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Abstract: The present paper disusses the preservation of the closed-loop stability when a
derivative feedback is replaced by its difference counterparts. A sufficient condition for such
stability preservation is provided. Applying this condition leads to a favorable result that the
stability preservation is always true for single-input systems. It is pointed out however that
multi-output systems do not allow such simplicity. Copyright c2002 IFAC
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1. INTRODUCTION

While the derivative feedback is the most fundamental
technique in designing control systems, it is awkward
to adopt the technique in the case of noisy measurement
condition. If the derivatives are replaced by their differ-
ence approximation, noise effects might be somewhat
alleviated, because the high frequency gain is not di-
vergent unlike the derivative action. It is also expected
(see e.g., Kokame et al., 2000b) that the difference ac-
tion has a better performance with respect to the stabil-
ity robustness. Further it is easy to implement on dig-
ital computers. With these points in mind, the present
paper aims at disclosing the condition under which the
closed-loop stability is preserved when replacing the
derivative action by its difference counterparts.

The above-mentioned problem does not seem to have
been studied in the literature, but a related problem
has been assessed in a different context, yielding a fa-
vorable result that there exists a stabilizing difference
feedback whenever the so-called odd number condition
is inactive (Kokame et al., 2000a, 2001). The exis-
tence was shown through finding a stabilizing deriva-
tive feedback, and then approximating it by a difference
action. This means that for some derivative feedback
law, the closed-loop stability is retained when trans-
ferring to its difference approximates. This favorable
result has motivated us to study a general problem to
see when such a stability preserving transition is guar-
anteed.

By analysing the characteristic function of a relevant
delay differenctial equation, we will provide a suffi-
cient condition, which is very close to necessary one.
Applying this condition yields the most desirable result
that the stability preservation is always true for single-

input systems. It is pointed out however that multi-
output systems do not allow such simplicity. In the fol-
lowing, the determinant of a matrix X 2 C n�n is de-
noted by det [X ], and its eigenvalues are by � i(X); i =
1; : : : ; n. The spectral norm of a matrix X is expressed
by jjX jj.

2. STABILITY FOR DIFFERENCE FEEDBACK

In the section, we would like to disclose a relation be-
tween the derivative feedback and difference feedback.
Let us apply a derivative feedback u(t) = �K _x(t) +
v(t) to the provided unstable linear system,

_x(t) = Ax(t) +Bu(t); (1)

where x 2 Rn and u 2 Rm respectively denote the
state vector and input vector. In what follows, we
assume det [I + BK] 6= 0 in order that the closed-
loop system is well defined. Supposing that the close-
loop system is asymptotically stable, i.e., H = (I +
BK)�1A is Hurwitz, we are interested in whether the
closed-loop stability is inherited by the difference feed-
back approximation,

u(t) = �
1

T
K(x(t)� x(t � T )) + v(t); (2)

where v(t) is the reference input. In other words, we
aim at finding a condition which guarantees the asymp-
totic stability of the closed-loop system,

_x(t) = Ax(t)�BK
1

T
(x(t)�x(t�T ))+Bv(t); (3)

with H being Hurwitz. The following stability analysis
is based on the characteristic function of the closed-
loop system (Hale, 1977),

f(s) = det [sI �A+BK(1� e�sT )=T ]: (4)
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Noting f0(s) = det [s(I + BK) � A] = det [I +
BK] det [sI � H ] does not vanish in the closed
right half-plane, it is convenient to normalize f(s) as
F (s) = f(s)=f0(s). Now the closed-loop stability of
the difference feedback (2) is equivalent to F (s) van-
ishing nowhere in the closed right half-plane. A simple
calculation yields the equality

F (s) = det [I � �(sT )�(s)]; (5)

where

�(s) = 1�
1� e�s

s
; (6)

�(s) = sK(sI �H)�1(I +BK)�1B: (7)

See Kokame et al., (2000b) for a derivation of (5) . It
is noticed that �(s) is complementary sensitivity matrix
for the input v, i.e., the tranfer matrix from v to K _x in
the derivative feedback configuration. Thus it is proper
and stable.
The function F (s) explains how the time-delay T af-
fects on the closed-loop stability. By observing the
behavior of the function at the infinity of the complex
plane, we have the following main result.

