetic subsystem. The mathematical
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models of mechanical and electromagnetic processes
in the system, data exchange interface and software
for laboratory experiments are described. The anal-
ysis and control design problems for the system are
difficult because only period of oscillations is avail-
able for online measurement and only pulse control
torque can be applied. The algorithms for typical anal-
ysis and design problems (parameter estimation and
swinging) are presented and studied both numerically
and experimentally. Pulse-width modulated algorithm
for swinging the pendulums is obtained and used for
investigation ofexcitability index– new tool for anal-
ysis of nonlinear systems (Fradkov, 2000).

Owing to interaction of mechanical and magnetic
processes the system possesses complex dynamics.
Therefore fine tuning of the algorithm parameters dur-
ing numerical experiments is necessary. To improve
quality of the system, parameter estimation of the
mathematical model was performed during laboratory
experiments and the obtained estimates were used for
tuning the control algorithm during numerical experi-
ments.

In Section 2 a brief description of the set-up and
its mathematical model are given, including electrical
and magnetic subsystem, data exchange interface and
software tools. Their description is given in subsec-
tions 2.2, 2.3. Section 3 demonstrates usage of labora-
tory experiments for estimation of the model param-
eters. The problem of the real-time state estimation,
based the accessible flow data and the system model
was considered in (Andrievsky and Boykov, 2001).
In the papers (Andrievskyet al., 1996), (Fradkov,
1999) it is shown that the control algorithm, ensur-
ing prescribed energy level of the mechanical system
can be designed by thespeed-gradienttechnique. In
the Section 4 this technique is applied for evalua-
tion of excitability index for one-pendulum and two-
pendulum systems. Excitability index was introduced
in (Fradkov, 2000) as a measure of resonant properties
of nonliear systems. It is defined as a family ofL1
gains for different levels of input; it allows to formu-
late stability criteria and to measure damping ability
of the system.

2. LABORATORY SET-UP DESCRIPTION

Laboratory set-up includes:mechanical part; electri-
cal part (with computer interface facilities), andthe
personal computer Pentium-3for experimental data
processing, representation of the results and the real-
time control. The specialexchange routinefor data
exchange via standard In-Out ports of the computer
has been written.

2.1 Mechanical system

The mechanical part of the system, consists of two
similar subsystems (mechanical toys), each including

Fig. 1. Pendulums coupled with the elastic link.

two coupled pendulums. Subsystems are coupled with
the elastic link, see figure 1.

Pendulums have biased centers of masses of the parts
and sliding support of rotation axes. An external part
of each subsystem is metal ring with a massive ball
and two cylindrical magnets located on it. The ball
and magnets displace the center of weight of the ring.
Magnets transmit control forces to both links. Two
opposite directed half-axes, ensuring its support on
two flat platforms with terminators of a course, are
located on the outer surface of the ring. System is fixed
on the massive basement, in center of which the Hall
sensor of the first link zero state and electrical magnet
transmitting control efforts to cylindrical magnet are
located.

The second (internal) pendulum consists of two cylin-
drical loads with magnets mounted on the axis sym-
metrically to its center. This part rotates inside an
external ring with an axis of rotation fixed on it by
means of cylindrical hinges. The hinges are mounted
on the axis turned by 45 degrees with respect to the
axis of the external ring rotation.

Each mechanical subsystem has three degrees of free-
dom:

(1) Translation of an external ring along support of
the basis;

(2) Rotations of an external ring with the above-
stated half-axes;

(3) Rotation of the second link with respect to exter-
nal ring.

The following control efforts apply:

� Force of an electromagnet of the basis on one of
magnets, established on an external ring;

� Force of the second magnet, established on an
external ring on magnets of second (internal)
link.

Measured variable is the time interval between pass-
ings of the external ring magnet above electromagnet
of the base. These events are determined by means of
the Hall sensors.



2.2 Hardware description

Oscillation control is provided on the basis of com-
bined hard/soft-ware implementation. The energy for
excitation is transmitted by the pulse-width modulated
(PWM) signal with the constant level and variable
duty cycle. From the programming point of view,
hardware represents by thewrite-only registers(WO)
for putting in the prescribed duty cycle of control
signal from the computer, and theread-only registers
(RO) for transferring oscillations of half-period dura-
tion values to the computer. The PWM based method
provides more precise control than the numeric-pulse
one, because of integration the high frequency pulses
by the mechanical subsystem (the weight of one dis-
crete of a control has less value, than on numeric-pulse
control method).

