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Abstract: This research focuses on the problem of finite-time stabilization of chained-
form nonholonomic systems using discontinuous homogeneous feedback and intro-
duces the discontinuous homogeneous (with dilation) controller. The proposed con-
troller has no singular point, stabilizes the system in finite-time, and is not compli-
cated. Moreover, w e demonstrate an exponetially stable controller.
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1. INTRODUCTION

In this paper, we consider the problems of stabiliz-
ing nonholonomic systems (for example, wheeled
mobile vehicles, and space robots) These systems
are controllable but cannot be stabilized by an y
smooth time-invarian t state feedbak control lows
(Brockett, 1983).

F or thesesystems, various control methods have
been proposed. We can divide these methods into
basically tw o approades: the discontin uous time-
invarian t state feedbak and smooth time-varying
state feedback approach.

However, these control methods ha veproblems.
Controllers based on the discontinuous approach
lack sophisticated control strategy and those
based on the time-varying approach suffer from
slow convergence. Constructing controllers using
back-stepping (Xu and Huo, 2000) improved the
former problem, but another problem was raised,
namely, that there was a set that the input cannot
be defined. For the latter problem, M’Closkey and
Murray (M’Closkey and Murray, 1998) introduced
a time-varying controller based on homogeneity

with dilation, but this con troller was discontinu-
ous at origin and smoothness was lost.

We propose a time-invarian t discotinuous homo-
geneous (with dilation) controller for solving these
problems. In the proposed method, the system
has no singular point, is finite-time stable and
the controller is not complicated. Moreover, the
con vergence speed is selectable; w can design the
system so that it is either finite-time or exponen-
tially stable.

2. CONTROL STRATEGY

We consider the following chained-form systems.

jjl = U
21'32 = U3
i?g = T2Uq (1)

Ty = Tp_1U1-

F or the system, ve stabilize the following tw o



steps.

Step 1
Move states z2, -+ ,z, to a region where they are
settled at zero at time Ty < |z |0

Step 2
Let u; = —sgnz; and choose uy to make x5, - - -
, T, stabilize in finite-time, all states x1, - ,z,

converge to origin.

In prior research on discontinuous approach, Step
1 and Step 2 are dealt with independently. How-
ever, in this research, we construct a controller
that can automatically switch using one equation.
For system (1), we choose input u; as

uy = sgn[Ts(za, -+ xn) — o1l sgnzy,  (2)

where the function Ty : R* — R is called a
guaranteed settling time function that assures
that the states x»,--- ,x, converge to the origin
until T, as defined below.

Definition 1. (guaranteed settling function). Con-
sider system (1), and assume u; = —sgnxi(to)
and us to make xs, - - ,x, stabilize in finite-time.
T is defined as a guaranteed settling time function
if a function Ts : R® — R satisfies the following
conditions.

(1) T is continuous and T (sgn(z1 (to)), T2, * , Tn)

> 0 V(sgu(xy1(to)), T2, "+ ,Tn)-

(2) 36 € RY s.t. Ty(sgn(xy(to)), @2, ,xn) < 4,
Ve € RY s.t. ||za, -+, za|| <e.

(3) Ifat any to, Ts(sgn(xy(to)), z2(to), - ,Zn(to))
= TyoOthen (.1‘2 (to—i—Tso), ce ,l’n(t0+Tso)) =

0.
(4) In the region Ts(zy1(to), z2, - , o) < |w1],
T, < —1.

A function sgn is defined as

sgn(z) = { 1 ' ((;f; (?)). 3)

To define the sgn() function, the input u; # 0 in
region 1 = 0 and T # 0. This u; switches when
x1 reaches the region where z,--- ,z, converge
to the origin in time T5.

Lemma 1. Assume system (1) and input (2). If
Ts(sgn(xyi(to)), xz=2(t), -+ ,xn(t)) is bounded for
t > 0 in Step 1, then the u; switches one time
at most.

Proof . Since |z1| is a strictly increasing function
in Ty > |z1| and Ts(sgn(z1(to)), z2(t), -, xn(t))
is bounded V¢ > ty, x; cannot fail to become
|z1| > Ts when enough long time have elapsed.
Therefore, u; has one switch. On the other hand,
when T < |z1|, by

1 = —sgnax 4)

and T, < |Z1| in Step 2 by assumption, u; has no
switch. Therefore, u; switches at most only one
time.

Therefore, the system does not return from Step
2 to Step 1.

Remark . T may include sgn 1 (to). Since sgn x1 (t)
sgn i (to)Vt > to with lemma 1 and its proof, we
refer to ’sgn z; (tp)’ simply as ’sgnz;’.

