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DISCRETE-TIME SLIDING MODE CONTROL OF A DC MOTOR AND BALL-
SCREW DRIVEN POSITIONING TABLE

Yu-Feng Li,  Jan Wikander
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100 44 Stockholm, Sweden

Abstract: A discrete-time sliding mode control design for a ball-screw driven positioning
table is presented. The basic feature of this design is that high speed and high positioning
accuracy can be met despite of the fact that the controlled process suffers from friction
and mechanical flexibility. Disturbance rejection, in the form of friction compensation
and vibration suppression, is the main focus of the paper. Apart from this, the robustness
of the proposed controller with respect to model uncertainties is also considered. Experi-
ments on the Y-axis of a Mydata surface mount robot show consistent and robust perform-
ance under different load conditions.

Keyword: discrete-time, sliding mode, two-mass system, friction compensation, vibration
suppression
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1.  INTRODUCTION

Positioning systems are used e.g in various phases of
microelectronics manufacturing. One application that
is targeted for the research reported here is surface
mount robots (SMR), in this case represented by
Mydata assembly machines for mounting electronic
components on circuit boards. The Y-axis of the
machine uses a typical ball-screw transmission driven
by a DC servo motor to position the circuit boards.
For electronic systems manufacturing, high position-
ing accuracy is required in consequence of the
reduced size of modern electronic components, and
the high operational speed is desired for achieving
high productivity. In addition, robustness must be
considered not only for stability but also for perform-
ance, since differences in parameters among individ-
ual machines represent uncertainties, e.g. uncertainty
in friction parameters. Further, different circuit
boards represent different loads, and the mass of a
particular board changes as components are mounted.
In other words, the same controller settings should
meet the control specification for all machines and for
varying loads, i.e., without individual tuning.

In this application, the major obstacles for high per-
formance are caused by the uncertainties due to fric-
tion and mechanical flexibility. Friction, which
represents a complicated nonlinear function at low
velocities, is the main source of position inaccuracy.
Friction effects are usually reduced by introducing a
compensator based on an identified friction model.
However, an accurate friction model is usually diffi-
cult to obtain because of its characteristics of time-
variation during changing environmental parameters.

Further, in sample-data systems, the accuracy of
friction model and updating speed are highly que
tionable because of the limitation on sampling rate
The second problem in the system is the uncerta
dynamics owing to the inherent flexibility of the
machine structure, i.e., the finite stiffness of the lon
ball-screws as well as of other compliant links. Th
flexibility is a destabilising factor in the feedback
control loop, resulting in substantial limitation of the
control bandwidth.

Sliding mode control (SMC) has gained significan
interest in recent years due to its superb characte
tics in terms of insensitivity to large parameter varia
tions and its capability in disturbance rejection. Th
concept of discrete-time sliding mode (DSM) (Utkin
1994) was introduced for the purpose of implemen
ing SMC in sampled data systems. The discrete-tim
sliding mode control (DSMC) with one step delaye
disturbance compensation (Su,et al., 1993) provides
an excellent method for disturbances rejection a
chattering attenuation. Li & Wikander (2000) hav
shown that the DSMC is able to compensate unknow
friction in positioning systems, despite of the compl
cated characteristics of friction.

However, the DSMC can not be directly applied t
the Y-axis ball-screw system, since the controlle
excessively excites the mechanical resonance of
process. Many previous researchers have studied
application of the SMC in flexible systems. Fo
example, frequency shaped sliding mode (FSSM) w
introduced by Young & Özgüner (1993); H-infinity
andµ synthesis based sliding mode control was stu
ied by Nonami,et al. (1996); These methods actually
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introduce a low pass filter with an appropriate cut-off
frequency into sliding surfaces, thus high frequency
vibrations due to parasitic dynamics as well as their
interactions with sliding mode dynamics can be sup-
pressed in the desired frequency band. However, the
weakness of such a method is that the transient
response may be slowed down to an unsatisfactory
degree. To reduce this problem, the combination of a
FSSM and a terminal sliding mode control was pro-
posed by Xu & Cao (2000). Other methods can also
be found in the literature, such as sliding mode with
perturbation estimation and shaped sliding surface
(Moura,et al.,1997), sliding mode with shaped com-
mand input (Jalili & Olgac, 1998; Singh, 1994) and
sliding mode with time-varying or nonlinear sliding
surface (Hara & Yoshida, 1996; Li,et al., 1999).