Hardware has two identical channels for each mechan-
ical subsystem and the commonperipheral controller.
The measuring unit is built using thequartz oscillator
to calibrate the main clock pulses. This pulses after the
frequency divider to 1000 Hz determine sampling time
of 1 ms. Maximum measurable time interval, pro-
vided by 12-bit counter varies from 0.001 to 4.095s.
The beginning and the end of counting interval is
determined by theHall sensorsandzero-crossing de-
tector. For data transfer the peripheral controller uses
theStandard Parallel Port(SPP) in byte bi-directional
mode.

Thecontrol unitgenerates the exciting action applied
to the pendulums via the opposite magnetic fields. It
includes bi-channelasinchronous pulse-width modu-
lator (APWM), logical command interpreting automa-
ton and thepower amplifiersto drive the electromag-
nets.

2.3 Software

As a basic development software for plant control and
measured signal processing the programming package
MATLABR, combined with theParallel In/Out Tool-
box (PIO-Toolbox) was used. The communications
protocol based on thesub-addressing method, arrays
(vectors in MATLAB ) are considered as data units for
transfer.

Main software routine is PIO (Parallel In/Out) func-
tion. This function makes available vector elements
output through the parallel 8-bit channel (commonly
used for a printer). There are some advantages of
pio-function over the similar one from the Realtime
ToolboxR (HUMUSOFT, 1998). Functionpio is writ-
ten in assembly language using the means ofBorland
C compiler to connect with MATLAB and also may be
re-compiled for SCO UNIX, LINUX as ELF- or DEE-
modules.

2.4 Simplified mathematical model of the mechanical
system

First consider a single subsystem. Its detailed model in
theaggregative formwas given in (Konoplev and Ko-
njukhov, 1997), (Andrievskyet al., 1998). For the pur-
poses of this paper the simplified model was created.
We take into account that the inner pendulum weakly
influences the motion of the external ring. After some
transformations, plant model can be written as:

Je �'=�m1g(R sin'�(%+r) cos')�
m2g(f sin'�(%+r) cos')+
mpg(%+r) cos'+m3g(Rm sin'+
(%+r) cos')+M('; u)+Mf(t);

(1)

whereJe = m%2+ J0 is the equivalent moment of
inertia of the plant. The coefficientsmi; r; Rm; % are
determined through mass-geometric parameters of the
system.M(�) describes the torque ofthe electromag-
netic forces, and the last termMf (t) stands for dis-
turbances, caused, in the first place, motion of the
inner pendulum. Electromagnetic attraction excites by
residual magnetizationof the core. Repulsive elec-
tromagnetic force is caused bythe controlling signal
u(t); applied to the clips of the electromagnet. As-
suming that the electromagnetic force changes as the
inverse square of the distance between the magnets,
we arrive at the following formulas forM('; u):

fm(')=
�
(R(1�cos')+�)2+R2 sin2 '

��1
;


(') = � � arctan
R (1� cos') + �

R sin' ;

�(') = �fm(') cos 
;
M('; u) = (Ac �Auu)�(');

(2)

where� is the minimal value of the gap between the
magnets,R denotes the radius of the external ring.
Ac; Am are assumed to be constant. Their values de-
pend on the residual magnetization and the properties
of the magnetoelectric circuit. Rewriting the model (1)
in the state-space form, and taking the viscous friction
into account we obtain the following equations:

8<
:

_'(t) = !(t);
_!(t) = �a1 sin ('(t)�  )� a2!(t)+
(ac + auu(t))�(') + f(t):

(3)

Plant parameters are found by preliminary mass-
geometrical examination and via the off-line identifi-
cation procedure on the base of the experimental data
set (Andrievsky and Boykov, 2001). This procedure is
briefly described in the Section 3. Preliminary mass–
geometrical examination gives the following rough
values of the model (3) parameters:a1 � 44 s�2;
 � 0:13 rad; parametera2 belongs to the interval
[0:1� 0:5] s�1. Parametersac; am are obtained from
relationsac = Ac=Je; am = Am=Je: Their values
should be found experimentally. Now let us consider
composite mechanical system with elastic link be-
tween subsystems. Assuming resilience of the link



Fig. 2. The sequences of measured (+) and modelling
(*) intervals�ti, �tim between zero-crossing.

to be linear, we obtain the model of the mechanical
system in the following form:

8>>>>>><
>>>>>>:

_'1(t)=!1(t);
_!1(t)=�a1 sin ('1(t)� )�a2!1(t)+
k('2�'1) + (ac+auu1(t))�('1)+f1(t);
_'2(t)=!2(t);
_!2(t)=�a1 sin ('2(t)� )� a2!2(t)�
k('2�'1)+(ac+auu2(t))�('2)+f2(t):

(4)

where'i(t); (i = 1; 2) are the rotation angles of
pendulums;u(t) is the external torque, (control ac-
tion), applied to the first pendulum;f1; f2 stand for
disturbances;k is the coupling strength (e.g. stiffness
of the string).