In Step 1, system (1) is shown as
21'31 = Sgn T
21'32 = U3
i?g = T2 88N I (5)
Tp = Tp—1 58N T1,

and in Step?2, as

r1 = —Sgnr;

j?z = U3y

21'33 = —T28gnxq (6)
Ty = —Xp—15gNT].

The control aim of Step! is that zo,---,z, are
held bounded, and that of Step 2 is that they are
stabilized in finite-time To deal with these two
systems together, let the new variables ¢ be

§1=mx
;Z i z;[sgnul]"i (2<i<n-1) )

vy = [sgnuy]™ 2us.

The two systems then are shown in single form
such that

& =sgn[Ts(&2, -+, &) — |Gl sgné

5'2 = U2
=6 (8)
én = én—l-

Therefore, if v, stabilizes &, - - , &, in finite-time,

both aims of Step I and Step 2 are satisfied and
the two problems in both steps are reduced to one
problem. For these variables &, we do not consider
the moment when the system switches from Step 1
to Step 2, but the system displays no unexpected
behavior at the switching moment with lemma 1.
However, the fact that the transformation of £ to
x is discontinuous may cause some problems when
constructing 7.

3. FINITE-TIME CONTROL



There are a number of approaches for finite-
time control. For non-singularity and guaranteed
settling time functions, we use the homogeneous
(with dilation) finite-time control introduced by
Bhat and Bernstein (Bhat and Bernstein, 1997).

Preparing for finite-time control, we state homo-
geneity with dilation.

Definition 2. (dilation). Dilation A7 is a map-
ping, depending on positive dilation coefficients
r = (ry,re, -+ ,r,) € (RT)™, which assigns to
every € € Rt a global diffeomorphism

Al(z) = (eMar,- - ,e™xn), e€RT (9)

where z1,--- ,x, are suitable coordinates on R™.
Definition 8. (homogeneous function). A function
V(z) : R* — R is called homogeneous of degree
g € R with respect to the dilation AL, if there
exists ¢ € R such that

V(AL(x)) =€V (z). (10)

Definition 4. (homogeneous vector field). A vec-
tor field f(z) = (fi(x), -, fu(z)) : R* = R™ is
called homogeneous of degree k € R with respect
to the dilation ALOif there exists k € R such that

fi(AL(z)) = M7 fi(z), i=1,--- 0 (11)

A system, & = f(x) is called homogeneous if its
vector field f(z) is homogeneous.

Definition 5. (homogeneous norm). A continuous
map p : R* — R is called a homogeneous norm
with respect to the dilation A7, if it is positive
definite function homogeneous of degree 1 with
respect to the dilation Al.

In this research, homogeneous norm is taken in
the form of
< < 1
#llnom = (1 |7% + -+ fan] )=, (12)
where ¢ > max{r;,i=1,--- ,n}.

Finite-time control for homogeneous systems is

shown below results(Bhat and Bernstein, 1997),(Hong

et al., 1999).

Lemma 2. Assume system

&= f(x), f(0)=0, z(0) = zo (13)
is homogeneous of degree k with respect to AL,
x = 0 is its asymptotically stable equilibrium. Let
V(x) be the homogeneous Lyapunov function of
degree [. Then the equilibrium of the origin of

system 1is finite-time stable if & < 0. Moreover
settling time T'(zo) at initial values zg is shown

L (VT L
Tlaw) < =5, n, (W) Ve
(14)

r € R,

Proof is easy for using same argument as (Hong
et al., 1999).

We show some examples of such homogeneous
finite-time controller. For system

U1 = Y2

. (15)
Y = w,
controller
2r—1
w = —ki|y [ sgnyy — k2ly2| T sgny (16)
1
—<r<l1 (17)
2
or
w = —|y2|* sgnys2 — pa *
(18)
o=yt 57", O<a<l,
—«

is a finite-time controller(Bhat and Bernstein,
1997) (Bhat and Bernstein, 1998). For more gen-
eral system

=y
: (19)
Yn—1 =y, """
yn =w,

controller w = u,(w), up(w) =0,

rit1tk

mifs AT

winr(y) = ~lons [y — ()] T (20)
makes the system finite-time(Hong, 2001)0 Thus
we can design v in system (8) using these con-
trollers.

