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Abstract: The optimal Bayesian filter for a single target is known to provide the best 
tracking performance in a cluttered environment. However, its main drawback is the 
increase of memory size and computation quantity with time. In this paper, the inevitable 
problem of the optimal Bayesian filter is resolved in a suboptimal fashion by using a 
receding horizon strategy. As a result, the problem of memory and computational 
requirements is diminished. As a priori information, the horizon initial state is estimated 
from the validated measurements on the receding horizon. Consequently, the suboptimal 
algorithm proposed allows the real time implementation.  Copyright © 2002 IFAC 
 
Keywords: State estimation, target tracking, optimal Bayesian filter, clutter, receding 
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1. INTRODUCTION 

     
In a cluttered environment, the target tracking 
problem naturally involves the uncertainty associated 
with measurements as well as the modeling 
inaccuracy. This uncertainty is related to the origin 
of measurements, because the measurements might 
not have originated from the target of interest (Bar-
Shalom and Fortman, 1988). This problem was not 
recognized until the first paper of Sittler (1964) was 
published in 1964. The pioneering work of Sittler 
was motivated by the need to find a reasonable way 
of incorporating the measurements with uncertain 
origin into existing tracks. However, since his 
method was based on a non-Bayesian approach, the 
resulting state estimate and covariance do not 
account for the possibility that the determined 
decisions are incorrect. 
 
The Bayesian procedures use the “nearest neighbor” 
of the predicted measurement, in which the Kalman 
filter is modified to account for the a priori 
probability that the measurement might be spurious. 
This filter utilizes only the sensor reports that are 
statistically close to the predicted track measurement 
for track updating and calculates its data association 
performance parameters based on averaging over a 
priori statistics. Singer and Sea (1973) extended the 
Bayesian approach to develop an optimal tracking 

filter within the class of nearest-neighbor filters that 
utilize a priori statistics for estimating correlation 
performance. 
 
The need to incorporate all the observations lying in 
the neighborhood of the predicted measurement was 
pointed out by Bar-Shalom and Jaffer (1972), where 
a suboptimal algorithm using a posteriori 
probabilities was presented. In (Bar-Shalom and 
Jaffer, 1972), it was suggested that a posteriori 
correlation statistics, calculated on-line based on all 
reports in the vicinity of a track (i.e., all-neighbors 
approach) should be used to obtain the best possible 
tracking performance based on all available data 
provided by the surveillance sensor. 
 
In (Singer et al., 1974), the theoretical formulation of 
an optimal filter using the a posteriori probability 
and all-neighbors class was completely carried out. 
This filter requires a growing memory and utilizes 
the data located around the vicinity of the track, 
accounting properly for the possibility that any 
particular report among these data may either be 
extraneous or have originated from the track. 
However, this filter is quite unsuitable for real-time 
application in dense multi-target environments. 
 
Several approaches (Gelb, 1974; Kenefic, 1981; Bar-
Shalom and Fortmann, 1988) for limiting memory 
growth and computation requirements, while still 
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providing a reasonable approximation to the 
performance of the optimal filter, were proposed. In 
(Kenefic, 1981), the optimal a posteriori filter of 
Singer et al. (1974) was combined with an adaptive 
filter. The resulting filter requires an expanding 
memory. A ),( NM  scan approximation, whereas an 
N  scan approximation was used in Singer et al. 
(1974), was proposed in order to obtain an algorithm 
with stable memory requirements. In this 
approximation those measurement histories which 
were identical for the most recent N  scans and those 
input histories which were identical for the most 
recent M  scans were combined together into new 
histories. 
 
The memory growth and computation problem for 
real-time implementation has been a critical issue in 
the Kalman filtering, too. Hence, finite memory 
filters (Jazwinski, 1972; Ling and Lim, 1999) were 
suggested to overcome the poor performance or 
divergence due to the modeling errors of the standard 
Kalman filter. Finite memory filters are also useful in 
situations in which a system model is valid over a 
finite interval. In (Kwon et al., 1999), a receding 
horizon Kalman FIR filter that combines the Kalman 
filter and the receding horizon strategy was presented. 
In their work it is shown that the suggested filter 
processes the unbiasedness property and the deadbeat 
property irrespective of any horizon initial condition. 
In (Han et al., 1999), a receding horizon Kalman FIR 
filter including the estimation of the horizon initial 
state was investigated. Also, an estimation and 
detection technique for the unknown inputs by using 
optimal FIR filter was presented in (Park et al., 2000). 
 