The purpose of this paper is to design a robust servo
positioning controller based on DSM for the Y-axis of
the Mydata SMR. Regardless of model uncertainties
and nonlinear friction, the motor positioning error
should be within the range of the measurement reso-
lution while minimizing the excitation of the table
vibrations. The remaining sections are organized as
follows. The dynamic model of the compliant system
and the control problems are presented in section 2.
The design of a DSMC and disturbance compensation
are given in section 3. In section 4, the method for
suppressing vibrations due to unmodeled dynamics is
proposed, and the experimental results are presented
in section 5. Finally, a conclusion follows in section
6.

2.  SYSTEM AND CONTROL PROBLEM
DESCRIPTION

2.1  The plant description

A sketch of a Y-axis of an SMR is shown in Fig. 1,
the rotation of a current controlled DC motor is con-
verted into a translational motion by a high precision
ball-screw. A slide table attached to the ball-nut car-
ries the load at high velocities. The total moving
range along the Y-axis is 1.2 meters. Since the stiff-
ness of the ball-screw and of the connection between
the nut and table are finite, the process is simplified as
a two-mass system:

(1)

where the variablesθm, xl, are the motor angle and
table displacement respectively;im is the motor cur-

rent andTl the load torque due to the torsion of th
ball-screw;Tf is the friction torque acting at motor
side. Disturbances acting at the load side are assum
zero in this application. The remaining paramete
and their values are given in TABLE 1.

Clearly, a two-mass model for the distributed mass
is a quite coarse simplification of the physical proc
ess, and thus some of the model parameters, e.g.
equivalent stiffness are not easily determined fro
physical parameters. With a 10kg load on the tab
the process spectrum analysis shows that the mech
ical resonance of the process is in the range of 20
600 rad/s, implying the equivalent stiffness in th
range of 15~20 (Nm/rad). Moreover, the frequencies
of the resonance peaks change with table positio
indicating the dynamics uncertainty of the process.
addition, measurements also show that the friction
not only velocity dependent, but also positio
dependent on a macro scale. Therefore, the main to
of this paper is to design a DSM controller which no
only achieves high positioning accurate, but whic
also is robust against these uncertainties and fricti
characteristics.

In the SMR, only a single position feedback device
an optical encoder on the motor side, is provide
Therefore, the nominal model used in the controll
design utilise merely the first equation of (1) and th
the load torque due to torsion is treated as a distu
bance. Converting the motor angle position to line
position and rewriting the equation in the state spa
form gives:

(2)

, (3)

where , ,

and is the

lumped disturbance of the load torque, friction an
other external disturbances. The parameters of
second mass may not be known exactly due to t

θm Coupling

Ball bearing

Flexible connection

Table & Load

im

Ball-screw
Ball bearing

Slide bearing

DC NutNut

xl ẋl,

Fig.1. The Y-axis of the surface mount Robot (SMR).

Jmθ̇̇m bmθ̇m+ Kmim Tl– T f

Tl kt θm xl p⁄–( )
ml ẋ̇l bl ẋl+ Tl p⁄=

=

–=

TABLE 1. Parameters of the SMR

Parameters Value

Jm Motor inertia 1.40x10-4 (kgm2)

Ja Ball-screw inertia 1.70x10-4 (kgm2)

mn Nut mass 0.633 (kg)

mt Table mass 4.750 (kg)

ml Load mass 0~10 (kg)

bm Damping coefficient 0.003 (Nm/rad/s)

kt Stiffness 15~20 (Nm/rad)

Km Torque constant 0.356 (Nm/A)

p Screw pitch p=0.0064 (m/rad)

The equivalent motor inertia  (kgm2)

The equivalent load mass  (kg)

Jm Jm Ja+

ml mn mt ml+ +

ẋc Axc B uc d–( )+=

A 0 1

0 a–
= B 0

b
=

xc pθm pθ̇m]T[= uc im= a bm Jm⁄=

b pKm Jm⁄= d Tl T f 1+( ) pKm( )⁄=
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load uncertainty, however, knowing the resonance
frequency of the process is necessary since it provides
useful information for the later control design.