3. PARAMETER IDENTIFICATION BASED ON
THE LABORATORY EXPERIMENT

The model (3) parameters were refined based on the
results of the laboratory experiment. The problem is
nontrivial because only the time intervals between
zero-crossings are available for measurement. For
making experiment the field magnet was switched off
(u(t) � 0), the conjunctive spring was removed and
initial ring deflection at the angle of150 degrees was
set. As a result, the sequence ofN intervalsf�tig
(wherei = 1; 2; : : : ; N ), was obtained. This sequence
is shown in figure 2.

This experimental sequence is compared with the sim-
ulation results, taken by means of the model (3) with
specified parameter values. After calling numerical
optimization procedure the revised parameter values
are found. When searching two cost functionals are

used:Q1
�
= 1

N

NP
i=1

(tki � tmi
)2 is the mean square

value between real and modelling zero-cross instants.
This lost functional is considered as a main one. An

additional functionalQ2
�
=

jNm �N j
N ; whereNm is

a number of zero-crossing in the modelling realization
during the same period of time. FunctionalQ2 is con-
sidered as a restriction. Finally, the lost functionalQ
is defined as:

Q =

�
104 �Q2; when Q2 > 0:05;
Q1; else:

Using the standard optimization routine the follow-
ing parameter estimates for the first pendulum were
found:a�c = 0:89 s�2; a�1 = 27 s�2; a�2 = 0:061 s�1;
 � = 0:082 rad (Comparative results are presented
in figure 2.) Analogously, for the second pendulum,
a�c = 0:87 s�2; a�1 = 28 s�2; a�2 = 0:063 s�1;
 � = 0:076 rad

4. EXCITABILITY ANALYSIS

4.1 Excitability index

In the papers (Fradkov, 1999), (Fradkov, 2000), the
concept offeedback resonanceand excitability in-
dexwere introduced. Consider a system described by
state-space equations

_x = F (x; u); y = h(x) (5)

wherex 2 Rn is state vector,u; y are scalar input
and output, respectively. It was shown that in ofder to
create resonance mode in a nonlinear system (to find
small force that leads to significant changes in system
behavior), it is possible to solve an optimal control
problem

Q(
) = lim sup
ju(s)j�
;
0�s�t;
x(0)=0;
t�0

jy(t)j2: (6)

If the system (5) is BIBO stable andx = 0 is equilib-
rium of the unforced system (F (0; 0) = 0; h(0) = 0)
thenQ(
) will be well defined. Apparently, the sig-
nal providing maximum excitation should depend not
only on time but also on system state, i.e. input signal
should have a feedback form. Since for linear systems
the value function of the problem (6) depends quadrat-
ically on
, it is naturally to introduce theexcitability
index(EI) for the system (5) as follows:

E(
) =
1




p
Q(
); (7)

whereQ(
) is the optimum value of the problem
(6). For nonlinear systemsE(
) is a function of

that characterizes excitability (resonance) properties
of the nonlinear system. For MIMO systems matrix
excitability index can be introduced in a similar way
computingEij for every pair of inputui and outputyj .

The solution to the problem (6) is quite complicated
in most cases. It was shown in (Fradkov, 2000) that
approximate locally optimal (speed-gradient) solution
can be used

u(x) = 
 sign
�
g(x)

T

rh(x)h(x)
�
; (8)



whereg(x) = @F (x;u)
@u

���
u=0

. The value (8) is obtained

by maximizing the principal part of instant growth rate
of jy(t)j2. An important consequence is that excitabil-
ity index can be estimated directly by applying input
(8) to the system. For real world systems it can be
done experimentally. Otherwise, if a system model is
available, computer simulations can be performed.

Excitability index can be used as a measure of res-
onance properties of a nonlinear system. It can be
employed for stability and oscillations criteria for non-
linear cascades as a substitute for maximum magni-
tude frequency response (Fradkov, 2000). The above
speed-gradient based method for approximate evalu-
ation of excitability index can be used also for linear
systems for fast experimental estimation of maximum
magnitude frequency response.

4.2 Excitability index of the single pendulum system

Fig. 3. The excitability indices of the single system (3)
with respect to energy (a), and angular velocity
(b).

