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DISCRETE-TIME SLIDING MODE CONTROL OF A DC MOTOR AND BALL-
SCREW DRIVEN POSITIONING TABLE
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Abstract: A discrete-time sliding mode control design for a ball-screw driven positioning
table is presented. The basic feature of this design is that high speed and high positioning
accuracy can be met despite of the fact that the controlled process suffers from friction
and mechanical flexibility. Disturbance rejection, in the form of friction compensation
and vibration suppression, is the main focus of the paper. Apart from this, the robustness
of the proposed controller with respect to model uncertainties is also considered. Experi-
ments on the Y-axis of a Mydata surface mount robot show consistent and robust perform-
ance under different load conditions.
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1. INTRODUCTION Further, in sample-data systems, the accuracy of the
friction model and updating speed are highly ques-

Positioning systems are used e.g in various phases otjonable because of the limitation on sampling rates.
microelectronics manufacturing. One application that The second problem in the system is the uncertain
is targeted for the research reported here is surfacedynamics owing to the inherent flexibility of the
mount robots (SMR), in this case represented by machine structure, i.e., the finite stiffness of the long
Mydata assembly machines for mounting electronic pall-screws as well as of other compliant links. This
components on circuit boards. The Y-axis of the flexibility is a destabilising factor in the feedback
machine uses a typical ball-screw transmission driven control loop, resulting in substantial limitation of the
by a DC servo motor to position the circuit boards. control bandwidth.
For electronic systems manufacturing, high position-
ing accuracy is required in consequence of the Sliding mode control (SMC) has gained significant
reduced size of modern electronic components, andinterest in recent years due to its superb characteris-
the high operational speed is desired for achieving tics in terms of insensitivity to large parameter varia-
high productivity. In addition, robustness must be tions and its capability in disturbance rejection. The
considered not only for stability but also for perform- concept of discrete-time sliding mode (DSM) (Utkin,
ance, since differences in parameters among individ- 1994) was introduced for the purpose of implement-
ual machines represent uncertainties, e.g. uncertaintying SMC in sampled data systems. The discrete-time
in friction parameters. Further, different circuit sliding mode control (DSMC) with one step delayed
boards represent different loads, and the mass of adisturbance compensation (Sat,al., 1993) provides
particular board changes as components are mountedan excellent method for disturbances rejection and
In other words, the same controller settings should chattering attenuation. Li & Wikander (2000) have
meet the control specification for all machines and for shown that the DSMC is able to compensate unknown
varying loads, i.e., without individual tuning. friction in positioning systems, despite of the compli-

] o ] ] cated characteristics of friction.
In this application, the major obstacles for high per-

formance are caused by the uncertainties due to fric- However, the DSMC can not be directly applied to
tion and mechanical flexibility. Friction, which the Y-axis ball-screw system, since the controller
represents a complicated nonlinear function at low excessively excites the mechanical resonance of the
velocities, is the main source of position inaccuracy. process. Many previous researchers have studied the
Friction effects are usually reduced by introducing a application of the SMC in flexible systems. For
compensator based on an identified friction model. example, frequency shaped sliding mode (FSSM) was
However, an accurate friction model is usually diffi- introduced by Young & Ozgiiner (1993); H-infinity
cult to obtain because of its characteristics of time- andu synthesis based sliding mode control was stud-
variation during changing environmental parameters. ied by Nonamiget al. (1996); These methods actually



introduce a low pass filter with an appropriate cut-off
frequency into sliding surfaces, thus high frequency
vibrations due to parasitic dynamics as well as their
interactions with sliding mode dynamics can be sup-

rent andT, the load torque due to the torsion of the
ball-screw; T is the friction torque acting at motor
side. Disturbances acting at the load side are assumed
zero in this application. The remaining parameters

pressed in the desired frequency band. However, theand their values are given in TABLE 1.

weakness of such a method is that the transient
response may be slowed down to an unsatisfactory
degree. To reduce this problem, the combination of a
FSSM and a terminal sliding mode control was pro-
posed by Xu & Cao (2000)0ther methods can also
be found in the literature, such as sliding mode with
perturbation estimation and shaped sliding surface
(Moura, et al.,1997), sliding mode with shaped com-
mand input (Jalili & Olgac, 1998; Singh, 1994) and
sliding mode with time-varying or nonlinear sliding
surface (Hara & Yoshida, 1996; lat al.,1999).

The purpose of this paper is to design a robust servo
positioning controller based on DSM for the Y-axis of
the Mydata SMR. Regardless of model uncertainties
and nonlinear friction, the motor positioning error
should be within the range of the measurement reso-
lution while minimizing the excitation of the table
vibrations. The remaining sections are organized as
follows. The dynamic model of the compliant system
and the control problems are presented in section 2.
The design of a DSMC and disturbance compensation
are given in section 3. In section 4, the method for
suppressing vibrations due to unmodeled dynamics is
proposed, and the experimental results are presente

6.