Theorem 1 Suppose that the derivative feedback
u(t) = �K _x(t) stabilizes the linear system (1) . Then
ifG(s) = det [I��(s)�(1)] has no zeros in the closed
right half-plane, the difference feedback (2) stabilizes
the same system for sufficiently small T .
Proof: It is enough to show that F (s) has no ze-
ros in the closed right half-plane for small T . In the
first place, notice thatG(s) approaches a nonzero value
when s tends to the infinity in the closed right half-
plane. That is, since lim

s!1;Re s�0
�(s) = 1, we

have

lim
s!1;Re s�0

G(s) = 1=det [I +KB] 6= 0:

Taking this together with the fact that G is an analytic
function into account, we know that the perturbed func-
tion G�(s) = det [I � �(s)�], jj� � �(1)jj < �, also
have no zeros in the closed right half-plane, if � > 0
is chosen to be sufficiently small. Further we can find
a large �! > 0 such that jj�(s) � �(1)jj < �, for all
s 2 D = fs : jsj � �!;Re s � 0g (Boyd and Desoer,
1985). Combining the above two observations leads
to a conclusion that for an arbitrary z 2 D, det [I �
�(s)�(z)] has no zero in the closed right half-plane,
hence so is the function det [I � �(sT )�(z)]. Taking
s = z, we know that F (z) = det [I � �(zT )�(z)] does
not vanish in the region D for all T > 0.

The proof is completed if we show F (s) has no zeros
in the bounded region �D = fs : Re s � 0; jsj � �!g
for sufficiently small T . Notice that since �(s) is a sta-
ble rational function, its H1-norm jj�(s)jj1 is finite,
and jj�(s)jj � jj�(s)jj1;Re s � 0. Let � > 0 be a

small constant satisfying � < 1=jj�(s)jj1. Then since
lims!0 �(s) = 0, we can find a small T0 > 0 such that
j�(sT )j < � holds for s 2 �D and T < T0. Therefore
for T < T0, we have

F (s) � 1�j�(sT )j jj�(s)jj > 1��jj�(s)jj1 > 0; s 2 �D;

which validates the desired property that F (s) has no
zeros in s 2 �D. Q.E.D.

The condition of Theorem 1 is a sufficient condition
for the stability brought by a derivative feedback be-
ing inherited in the corresponding difference feedback.
However the condition is very close to a necessary con-
dition. In fact, the following holds.

Theorem 2 Suppose that the derivative feedback
u(t) = �K _x(t) stabilizes the linear system (1) . If
the function G(s) = det [I � �(s)�(1)] has a zero in
the open right half-plane, then the difference feedback
u(t) = � 1

T
K(x(t)�x(t�T )) can not stabilize for all

sufficiently small T .
Proof: Suppose that G(s0) = 0 for Re s0 > 0. There
exists a small disk D = fs : js � s0j � �g; � < js0j;
such that G(s) 6= 0 on the boundary of D, @D. Con-
sider a function F (s=T ) = det [I � �(s)�(s=T )]. Not-
ing that both G(s) and F (s=T ) are analytic on D, we
know that as T tends to 0, F (s=T ) converges to G(s)
uniformly on @D. Then the continuity argument based
on Rouché’s theorem ensures that F (s=T ) has a zero
in the interior of D if T is small enough. This implies
that F (s) has a zero in the interior of the enlarged disk
DT = fs : js� s0=T j � �=Tg. Q.E.D.

Notice that if G(s) has a zero on the imaginary axis,
and has no other zeros in the open right half-plane,
the desired inheritance of the closed-loop stability may
sometimes be true, but sometimes be false.
A detailed analysis shows that the interested condition
of Theorem 1 can be described directly in terms of the
eigenvalues of �(1), or those of KB.

Theorem 3 The function G(s) = det [I � �(s)�(1)]
has no zeros in the closed right half-plane if and only
if for every nonzero i = �i(�(1)), its inverse 1=i is
outside 
, where 
 is the closed region bounded by the
curve f�(j!) : �2� � ! � 2�g (See Fig. 1).
Further G(s) has a zero in the open right half-plane if
and only if there exists a nonzero i for which 1=i 2

.
Proof: We show the proof of the former part alone,
since the latter is similar. Rewrite G(s) as follows:

G(s) =

mY
i=1

(1� �(s)i) =
Y
i2�

i(
1

i
� �(s));

where � is the set of nonzero eigenvalues of �(1).
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Fig. 1. Region 
, the inside of the solid line.