Consider a single pendulum model (3). The specific
design features of the considered system allow to
apply only impulse control action at the time intervals
[t0k; t

00
k ]; wheret0k = tk � 
0, t00k = tk + 
00, the time

instantstk (“the zero-crossing instants”) satisfy the
condition'(tk) = 0 (k = 0; 1; 2; : : :). To find the
excitability index, the following time-shifted pulse-
width control action is applied:

u(t) =

�
u0; if t 2 [tk + (1� 
)T; tk + T ];
0; otherwise;

(9)

whereT = 0:255 s is a maximal impulse duration;
u0 is a constant magnitude of the controlling impulse.
For the sake of simplicity one can takeu0 = 1 and
relate the electric and magnetic circut properties to
the generalized parameterau in Eqs. (3), (4). The on-
off time ratio
 = 
(tk) 2 [0; 1] is considered as a
controlling signalof the overall system. If
 is small,

the result of the action (9) approximates the locally op-
timal (speed-gradient) action (8). Figure 3 shows the
excitability indices of the single electro-mechanical
system with respect to energyEH (
) (a), and with
respect to angular velocityE!(
) =

1


p
h!2i (b).

It is seen that the indices have the same qualitative
behavior.

Control algorithm for locally optimal excitation has
the form (9), where

u(tk) = u0sign
�
!1(tk)

�
:

The excitability indices, shown in Fig. 3 has been
found by simulation. Parameters of the model (4) were
taken from the laboratory experiments and the LSE
identification procedure. Figure 4 shows the excitabil-
ity indices that have been found on the base of experi-
ments.

Fig. 4. The experimental excitability indices of the
single pendulum system with respect to energy
(a), and angular velocity (b).

It is seen that numerical excitability curve captures
qualitiative behavior of the experimental curve for
moderate excitation amplitude
. The difference in the
region of small
 is caused by unmodeled stick friction
and magnetic effects.

5. CONCLUSION

The laboratory equipment for experiments with the
controlled double link pendulums is described. The
algorithms for typical analysis and design problems
(parameter estimation and swinging to given energy
level) are presented and studied both numerically and
experimentally. Results of the numerical experiments
are close to the laboratory ones.

Pulse-width modulated algorithm for swinging the
pendulums is obtained based upon the speed-gradient
approach. Influence of the second pendulum on the
excitability of the first one is investigated. The results



of the paper show that the described experimental set-
up is useful for research and education in the field of
nonlinear systems.

Another result of the paper is demonstration of the
excitability analysis of the described mechatronics
system.

Excitability analysis is aimed at evaluation of ex-
citability index for a nonlinear system in question. Ex-
citability index introduced by Fradkov, see (Fradkov,
1999), is a version of asymptotic gain, measuring res-
onance properties of a system.

It has been demonstrated that approximate speed-
gradient evaluation of excitability index provides rea-
sonable accuracy and allows for experimental evalua-
tion for real world system.

6. REFERENCES

Andrievsky, B.R., A.L. Fradkov and P.Yu. Guzen-
ko (1996). Control of nonlinear oscillations of
mechanical systems by speed-gradient method.
Autom. Remote Control57 (4), 456–467.

Konoplev V.A., Konjukhov A.P. (1997). Modelling ,
Control , and Laboratory Experiments with Osc-
illatory Mechanical System,Proc. Intern. Conf.
on Inform. and Control,St. Petersburg, Russia,
990 – 996.

Andrievsky, B.R., K.B. Boykov (2001). Numerical
and Laboratory Experiments with Controlled
Coupled Pendulums.Prepr. 5th IFAC Symposium
“Nonlinear Control Systems” (NOLCOS’01),
St.Petersburg, Russia, 824–829.

Andrievsky, B. and A. Fradkov (1999). Feedback res-
onance in single and coupled 1-DOF oscillators.
Intern. J. of Bifurcations and Chaos, 1999, No
10, 2047–2058.

Andrievsky, B.R., A.L. Fradkov, V.A. Konoplev and
A.P. Konjukhov (1998). Control, State Estimati-
on and Laboratory Experiments with Oscillatory
Mechanical System.Prepr. 4th IFAC Symp. NO-
LCOS’98, Twente, 761 – 764.

Andrievsky, B.R., V.A. Konoplev, A.P. Konjukhov
and A.L. Fradkov (1999). Modeling, Simulation
and Experiment with Double Pendulum Chaotic
Toy. Proc. 5th European Contr. Conf. Karlsruhe,
Aug. 31–Sep. 3
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