2. SYSTEM AND CONTROL PROBLEM
DESCRIPTION

2.1 The plant description
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Fig.1. The Y-axis of the surface mount Robot (SMR).

A sketch of a Y-axis of an SMR is shown in Fig. 1,
the rotation of a current controlled DC motor is con-
verted into a translational motion by a high precision
ball-screw. A slide table attached to the ball-nut car-
ries the load at high velocities. The total moving
range along the Y-axis is 1.2 meters. Since the stiff-
ness of the ball-screw and of the connection between
the nut and table are finite, the process is simplified as
a two-mass system:

JmBm+ b, 0m = K= T, =T
T = k(8n—%/p)
mX +bx =T,/p
where the variablesd,,, X, are the motor angle and
table displacement respectively, is the motor cur-

)

TABLE 1. Parameters of the SMR

Parameters Value

Jn  Motor inertia 1.40x10% (kng?)

J,  Ball-screw inertia 1.70x10% (kgm?-)

m, Nut mass 0.633 (kg)

m,  Table mass 4.750 (kg)

m  Load mass 0~1g)

b, Damping coefficient 0.003\m/rad/3d

ke Stiffness 15~20Nm/rad

Ky  Torque constant 0.356!(/A

p Screw pitch p=0.0064 tn/rad)

In The equivalent motor inertia\]m +J, (kgnf)

m The equivalent load mass m, +m, +m (kg)
Clearly, a two-mass model for the distributed masses

is a quite coarse simplification of the physical proc-
ess, and thus some of the model parameters, e.g. the
equivalent stiffness are not easily determined from
physical parameters. With a 10kg load on the table,
he process spectrum analysis shows that the mechan-

; . . . : ) écal resonance of the process is in the range of 200-
in section 5. Finally, a conclusion follows in section 600 rad/s

implying the equivalent stiffness in the
range of 15~20Nm/rad. Moreover, the frequencies
of the resonance peaks change with table position,
indicating the dynamics uncertainty of the process. In
addition, measurements also show that the friction is
not only velocity dependent, but also position
dependent on a macro scale. Therefore, the main topic
of this paper is to design a DSM controller which not
only achieves high positioning accurate, but which
also is robust against these uncertainties and friction
characteristics.

In the SMR, only a single position feedback device,
an optical encoder on the motor side, is provided.
Therefore, the nominal model used in the controller
design utilise merely the first equation of (1) and the
the load torque due to torsion is treated as a distur-
bance. Converting the motor angle position to linear
position and rewriting the equation in the state space
form gives:

X. = AX.+B(u,—d) )
0 — b
where x, = [p8,, POm]" , U, = iy , @ = b/ Im

b = pK,/Jm and d = (T,+T¢,)/(pK,,) is the
lumped disturbance of the load torque, friction and

other external disturbances. The parameters of the
second mass may not be known exactly due to the



load uncertainty, however, knowing the resonance 3.1 The DSM with one-step delayed disturbance
frequency of the process is necessary since it providescompensation

useful information for the later control design. . _ _
The aboveuy® can not be directly realized because

2.2 Control problem formulation the disturbanced, is unknown. An effective distur-
bance compensation method was used in Sual.

The primary goal of the considered control applica- (1993, 1996, 2000) and Youngi al. (1999) to solve
tion is high speed point-to-point positioning. How- this problem, i.e., using the one step delayed distur-
ever, due to the characteristics of the process, carebanced,_; to approximate the current disturbance
must be taken not to induce structural vibration d,. The approximate disturbanek_,  can be easily
through bang-bang type of control signals. In state calculated from equation (7) as follows,
space control design, the states of the trajectory can a a
be generated by a reference model which was named Gk-1 = ~(AT) "Ax+ (AF) "A®X_; + U4 (12)
an xg-generator in Misawa (1997). The-generator ~ The control law is then in the form of
has the form of 4
) u, = «(AT) "Adx, +d,_, (13)
Xq = AXy+ Buy (4) . .