2.2  Control problem formulation

The primary goal of the considered control applica-
tion is high speed point-to-point positioning. How-
ever, due to the characteristics of the process, care
must be taken not to induce structural vibration
through bang-bang type of control signals. In state
space control design, the states of the trajectory can
be generated by a reference model which was named
an xd-generator in Misawa (1997). Thexd-generator
has the form of

(4)

The dynamics of thexd-generator is obtained from the
nominal process through feedback, i.e., the hypotheti-
calud is designed by

(5)

where is the feedback gain which can be deter-
mined by any appropriate design method such as pole
placement or LQR control. is the command dis-
tance and is a scalar in SISO system. The generated
output of interest should satisfy the desired control
specification. The significance of usingthe xd-genera-
tor is that the vectorxd is consistent with the nominal
system described by the pair . Thus the control
problems are converted to regulation problems in the
error state space with the same matrices and .
Subtracting (4) from (2) gives the error dynamics:

(6)

where , , are position
and velocity error, respectively; .

3.  DSM CONTROL DESIGN

Denoting and
whereT is the sampling interval, the ZOH discrete-
time model of the error dynamics is:

(7)

, , (8)

(9)

The magnitude of and are both ifd(t) is
matched and satisfy the boundedness and smoothness
conditions (Su,et al.,2000).

Define the discrete-time sliding surface:

(10)

where, , is a positive real number and
is invertible. Using the definition that the equiva-

lent control is the solution of (Utkin,
1994) gives that

(11)

3.1  The DSM with one-step delayed disturbance
compensation

The above can not be directly realized becau
the disturbance is unknown. An effective distur
bance compensation method was used in Su,et al.
(1993, 1996, 2000) and Young,et al. (1999) to solve
this problem, i.e., using the one step delayed distu
bance to approximate the current disturbanc

. The approximate disturbance can be eas
calculated from equation (7) as follows,

(12)

The control law is then in the form of

(13)

By applying (13) to (7), the closed-loop dynamics ar
described by

(14)

Obviously, if , the error vector will
asymptotically converge to zero as long as the matr

is contractive. Furthermore, the
eigenvalues can be assigned arbitrarily by selecting
suitable . In the case of , since both

and are of the order , the steady sta
error of (14) isO(T2) and it can be characterized by

(15)

i.e., . Taking also into account the
actuator saturation value , Utkin (1994) ha
proved that the control

(16)

is able to force the system into theO(T2) boundary
layer of the sliding surface.

Note that when the termd(t) contains nonlinear fric-
tion, the smoothness ofd(t) will not be satisfied in the
vicinity of zero velocity, but away from zero velocity,
d(t) can simply be considered as a continuous and/o
slow time-varying disturbance. Fortunately, in thi
application, zero velocity happens only at motion sta
and final position reaching phases. According to th
control specifications, friction must be handled in th
reaching phase such that the DSMC brings the syst
(7) to the sensor resolution vicinity of the origin and
keeps it there. Young (1998) revealed that in contin
ous-time SMC, the discontinuous control may wor
cooperatively with Coulumb friction and drive the
system in accordance to hierarchy of sliding mod

. In Li & Wikander (2000), it has
also been experimentally shown that the discrete-tim
sliding mode is realizable with a small enough sam
pling time. In that paper, a DSMC with the contro
law (16) was used to perform a point-to-point pos
tioning control and to cope with large friction. When
the sampling time was decreased to , th

ẋd Axd Bud+=

ud L f xd– ρyd+=

L f

yd
ρ

A B,( )

A B

ẋ Ax Bu Bd–+=

x x1 x2 ]T,[ xc xd–= = x1 x2
u uc ud–=

xk x kT( ) uk u kT( )=,= dk d kT( )=

xk 1+ Φxk Γ uk dk–( )+=

Φ eAT= Γ eAτ τBd
0

T

∫=

dk eAτ k 1+( )T τ–( )d τd
0

T

∫=

Γ dk O T( )