In the first place, assume that G(s) has no zeros in
the closed right half-plane. Then G does not vanish
on the imaginary axis. Recall that under such non-
vanishing condition, the argument principle assures
that the number of the right half-plane zeros of G, de-
noted by Z, is equal to

Z =
X
i2�

n(
1

i
; �);

where n denotes the number of clockwise encir-
clements of the vector �(j!) with respect to the point
1=i, when ! increases from �1 to +1. As shown
in Fig. 2, when ! increases from 0, the vector � moves
off the origin into the first quadrant and reach the real
axis at 1 when ! = 2�. For ! > 2�, it stays inside

. Observe also that the segment of the vector locus,
Rk = f�(j!) : 2k� < ! � 2(k + 1)�g, is encircled
by the former one Rk�1. Thus Z = 0 implies and is
implied by the condition that for any  i 2 �, 1=i is
outside of 
. The converse is now immediate. Q.E.D.

By noting �(1) = (I + KB)�1KB, the eigenval-
ues i = �i(�(1)) and �i = �i(KB) are related as
1=i = 1+ 1=�i for nonzero i. Thus Theorem 3 may
be rephrased in terms of �i.

Corollary 4 The functionG(s) = det [I��(s)�(1)]
has no zeros in the closed right half-plane if and only
if for every nonzero �i = �i(KB), its inverse 1=�i is
outside 
�, where 
� is the closed region obtained by
shifting 
 in the negative direction by 1.
Further G(s) has a zero in the open right half-plane if
and only if there exists a nonzero �i for which 1=�i 2

�.

In the case where G(1) = det [I � �(1)] < 0, or
equivalently if there exists at least one real eigenvalue
i such that 1 � i < 0, then 0 < 1=i < 1, hence

-0.5 0 0.5 1 1.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

real

im
ag

Ω

Fig. 2. Vector plot of �.

1=i 2 
. Thus we have a simple consequence that if
det [I � �(1)] < 0, the difference feedback can not
stabilize for small T .
Notice that since I � �(1) = (I +KB)�1, the con-
dition is equal to det [I +KB] < 0.
The above observation can be generalized by noting
that the interior of the forbidden domain 
 entirely in-
cludes the disk Du = fs : js � 1=2j � 1=2g, except
s = 0 and 1. We omit the proof, for it is straightfor-
ward. In Fig. 1, the boundary of the disk is plotted by
the dotted curve.

Lemma 5 Suppose that the derivative feedback u(t) =
�K _x(t) stabilizes the linear system (1) . If the matrix
�(1)�I is not Hurwitz, or equivalently if�(I+KB)
is not Hurwitz, then the difference feedback u(t) =
� 1

T
K(x(t) � x(t � T )) can not stabilize for all suffi-

ciently small T .
Proof: The condition of the lemma signifies that
Re i � 1 � 0 for some i = �i(�(1)). Obviously
1=i belongs to Du. Further recalling the assumption
det [I + KB] 6= 0, we know i 6= 1, and hence 1=i
belongs to the interior of 
. Thus the latter part of The-
orem 3 combined with Theorem 2 ensures the conclu-
sion. Q.E.D.

It is warned from Lemma 5 that to obtain a successful
difference feedback, it is necessary to choose a deriva-
tive feedback gain K so that I +KB becomes an anti-
Hurwitz matrix, that is, it must have all the eigenvalues
in the open right half-plane.

Obviously the condition det [I + KB] < 0 contra-
dicts the anti-Hurwitzness. Conversely if the anti-
Hurwitzness condition is fulfilled, and if the derivative
feedback is stabilizing, i.e., H is Hurwitz, it follows
from A = (I + BK)H that det [�A] > 0. That
is, det [�A] > 0 is an essential restriction in order
to have a stabilizing difference feedback for small T .



At this point, it is emphasized that the requirement
det [�A] > 0 is quite natural. In fact it is known that if
det [�A] � 0, the delay differential equation,

_x(t) = Ax(t) +H(x(t) � x(t� T ));

can not be asymptotically stable for any H , and for
any choice of the delay time T . The condition is often
called the odd-number condition, as it means that the
open loop system has an odd number of real positive
eigenvalues or at least one eigenvalue at the origin. See
Ushio (1996) for discrete-time systems, and Nakajima
(1997) for continuous-time systems. Their results are
motivated from the delayed feedback control proposed
by Pyragas (1992).

We close this section by putting a simple result about
the stability preservation of the inverse direction, i.e.,
from difference feedback to the derivative feedback.