The optimal Bayesian filter in a cluttered 
environment, though it has shown the better 
performance than other filters, has drawn little 
attention due to exponentially increasing memory 
and computation requirements. The main 
contributions of this paper are: A suboptimal 
approach using the measurements only in a receding 
horizon is derived. As a result, the increasing 
memory and computation requirements are 
diminished. Second, the horizon initial state is 
estimated from only validated measurements on the 
receding horizon. Third, the suboptimal algorithm 
solves the real-time implementation problem of the 
optimal Bayesian filter. 
 
This paper is organized as follows: In Section 2, a 
suboptimal algorithm for the optimal Bayesian filter 
is derived, and the horizon initial state estimate and 
its covariance are obtained. A posterior probability of 
the validated measurements on the receding horizon 
is provided in Section 3. In Section 4, conclusions 
are stated. 
 

2. NEW SUBOPTIMAL ALGORITHM 
 
Consider the following state-space representation of 
the target motion and observation 
  kkkk xFx ω+=+1 , (1) 
  kkkk xHy ν+=  (2) 

with kω  and kν  being zero-mean mutually 
independent white Gaussian noises with  covariances 

kQ  and kR , respectively. The suboptimal algorithm 
in the sequel does not use all measurements observed 
from the initial time up to the present time k , but 
uses only a set of measurements observed in some 
interval with fixed window-size N , i.e., on the 
receding horizon interval ] ,[ kNk − .  
 
Assumption 1: The possibility of a false track 
initiation is not considered in this paper. Hence, the 
horizon initial estimate and its covariance, as a prior 
information which will be estimated in the 
suboptimal algorithm, is assumed to be in a correct 
track. Let the set of validated measurements obtained 
at time k  
  km

iikk YY 1, }{ == , 

where km  is the number of measurements in the 
validation region. Let the set of measurements on the 
receding horizon ] ,[ kNk −  at time k  be denoted as 
  k

Nkjj
k YY −== }{ , 

where a superscript k is used, while a subscript k was 
used in the set of validated measurements. A 
combination of measurements on the receding 
horizon ] ,[ kNk −  at the k -th scan can be denoted as 

lkY , . Then, lkY ,  is defined as follows: 
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where skY ,1−  stands for the combination of 
measurements up to time 1−k  at the ( 1−k )-th scan. 
Denoting the event that the l -th history at time k  is 
the correct sequence of measurements by lk ,θ , it’s a 
posteriori probability, conditioned on kY , is given 
by 
  }|{ ,, klklk YP θβ = .    (3) 
Now, the following theorem is stated. 
 
Theorem 1: When the used measurements are 
restricted within a receding horizon, the state 
estimate and error covariance equations of the 
optimal Bayesian filter take the following forms: 
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 Proof: The conditional mean of the state at time k  
can then be expressed as 
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kk YxEx θ=  is the history-conditioned 

estimate. kL  is the total number of measurement 
histories at time k  as 
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where jm  is the number of measurements at time j . 
For each history, the state estimate conditioned upon 
the measurement history, lkY , , being correct is 
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where 
liky ,  is the measurement at time k  in 

sequence l  and s
kky 1|ˆ −  is the predicted measurement 

corresponding to history skY ,1− , with covariance s
kS . 

The gain is 
  1
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k
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l
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and the covariance of the history-conditioned 
updated state is 
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The conditional mean of the state at time k  of (4) 
can be expressed as 
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And again, 
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Therefore, (9) is rewritten as follows: 
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The covariance associated with the combined 
estimate is 
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(10) can be then represented by 
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The filter at time jkN +  on the horizon 

] ,[ kkNk N=− is denoted as kjkN
x |ˆ +  for 

10 −≤≤ Nj . Then the suboptimal algorithm on the 
receding horizon ],[ kkN  becomes the following 
form: 
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where the error covariance is obtained from (11) as 
follows: 
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Remark 1: It is noted that kjkN

x |ˆ + , in (12), for 

kjkN <+  is an intermediate variable to compute 

kkx |ˆ  and cannot be used as a real estimate. Only the 
state estimate kkx |ˆ  is used as a real estimate of the 

real target kx . 
 