S sk sk Λxk 0 k, 0 1 …, ,= = ={ }=

Λ λ 1[ ]= λ
ΛΓ

uk
eq sk 1+ 0=

uk
eq ΛΓ( )– 1– ΛΦxk dk+=

uk
eq

dk

dk 1–
dk dk 1–

dk 1– ΛΓ( )– 1– Λxk ΛΓ( ) 1– ΛΦxk 1– uk 1–+ +=

uk ΛΓ( )– 1– ΛΦxk dk 1–+=

xk 1+ I Γ ΛΓ( ) 1– Λ–( )Φxk Γ dk dk 1––( )–=

dk dk 1–– 0=

I Γ ΛΓ( ) 1– Λ–( )

Λ dk dk 1–– 0≠
Γ dk O T( )

sk 1+ Λ– Γ dk dk 1––( )=

sk 1+ O T2( )=
umax

uk

uk if uk umax≤

umax

uk

uk
--------- if uk umax>
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unknown friction was well compensate and precision
positioning was achieved.

4.  VIBRATION SUPPRESSION

Note that the DSMC designed in the previous section
is based on the nominal model (2) which assumes the
process being rigid, anddk-1 in the control law (13)
represents the estimated disturbances. Care should be
taken when the controlled process contains
unmodeled dynamics. Due to flexibility, the termdk-1
will be not only friction and low frequency distur-
bances due to parameter uncertainty, but also poten-
tially high frequency disturbances due to the
unmodeled dynamics. Directly feedingdk-1 to the
input may magnify those high frequency components
thus resulting in high frequency oscillations in the
closed-loop. In order to suppress the vibrations, it is
here proposed that a disturbance compensation filter
is added to the control (13). I.e., a discrete-time low
pass filter is introduced to filter the signaldk-1
and the control law becomes

(17)

where . The state-space realization
of the transfer function  can be written

(18)

, h is the order of the filter andAz, Bz, Cz and
Dz are matrices with proper dimensions. The transfer
function of the filter is then

(19)

Incorporating the past disturbancedk-1 and the auxil-
iary stateηk into the control is equivalent to induce
additional m+h order dynamics to the closed- loop
system. The augmented system is

(20)

where,

, (21)

(22)

As long as is stable, the stability of the augmented
system can be proved with the following lemma.

Lemma 1: The eigenvalues of are eig{ },
eig{ } and 0.

This lemma can be proved in a similar way as in Su,
et al. (2000).

It is clear that the filter introduces dominant poles into
the closed-loop system. Therefore, with a proper cut-

off frequency, the unmodeled dynamics can be effe
tively damped out by the filter. The error (15) now
becomes

(23)

Obviously, if , it is also true that
, hence  is still withinO(T2).

In the FSSM proposed by Young & Özgüner (1993
frequency dependent weighting matrices are intr
duced in the design of the sliding surface, i.e., the su
face is given a low-pass character. In other words, t
sliding surface dynamics is slowed down in order t
avoid excitation of elastic vibrations; In the suppres
sion method proposed here, the sliding surface is s
treated as the intersection of the hyperplanes defin
in the state space of the nominal process, and
unmodeled dynamics are suppressed by a low p
filter within the closed loop. The advantages of th
proposed method are: a) the design is simpler a
straightforward, b) it is easy to test the different rol
off frequency of the filter to satisfy the control speci
fications. Moreover, the transient response does n
slow down as much as that in FSSM, since the filt
damps out high frequency components of the proce
which thus behaves more or less as a rigid body, en
bling the sliding surface to keep its fast dynamics.

5.  EXPERIMENTS

The proposed controller is verified in position contro
of the Y-axis of the SMR with the nominal parame
ters listed in TABLE 1. The resolution of the position
encoder is 20,000 pulses per revolution, equivalent
2µm per pulse in the translatory motion. The velocit
signal is obtained from the difference of two consec
tive position measurements. is used as t
sampling period for the model discretization and th
controller design. The scheme of the implementatio
is shown in Fig. 2.