By applying (13) to (7), the closed-loop dynamics are
The dynamics of theg-generator is obtained fromthe  yaescribed by
nominal process through feedback, i.e., the hypotheti-
calug is designed by X1 = (I —F(/\F)_l/\)mxk—r(dk—dk_l) (14)

Ug = —L¢Xg+ PYq (5) Obviously, if d,—d,_; = 0, the error vector will
asymptotically converge to zero as long as the matrix
(- F(/\I‘)_I/\) is contractive. Furthermore, the
eigenvalues can be assigned arbitrarily by selecting a
d'suitable/\ . In the case af,—d,_;#0 , since both

I and d, are of the orde©(T) , the steady state
error of (14) isO(T?) and it can be characterized by

where L; is the feedback gain which can be deter-
mined by any appropriate design method such as pole
placement or LQR controly; is the command dis-
tance ang is a scalar in SISO system. The generate
output of interest should satisfy the desired control
specification. The significance of usitige x-genera-

tor is that the vectoxy is consistent with the nominal Sc+q1 = NIM(d—d,_;) (15)

system described by the pdiA, B) . Thus the control ie., s, = O(T2) . Taking also into account the

problems are conve_rted to regulation problems in the getyator saturation valuel,., , Utkin (1994) has
error state space with the same matrides  &d -proved that the control

Subtracting (4) from (2) gives the error dynamics:

X = AX+ Bu- Bd (6) Euk if {lu < Unax
wherex =[x, X,]T = X; =Xy ,X; ,X, are position U =0 U it Jug > (16)
and velocity error, respectively; = u, — Uy maxfy | Kl =~ Umax

3. DSM CONTROL DESIGN is able to for<_:e_ the system into tNB(TZ) boundary

layer of the sliding surface.
Denotingx, = x(kT), u, = u(kT) andd, = d(kT)
whereT is the sampling interval, the ZOH discrete-
time model of the error dynamics is:

Note that when the terrd(t) contains nonlinear fric-
tion, the smoothness dft) will not be satisfied in the
vicinity of zero velocity, but away from zero velocity,

Xe1 = X+ T (U —dy) (7) d(t) can simply be considered as a continuous and/or a
AT At slow time-varying disturbance. Fortunately, in this
P=e [ =]¢€ diB, (8)  application, zero velocity happens only at motion start
. and final position reaching phases. According to the
de = J’O e™d((k+ 1) T —1)dt 9) control specifications, friction must be handled in the

) . reaching phase such that the DSMC brings the system
The magnitude of  and,,  are bo®(T) dt)is  (7) 1o the sensor resolution vicinity of the origin and
matched and satisfy the boundedness and smoothnesgeeps it there. Young (1998) revealed that in continu-
conditions (Suet al.,2000). ous-time SMC, the discontinuous control may work
Define the discrete-time sliding surface: cooperatively with Coulumb friction and drive the
system in accordance to hierarchy of sliding mode
S={g[s=A%=0 k=01..} (10 =0 , x=0.InLi&Wikander (2000), it has
where,A = [A 1] ,A is a positive real number and also been experimentally shown that the discrete-time
AT isinvertible. Using the definition that the equiva- sliding mode is realizable with a small enough sam-
lent control uﬁq is the solution ok, ,; = 0  (Utkin, pling time. In that paper, a DSMC with the control
1994) gives that law (16) was used to perform a point-to-point posi-
eq 1 tioning control and to cope with large friction. When
U = —(AF) "APX +dy (11)  the sampling time was decreased T 0.01%  , the



unknown friction was well compensate and precision
positioning was achieved.

4. VIBRATION SUPPRESSION

Note that the DSMC designed in the previous section
is based on the nominal model (2) which assumes the
process being rigid, and,_; in the control law (13)

off frequency, the unmodeled dynamics can be effec-
tively damped out by the filter. The error (15) now
becomes

Sc+1 = AT (de—d; ) (23)

Obviously, if d, = O(T), it is also true that
d¢ « = O(T), hences,, ; is still withirO(T2).

In the FSSM proposed by Young & Ozgiiner (1993),

represents the estimated disturbances. Care should b?requency dependent weighting matrices are intro-

taken when the controlled process contains
unmodeled dynamics. Due to flexibility, the teuj,

will be not only friction and low frequency distur-
bances due to parameter uncertainty, but also poten
tially high frequency disturbances due to the
unmodeled dynamics. Directly feedingy_; to the
input may magnify those high frequency components
thus resulting in high frequency oscillations in the
closed-loop. In order to suppress the vibrations, it is
here proposed that a disturbance compensation filter
is added to the control (13). l.e., a discrete-time low
pass filterQ(q) is introduced to filter the signa}_,

and the control law becomes

U = =(AT) ADX +dy (17)
whered;, = Q(g)d,_; . The state-space realization
of the transfer functiol(qg) can be written

Nk+1 = Aznk+ Bzdk—l

) die = C N+ Dby
n O R", his the order of the filter and,, B,, C, and

D, are matrices with proper dimensions. The transfer
function of the filter is then

Q(a) = C(al-A,) "B, +D, (19)
Incorporating the past disturbandg, and the auxil-
iary staten, into the control is equivalent to induce
additional m+h order dynamics to the closed- loop
system. The augmented system is

(18)

Xewt| | %
Nket] = PN * Mol a0y (20)
Uk+1 Uy
where,
O] 0 r
® = 0 A, 0 ., (21)
-1 2 -1
—(AI') AP C,A, -(AT) Aol
= 0
M= 0 =1 B, (22)
(AT)AGT +D, C,B,

As long asA, is stable, the stability of the augmented
system can be proved with the following lemma.