Remark 2: The suboptimal algorithm based upon the 
receding horizon in this paper will be called a 
suboptimal receding horizon Bayesian filter. As 
known in (12) and (13), the state estimate is obtained 
from the horizon initial state estimate and covariance 
and the measurement on the receding horizon ],[ kkN . 
However, since past measurements outside the 
horizon is discarded in this algorithm, it is needed to 
estimate the horizon initial condition without past 
information. So, the horizon initial state estimate and 
covariance are derived from the measurements on the 
receding horizon ],[ kkN . In addition, due to 
Assumption 1, the horizon initial track is assumed to 
be correct. 
 
On the receding horizon ],[ kkN , to express the finite 
number of measurements in terms of the horizon 
initial state 

Nkx  the following equations are needed: 

  
NNN kkk Fxx ω+=+1   (14) 

and 
  11 ++ ++=

NNNN kkkk HHFxy νω , 

  
NNN kkk Hxy ν+= .  (15) 

Consequently, the substitution of (14) into (15) 
yields: 
  111 −−− ++= kk
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Next, let us obtain the horizon initial state estimate 
and covariance from (16). Denoting the horizon 
initial condition kkN

x |ˆ  of (12) as zkN
x |ˆ , it is defined 

as follows: 

  1
|ˆ −

∆
= k

zk ZYx
N

,  (17) 

where Z  is a gain matrix of the horizon initial state 
estimator. But, in order to use the estimate zkN

x |ˆ  as 

the horizon initial condition, it must be an unbiased 
estimate of 

Nkx̂  as 

  ][][][]ˆ[ 1
| NNN kk

k
zk xExEHZZYExE === − . 

Therefore, to hold the above equality, the following 
constraint is needed. 
  IHZ = .    (18) 
That is, Z  must be a pseudo-inverse of H . Provided 
that the constraint in (18) holds, the error covariance 
of zkN

x |ˆ , zkN
P | , can be used as a horizon initial 

covariance kkN
P |  in (13). First, let us define 
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The covariance of (16) is obtained as follows: 

 
)] (diag[)] (diag[

][][ 1111

RRRGQQQG
VVGWWGEYYE kkkk

LL +′=

′+′′=′ −−−−  

where Q  and R  are the system and measurement 
noise covariances. For simplicity, the last term of the 
above equation is defined as follows: 

 )] (diag[)] (diag[ RRRGQQQGN LL +′=Θ
∆

. 
The substitution of the above equation into (19) 
yields the following horizon initial covariance: 
  ZZP NzkN

′Θ=| .  (20) 

Now, subject to the constraint of (18), the gain 
matrix Z  must be searched for the horizon initial 
information (17) and (20). In order to obtain optimal 
gain matrix Z, the following optimal criterion is 
required. 
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z
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That is, the gain matrix Z  that minimizes the 
estimate error covariance is needed. Due to the 
monotonicity of the state error covariance, the gain 
matrix Z  that minimizes the state error covariance at 
current time k  is the same as the gain matrix Z  that 
minimizes the initial state error covariance at the 
horizon initial time Nk : 
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First, the following cost function is established: 
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  )( IZHZZ N −′′+Θ′= λ . 
That is, the minimization of ),( λZJ  with respect to 
Z  and λ  is required, which is the vector of 
Lagrange multipliers. Using 0=∂∂ ZJ  and 

0=∂∂ λJ , the gain matrix Z  that minimizes 
),( λZJ  is given as follows (Kay, 1993, p. 153): 

  111 )( −−− Θ′Θ= HHHZ NN .   (22) 
Then, the receding horizon initial state estimate and 
its error covariance are derived as follows: 
  1

|ˆ −= k
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N
,  (23) 

  ZZP NzkN
′Θ=| ,  (24) 

where the gain matrix Z  is 111 )( −−− Θ′Θ′= NN HHHZ . 
 
Remark 3: Using (23) and (24), the state estimate of 
the suboptimal receding horizon Bayesian filter is 
given by 
  1|1| |ˆˆ −=++= Njkjkkk N

xx , 

where the intermediate variable kjkN
x |ˆ +  is drived in 

the following iterative form: 
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3. POSTERIORI PROBABILITY OF THE FILTER 

 
Now, we are in a position to deal with the a 
posteriori probability of (3). The following 
assumptions are needed. 
 
Assumption 2: The number of false validated 
measurements is described by diffuse prior model. 
Assumption 3: The false measurements are 
uniformly distributed in the gate. 
 