Consider system (1) and wy = [sgnu]™ 2vq
such that vy stabilize &, -+ , &, in finite-time. To
demonstrate the relation between eq. (14) and the
guaranteed settling time function, by eq. (14), we
define a constant c as

1 (V(e)#

> ——  min -
klleHhomzl V(e)

> >0, (21)

then a function

T. = cV(z)F, (22)
satisfies T. < 1. Since T, may be discontinuous at
the switching point, it generally does not satisfy
the guaranteed settling-time function definition.
However, when we always consider 7, in system
(6), namely

- k
T. =cV(xr, - ,xi[—sgna]" ™", ,@n)7 T,

(23)
it satisfies definition of the guaranteed settling

time function, and this is identified with 7. Thus,

T is homogeneous of degree —k with respect to
A§T27--- )Tn) 3

Therefore, these homogeneous finite-time con-
trollers v for & of degree k with respect to



A2 ™) make system (1) homogeneous of de-
(=kyra,e,r

gree k with respect to Ag
choose Lyapunov candidate function

n), Since we

Vo =Ts + |21], (24)

then its derivative V, is negative-definite in Step
2, and system (8) is finite-time by lemma 2.

4. CONVERGENCE SPEED DESIGN

Discontinuity of the proposed controller in the
previous section causes chattering at the origin
and unknown motion after the convergence. In
this section, we design the convergence speed of
system (1) based on the homogeneity introduced
in the previous section as a solution to these
problems and for other benefits.

Finite-time stability is regarded as a part of expo-
nential stability, particularly local stability. How-
ever, in this research we refer to ’exponentially
stable without finite-time stability’ simply as ’ex-
ponentially stable’ and distinguish it from finite-
time stability.

Generally, the next theorem exists for driftless-
systems.

Theorem 1. Consider the system

yzlfl(y)wl'f"'"f'ym(y)um; ye]Rna (25)
and inputs
wi = fi(y) (26)
for the system. If the closed-loop system
g = Yi(y)fily) (27)
i=1

is asymptotically stable, then if input
wi = p(y) fi(y) (28)

is chosen using positive definite function p : R* —
R, where p : R* — R is a positive-definite
function, then the system is asymptotically stable.

Summary of proof If a Lyapunov function
for system (25) exists, refer to the arguments of
(M’Closkey and Murray, 1998)0 If not, the same
conclusion is reached by the time-scale transfor-
mation

Using the argument set forth in the previous sec-
tion, we can design a homogeneous controller for
system (1). Since stability is maintained when the
input is multiplied by a positive-definite function,
the following theorem is obtained for homoge-
neous systems.

Theorem 2. Consider that sref2:1 under the in-
puts w1, us designed in the previous section is
homogeneous of degree k with respect to dilation

Agfk’”"” ™) If we choose new input

uy = [[2]lomu
, h (29)
Uy = ||m||hom’u’27
then
(1) f 0 <h < —k,
the new closed-loop system is finite-time sta-

ble.

(2) if h = —k,
the new closed-loop system is exponentially
stable.

Summary of proof Finite-time stability is ob-
vious with lemma 2. With respect to exponential
stability, refer to the arguments of (M’Closkey and
Murray, 1998).

In the case of h > —k, the system has a high-order
convergence property and its convergence is slow
in the neighborhood of the origin (away from the
origin, convergence is fast).

We can now make the system exponentially stable
to multiply the input by a homogeneous norm.
Thus, problems such as chattering are avoided.

5. CONTROLLER FOR THIRD ORDER
CHAINED-FORM SYSTEMS

In this section, we apply the proposed method
to a third-order chained-form system. The target
system is shown as

i’l = U
i’z = U2 (30)
i’g = T2Uy.

For this system, we design u;,us with the proce-
dure set forth in Section 2 and 3. First, let input

uy = sgn[Ts(sgnay, x2, z3) — |z1|]sgnzy.  (31)

Next, apply the following variable-transformations.

51 =1
§3 =13
vy = [sgnus |us.
the system becomes
& = sgn[Ts(&2,&) — |& ] sen &
SR (33)
&3 = &a.
Assume an input with the form vy = —ky|& > 1

sgnés — k2|§2|¥ sgn &, for the finite-time con-

troller. Then the system



& = —k|&[ 7 sgn & — k|G| =

& =6
is homogeneous of degree r — 1 with respect to
AET’I) and, in the case % < r < 1, the system is

finite-time stable if the system is asymptotically
stable by lemma, 2.

sgn &2 (34)

Next, we look for a Lyapunov function. Let can-
didate Lyapunov function be

|€3|2T L bEs |G| 7T sgn o + |62 (35)

Then the candidate Lyapunov derivative is

r—1 2’{’ -1
V=& [ |§3|2T
2 = 2
k‘2b§3|52| — sgnés — (2k2 - b)|&f?] -
(36)
Here, if k1, ke > 0,
1 - -1
k%r 2r—1 1 2r—1 (27" _ 1)2
— - +1 2
< <k> (2> =i S
(37)

and

% or N
b < (ﬁ) (2k'1) 2r, (38)
then we obtain V > 0,V < 0 by thorem3, and V

is the Lyapunov function for system (34).