Lemma 1: The eigenvalues ofd  are eigf, }.
eig{ ®—T (AF)*Ad} and 0.

This lemma can be proved in a similar way as in Su,
et al. (2000).

Itis clear that the filter introduces dominant poles into
the closed-loop system. Therefore, with a proper cut-

duced in the design of the sliding surface, i.e., the sur-
face is given a low-pass character. In other words, the
sliding surface dynamics is slowed down in order to
avoid excitation of elastic vibrations; In the suppres-
sion method proposed here, the sliding surface is still
treated as the intersection of the hyperplanes defined
in the state space of the nominal process, and the
unmodeled dynamics are suppressed by a low pass
filter within the closed loop. The advantages of the
proposed method are: a) the design is simpler and
straightforward, b) it is easy to test the different roll-
off frequency of the filter to satisfy the control speci-
fications. Moreover, the transient response does not
slow down as much as that in FSSM, since the filter
damps out high frequency components of the process,
which thus behaves more or less as a rigid body, ena-
bling the sliding surface to keep its fast dynamics.

5. EXPERIMENTS

The proposed controller is verified in position control
of the Y-axis of the SMR with the nominal parame-
ters listed in TABLE 1. The resolution of the position
encoder is 20,000 pulses per revolution, equivalent to
2um per pulse in the translatory motion. The velocity
signal is obtained from the difference of two consecu-
tive position measurement$. = 2ms  is used as the
sampling period for the model discretization and the
controller design. The scheme of the implementation
is shown in Fig. 2.
o
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Fig.2. Block diagram of the proposed controller structure.

The parameters of the sliding surface are selected as
A =[50 1], which implies that the closed-loop
bandwidth is allocated at around 50 rad/s. Since the
lowest resonant frequency of the process is around
200 rad/s, a first order low pass filter with cut-off fre-
quency of 100 rad/s is used for the vibration suppres-
sion, the discrete-time transfer function of the filter is

_ 0.0912qg+1)
Q) = = =0.8176
A step command is first input to the-generator that
produces a smooth trajectory for the motion. Since
the xg-generator is acting as a prefilter in a 2 DOF

(24)



control design, it is worth to consider the dynamics of
the trajectory together with the dynamics of control-

Tt
1

led system. For example, in order not to excite reso- 2 € 12
nance oscillations, one useful method is to take away ~ _ 1 .
those frequency components from the input command = o 0

signal (Singh, 1994). So the dynamics of thegen- £,
erator is expected to be equal or even slower than the
dynamics of the DSMC controlled loop. Recall that
the dynamics of theg-generator is obtained from the
nominal model through feedback. The feedback gain
can be obtained by placing the two poles-&0 + 5i ,
which givesL; = (0.2507 0.0068), ang = 0.2507 is
the reciprocal of the steady state gain of the feedback
controlled nominal model. The generated trajectory
arrives at the desired position in about 0.12 s.
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In order to test the robustness of the proposed control-
ler, the experiments are first performed without load,

trarily along the Y-axis. Fig. 4 and Fig. 5 show the

experimental results of 16hm positioning with the (

Q(g). High frequency vibrations due to the 5 2

unmodeled dynamics are observed in both cases. It is % e ©) e © % e © ve2
is more obvious. The lower plots (b) show the same

experiments with the filte(q), and it can be seen

also robust for small distance positioning. Fig. 3 dis- time (s)

plays the performance of arimpositioning with 10

i.e.,,m = 0 and then with loadn, = 10kg . Moreo-

two load cases. In Fig. 4 and Fig. 5, the upper plots

also seen in Fig. 5 that when ti@ kgload is added,

that the vibration is well damped out and the position

kg load. The slide table motion is observed with °
another linear encoder installed on the table. Fig. 6

shows the motion of the table with and without the fil- 0
ter, 10 kg load is put on the table. The effectiveness of -
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Fig.3. Immpositioning with the 10gk load and the filter.
ver, the initial positions of the table are placed arbi-
(a) show the positioning result without using the filter
the resonant mode due to the torsion of the ball-screw
error falls intox2pum within 0.22s. The controller is 800 T s 1 1s ®0 o5 1 15 2
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trol method for the positioning control of a ball-screw ‘(

driven system. The algorithm is based on DSMC with !
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the system can be well compensated and all the high the position and velocity plots are the reference
order vibrations due to the inherent flexibility of the states, the solid lines are the actual measured states.
system can be effectively damped out. The experi-

ments demonstrate consistent performance under dif-

ferent load conditions and for different positioning

disturbances, indicating that the proposed controller

has strong robustness regarding stability and perform-

ance.
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