Proposition 6 Suppose that det [I + KB] 6= 0, and
for all sufficiently small T > 0, the difference feed-
back u(t) = � 1

T
K(x(t) � x(t � T )) stabilize the

linear system (1) . More restrictively if the character-
istic function f(s) of (4) has no zeros in the region
H� = fs : Re s > ��g for some � > 0, then the cor-
responding derivative feedback u(t) = �K _x(t) also
stabilizes the system (1) .
Proof: Assume to the contrary that det [s0I � H ] =
0;Re s0 � 0. We can find a small disk D = fs :
js � s0j � �g; � < �; such that det [sI � H ] 6= 0 on
the boundary of D. On the other hand, as T tends to
zero, f(s) tends to g(s) = det [I +KB]det [sI � H ]
for every s. Thus for all sufficiently small T , f(s) must
have the same number of roots insideD as det [sI�H ]
has. NotingD � H� leads to that f(s) has a root inH�,
which contradicts the assumption. Q.E.D.

3. APPLICATION OF THE CRITERION

We first give a simple example in which the derivative
feedback stabilizes, whereas its difference approxima-
tion can not for all small T . Such ill-posedness may be
compared to known instability caused by introducing
small time-delays in the feedback loop (see e.g., Datko
1988; Louisell 1995; Longemann and Townley 1996).

Example 1: Consider the following third order system,

_x(t) =

2
4�1 1 0
�3 1 3
�2 1 1

3
5x(t) + u(t); (8)

y(t) = [1 0 0]x(t); x; u 2 R3:

This system has duplicated unstable poles on 1, and it
can be stabilized by the derivative feedback u = �"
�2 0 0

�1 1 �1

4 0 �4

#
_x. The poles of the closed-loop system
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Fig. 3. Initial response of y for some T .

are �0:1255 and �0:0206 � j1:1523. However the
eigenvalue inverses for KB = K are �0:5;�0:25
and 1. Notice that the former two belongs to 
�.
Thus the corresponding difference feedback will fail
to stabilize. Computer simulation was made assum-
ing the initial condition x(t) = 0;�T � t < 0; and
x(0) = [1 0 0]T . Fig. 3 shows the initial responses of
the closed-loop system which incorporates the differ-
ence feedback for several T . Though every response is
diverging, it should be noticed that the divergence rate
is more rapid for smaller T .

As compared with multi-input systems, we can enjoy a
simple result for the case of a single-input system,

_x(t) = Ax(t) + bu(t): (9)

Letting the control input be u = �kT _x, the test ma-
trix KB becomes a scalar quantity, � = kT b. If
1 + kT b > 0, either 1=� > 0 or 1=� < �1 holds
except for the case � = 0. Thus from Corollary 4, we
have the following proposition.

Proposition 7 Suppose that the derivative feedback
u = �kT _x, 1 + kT b > 0, stabilizes the system (9) .
Then the difference feedback u(t) = � 1

T
kT (x(t) �

x(t� T )) also stabilizes for sufficiently small T .

In the previous section, the anti-Hurwitzness condi-
tion was explained as a necessary condition to obtain
a stabilizing difference feedback with small T . It is
to be noticed that for single-input systems, the anti-
Hurwitzness condition acts also as a sufficient condi-
tion.

Further if we put the condition det [�A] > 0 ex-
plicitly, a derivative feedback stabilizing (9) requires
1 + kT b > 0. Thus Proposition 7 may be restated in a
different form.



Theorem 8 Suppose that the linear system (9) sat-
isfies the requisite condition det [�A] > 0. Then for
every stabilizing derivative feedback u = �kT _x, its
difference approximation, u(t) = � 1

T
kT (x(t)�x(t�

T )), also stabilizes for sufficiently small T .

If the linear system (9) with det [�A] > 0 is control-
lable, any pole allocation may be realized by the deriva-
tive feedback except for the origin. Especially any pole
allocation in the open left half-plane is possible. Tak-
ing this point into account, one may safely say that any
stable pole allocation can be attained approximately by
a difference feedback. This is clearly an advanced re-
sult of Theorem 2 of Kokame et al., (2000a).

When the controllability assumption remains, the fa-
vorable property of Theorem 8 may be extended easily
to a multi-input system (1) , if A is cyclic. In fact,
if (A;B) is controllable with a cyclic A, we can find
a vector w 2 Rm for which (A;Bw) is controllable
(see Wonham, 1967). Thus from Theorem 8, any sta-
ble pole allocation might be realized approximately by
a difference feedback u(t) = �wkT ((x(t)�x(t�T )).

However if A is not cyclic, the circumstance is quite
different.

Example 2: Consider a simple second-order system,

_x(t) =

�
� 0
0 �

�
x(t) +Bu(t): (10)

Note however that A = �I is not cyclic. If � > 0,
then the requisite condition det [�A] > 0 is satisfied.
On the other hand, the closed-loop stability under u =
�K _x means H = �(I + BK)�1 is Hurwitz. That
is, I + BK is Hurwitz, which completely contradicts
the anti-Hurwitzness condition. Thus the second order
system (10) can not be stabilized by any difference
approximation for small T .