We choose guaranteed settling time function 75,

k1
Ts=c —|:1; |>r 1+b:1;3|:z:2| sgn( T SgN T1)

o 2] (39)

in consideration of the fact that the Lyapunov
function V obtained above is discontinuous at the
moment when the system changes from Step 1 to
Step 2, where b satisfies equations (37) and (38)
and c satisfies eq. (21).

The controller thus designed is shown as

u; = sgn[Ts(sgnzy, o, x3) — |z1|] sgnzy

_ 2r—1 -t
Uz = —k1|$3| Sgn rs Sgn u; — k2|$2| s

(40)

Equation (40) confirms that controllers wu,us
have no singular point.

We have constructed a discontinuous finite-time
stable controller, but this controller has some
problems, as described in Section 4. Therefore
we have also designed the exponentially stable
controller shown in Section 4.

1
SgN T .

The closed loop system substituting controller eq.
(40) into system (30) is

&1 = sgn[Ts(sgnzy, xa,x3) — |21] sgnxl
By = —ky|23]|*" ' sgn s sgnu; — k2|m2| sgnmz
&3 = xo sgn[Ts(sgn o1, T2, 3) — |z1]] sgn ;.

(41)

Therefore, the total system is homogeneous of
degree r — 1 with respect to AQ*”“), Hence, we
can design a new input

u = ||:z:||hom sgn[Ts(sgnxy, 2, x3) — |z1|] sgn z1
uy = [|z||pom [ ki |!’133|2T*1 SgN T3 SgN Uy
—k2|$2| SgIl .1'2:| (42)

which makes the system exponentially stable.

6. COMPUTER SIMULATION

In this section, we evaluate the controller for
the third-order chained-form system shown in the
previous section by computer simulation. Each
parameter of the input is chosen as r = %, ki =
1,k = 1,b = 1,¢ = 10 and the homogeneous
norm is defined as

1

L, ;
lellnom = (|7 + fzaf? + fosf?) T (43)

The simulation result for the finite-time controller
is shown in Fig. 1 and the case of the exponentially
stable controller is shown in Fig. 2. Both con-
trollers stabilize all states to the origin. It appears
that the exponentially stable controller converges
faster in the region away from origin and slower
in the neighborhood of origin.

10
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Fig. 1. Simulation Results: Finite-time Controller

7. CONCLUSION

In this research, we proposed a discontinuous
homogeneous controller for chained-form systems
that is controllable but cannot stabilize with
smooth time-invariant state feedback control.
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Fig. 2. Simulation Results: Exponentially Stable
Controller

Using the proposed controller, we demonstrated
that the controllers do not have a singular point
and that a finite-time or exponentially stable
convergence speed can be selected. Moreover, the
computer simulation confirms the availability of
the proposed method.
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Appendix A. POSITIVE OR NEGATIVE
DEFINITY OF HOMOGENEOUS
FUNCTIONS

Lemma 8. Assume a function f: R?> — R

a—1 a
f(z,y) = alz|® +bxly| = sgny +cly|~ (A1)
)

is homogeneous with respect to AQ”’ , where a >

1and a,b,c,r € R. If

a|c|°‘71 sgnc-a® > (a— 1)0‘71|b|“, (A.2)
then
f(z,y) >0(a>0), f(r,y)<0(a<D0),

except the origin (z,y) = (0,0).

(A.3)

Proof . Since % = a(a — 1)a|z|*72, it is always
the same sign. Therefore, the function f is convex
with respect to  when a > 0 and concave when
a < 0. Then, z has only one minimal (if a > 0)
or maximal (if e < 0) point. For avoidance of
complexity, assume a > 0. Next, we find for z,

which makes f minimal. When % =0,

v = (%) ol sen(—by). (A4)

The minimal value function g(y) can be defined
when the z obtained above is substituted into eq.
(A.1). It is shown as

oly) = { (;3) pa +c} WE (A5)

Therefore if

ale|*tsgnec-a® > (a—1)

a—1|b|a

(A.6)

then g is a positive-definite. Arguing the same in
the case of a < 0, we obtain lemma 3.

By lemma 3 and the fact that if > 0, then z —
2P is a homeomorphism, the following theorem is
held.

Theorem 3. Assume a function f: RZ2 — R

a—1 a
flx,y) = alz|*” + bz’ sgna - Jy| = sgny + cly|*
(A7)

is homogeneous with respect to AS’”, where o >
1,6>0and a,b,c,r € R. If

a|c|“_1 sgne-a”® > (a— 1)“_1|b|°‘, (A.8)
then
f(z,y) >0(a>0), f(zr,y)<0(a<D0),

except the origin(z,y) = (0, 0).

(A.9)