The parameters of the sliding surface are selected
, which implies that the closed-loop

bandwidth is allocated at around 50 rad/s. Since t
lowest resonant frequency of the process is arou
200 rad/s, a first order low pass filter with cut-off fre
quency of 100 rad/s is used for the vibration suppre
sion, the discrete-time transfer function of the filter is

(24)

A step command is first input to thexd-generator that
produces a smooth trajectory for the motion. Sinc
the xd-generator is acting as a prefilter in a 2 DO

Q q( )

uk ΛΓ( )– 1– ΛΦxk d fk+=

dfk Q q( )dk 1–=
Q q( )

ηk 1+ Azηk Bzdk 1–
dfk

+
Czηk Dzdk 1–+

=
=

η Rh∈

Q q( ) Cz qI Az–( ) 1– Bz Dz+=

xk 1+

ηk 1+

uk 1+

Φ
xk

ηk

uk

Γ1dk Γ2dk 1–+ +=

Φ
Φ 0 Γ
0 Az 0

ΛΓ( ) 1–– ΛΦ2 CzAz ΛΓ( ) 1–– ΛΦΓ

=

Γ1

Γ–

0

ΛΓ( ) 1– ΛΦΓ Dz+

Γ2,
0

Bz

CzBz

= =

Az

Φ Az
Φ Γ ΛΓ( ) 1–– ΛΦ

sk 1+ ΛΓ dk d f k,–( )–=

dk O T( )=
df k, O T( )= sk 1+

T 2ms=

Xd- DC
AmplifierT

xk=x(kT)yd
xd(kT)

xc(kT)

+

p

Fig.2. Block diagram of the proposed controller structure

dk
ˆ dk 1–=

Q(q)

DC
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dfk

T
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uk(kT)

θk,=θk(kT)
ωk=(θk-θk-1)/T

T

-

d

Λ 50 1][=

Q q( ) 0.0912 q 1+( )
q 0.8176–

----------------------------------=



s.
control design, it is worth to consider the dynamics of
the trajectory together with the dynamics of control-
led system. For example, in order not to excite reso-
nance oscillations, one useful method is to take away
those frequency components from the input command
signal (Singh, 1994). So the dynamics of thexd-gen-
erator is expected to be equal or even slower than the
dynamics of the DSMC controlled loop. Recall that
the dynamics of thexd-generator is obtained from the
nominal model through feedback. The feedback gain
can be obtained by placing the two poles at ,
which givesLf = (0.2507 0.0068), and is
the reciprocal of the steady state gain of the feedback
controlled nominal model. The generated trajectory
arrives at the desired position in about 0.12 s.

In order to test the robustness of the proposed control-
ler, the experiments are first performed without load,
i.e., and then with load, . Moreo-
ver, the initial positions of the table are placed arbi-
trarily along the Y-axis. Fig. 4 and Fig. 5 show the
experimental results of 10mm positioning with the
two load cases. In Fig. 4 and Fig. 5, the upper plots
(a) show the positioning result without using the filter
Q(q). High frequency vibrations due to the
unmodeled dynamics are observed in both cases. It is
also seen in Fig. 5 that when the10 kgload is added,
the resonant mode due to the torsion of the ball-screw
is more obvious. The lower plots (b) show the same
experiments with the filterQ(q), and it can be seen
that the vibration is well damped out and the position
error falls into within 0.22s. The controller is
also robust for small distance positioning. Fig. 3 dis-
plays the performance of a 1mmpositioning with 10
kg load. The slide table motion is observed with
another linear encoder installed on the table. Fig. 6
shows the motion of the table with and without the fil-
ter, 10 kg load is put on the table. The effectiveness of
the filter is clearly shown.

6.  CONCLUSIONS

This paper has proposed a simple and effective con-
trol method for the positioning control of a ball-screw
driven system. The algorithm is based on DSMC with
disturbance compensation and vibration suppression.
The design only requires knowledge of the first mass
and the frequency range of the first resonant mode.
Using the proposed control, the unknown friction in
the system can be well compensated and all the high
order vibrations due to the inherent flexibility of the
system can be effectively damped out. The experi-
ments demonstrate consistent performance under dif-
ferent load conditions and for different positioning
disturbances, indicating that the proposed controller
has strong robustness regarding stability and perform-
ance.

50– 5i±
ρ 0.2507=

ml 0= ml 10kg=

2µm±

Fig.3. 1mmpositioning with the 10gk load and the filter.
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Fig.4. 10 mm positioning with the load ; (a)
without the filter, (b) with the filter.The dashed lines in
the position and velocity plots are the reference
states, the solid lines are the actual measured state
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Fig.5. 10mmpositioning with the load ; (a)

without the filter, (b) with the filter.The dashed lines in
the position and velocity plots are the reference
states, the solid lines are the actual measured states.
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Fig.6. The table position with the 10kg load.
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