In the rest of the section, we proceed to get some light
for the case of the multi-input systems. Assume that
the system (1) is controllable, and the matrix B has
full column rank. For simplicity we may assume that it
is given in Luengerger’s canonical form of the second
kind (Luenberger, 1967), where A and B are assumed
to be m�m block matrix [Aij ] andm�1 block matrix
[Bi], where Aij 2 R�i��j and Bi 2 R�i�m are given
as follows:

Aii =

2
666664

0 1 0 � � � 0
0 0 1 0 0
...

. . .
...

0 0 1
�aii0 �aii1 � � � �aii

�i�1

3
777775 ; (11)

Aij =

2
6664

0 � � � 0
...

...
0 � � � 0

�aij0 � � � �aij
�j�1

3
7775 ; i 6= j; (12)

Bi =

2
6664
0
...
0
1

3
7775
�
0 � � � 1 bi

i+1 � � � b
i

m

�
; (13)

where �i; i = 1; : : : ;m; are controllability indices, andP
m

j=1
�j = n due to the controllability assumption.

The characteristic polynomial of the block matrix A is
given by

fo(s) = det

2
64
g11
o
(s) � � � g1m

o
(s)

...
...

gm1
o

(s) gmm

o
(s)

3
75 ; (14)

gij
o
(s) = Æijs

�j + a
ij

�j�1
s�j�1 + � � �+ a

ij

1 s+ a
ij

0 ;

where Æij = 1 for i = j, and 0 elsewhere.
The above B can be decomposed as B = �BL, where
�B = [ �Bi] is partitioned compatibly to B, with �bi

k
=

0; k = i+ 1; : : : ;m. The m�m matrix L ought to be
a nonsingular upper triangular matrix. Without loss of
generality, we devote ourselves to the system having a
new control input:

_x(t) = Ax(t) + �Bv(t): (15)

Applying the derivative feedback v = � �K _x leads to
the following expression:

fc(s) = det [Fc(s)]=det [I +G]; (16)

Fc(s) =

2
64
g11
c
(s) � � � g1m

c
(s)

...
...

gm1
c

(s) gmm

c
(s)

3
75 ;

gij
c
(s) = (Æij + �ij

�j
)s�j + (aij

�j�1
+ �

ij

�j�1
)s�j�1

+ � � �+ (aij1 + �
ij

1 )s+ a
ij

0 ; (17)

where G = �K �B = [�ij
�j
]. Note that the deter-

minant matrix polynomial Fc(s) has the column de-
grees, �1; : : : ; �m, and taking the coefficients of the
column degree �j for the j-th column makes the ma-
trix I + �K �B.

In contrast to the single-input case, the difference feed-
back obtained from a stabilizing derivative feedback
does not always work well. Assuming the controllabil-
ity, there may exist two derivative feedback laws that
yield the same pole distribution, but their difference
approximation works well for one case, and does not
work for the other one. Finally we give such an exam-
ple.

Example 3: Consider a third-order system in the Lu-



enberger’s canonical form.

_x(t) =

2
4 0 1 0
�2 2 �1
�1 �1 �1

3
5x(t) +

2
4 0 0
1 0
0 1

3
5u(t): (18)

This system has duplicate eigenvalues on 1, and a
single one on �1. Consider the derivative feed-

back with gains Ka =

�
4 1 0
�1 0 �0:5

�
, and Kb =�

�2 �2 0
�10 0 �2

�
. Both gains make the closed-loop sys-

tem to have the same characteristic polynomial s3 +
3s2 + 3s + 1. Therefore pole configurations are co-
incident for the two gains. However, for the former,
the eigenvalues for KaB are 1 and �0:5, thus their
inverses are outside 
�. Corollary 4 together with
Theorem 1 now guarantees that a corresponding dif-
ference feedback works to stabilize. On the other hand,
I + KbB = �I , which is a Hurwitz matrix. From
Lemma 5, we know that the corresponding difference
feedback will fail to stabilize.

4. CONCLUDING REMARKS

The paper has considered the fundamental problem of
whether the closed-loop stability is preserved when re-
placing the state derivative by its difference counter-
parts. A sufficient condition for such a stability pre-
serving replacement being true has been provided. The
condition is very close to necessary one. Applying this
condition, we have shown a favorable result that the
desired stability preservation is always true for single-
input systems. Using some examples, it is pointed out
however that multi-output systems do not allow such
simplicity. This study was partly supported by Grant-
in Aid(No. 13650494) for Scientific Research.
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