First, the vector at each time on the receding horizon 

] ,[ kkN  is denoted as 
  ][ kNk

k mm L−=m .  (25) 
 
Theorem 2: Let Assumptions 1-3 hold. Then, the a 
posterior probability of the validated measurements 
on the receding horizon ] ,[ kNk −  is given as 
follows: 
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GP  is the probability that the true measurement will 
fall in the gate and DP  is the target detection 
probability. kV  is the volume of the validation region 
at time k . 
 
Proof: First, the computation of the probability lk ,β  

conditioned on km  can be expressed as 
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where ],,|[ 11 −−= kk
kk YmYpc m  is the normalization 

constant. Under Assumption 3, the first joint PDF of 
the validated measurements on the right hand side of 
(26) is 
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The second density on the right hand side of (26) is  
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where )( kF mµ  is the probability mass function of the 
number of false measurements. Using the diffuse 
prior model, (28) is rewritten as follows: 
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The third density in (26) is available from the 
previous step as follows: 
 ].,,|[ 11,1,1 −−−− = k

k
ksksk mYP mθβ   (30) 

The substitution of (27)-(30) into (26) gives the 
following form: 
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Fig. 1. One cycle of the suboptimal receding horizon Bayesian filter.



     

where 
ynC  is the volume of the yn -dimensional unit 

hypersphere and γ  is the threshold of the gate. By 
normalizing this result, according to the value of li , 
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Therefore, the a posterior probability conditioned on 
the validated measurements in the receding horizon 

],[ kkN  is given by 
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The scheme of the suboptimal receding horizon 
Bayesian filter derived in Theorem 1 and Theorem 2 
is outlined in Fig. 1. Using the algorithm in Fig. 1, 
the computational complexity and storage 
requirements of the tracking filter can be 
substantially reduced compared to the standard 
optimal Bayesian filter. 
 

4. CONCLUSIONS 
 
In a cluttered environment, the use of the optimal 
Bayesian filter, as a possible solution to the target 
tracking problem, is often recommended. However, 
the computational burden and growing memory are 
known the main drawback of its use. The suboptimal 
algorithm proposed in this paper uses the 
measurements on the receding horizon and 
diminishes the computational complexity and storage 
requirement. Since the prior information outside the 
horizon was not available, the horizon initial state 
estimate and its covariance were obtained using the 
measurements in the receding horizon. 
 

ACKNOWLEDGMENT 
 
This work was supported by the Basic Research 
Program of the Korea Science and Engineering 
Foundation under grant no. KOSEF 2001-1-30400-
006-2. 
 
 
 
 

 
REFERENCES 

 
Bar-Shalom, Y. and Fortmann, T. E. (1988). Tracking 

and Data Association. Academic Press, New York. 
Bar-Shalom, Y. and Jaffer, A. G. (1972). Adaptive 

nonlinear filtering for tracking with measurements 
of uncertain origin. Proceedings of the IEEE 
Conference on Decision and Control, New 
Orleans, December, 243-247. 

Gelb, A., (1974), Applied Optimal Estimation. MIT 
Press, Massachusetts. 

Han, S. H., Kim, P. S., and Kwon, W. H. (1999). 
Receding horizon FIR filter with estimated 
horizon initial state and its application to aircraft 
engine systems. Proceedings of the 1999 IEEE 
International Conference on Control Applications, 
Hawaii, August 22-27, 33-38. 

Han, S. H., Kwon, W. H., and Kim, P. S. (2001). 
Receding-horizon unbiased FIR filters for 
continuous-time state-space models without a 
priori initial state information. IEEE Transactions 
on Automatic Control, 46(5), 766-770. 

Jazwinski, A. H. (1972). Stochastic Processes and 
Filtering Theory. Academic Press, New York. 

Kay, S. M. (1993). Fundamentals of Statistical Signal 
Processing: Estimation Theory. Prentice-Hall, 
Englewood Cliffs, New Jersey. 

Kenefic, R. J. (1981). Optimal tracking of a 
maneuvering target in clutter. IEEE Transactions 
on Automatic Control, 26(3), 750-753. 

Kwon, W. H., Kim, P. S., and Park, P. G. (1999). A 
receding horizon Kalman FIR filter for discrete 
time-invariant systems. IEEE Transactions on 
Automatic Control, 44(9), 1787-1791. 

Ling, K. V. and Lim, K. W. (1999). Receding horizon 
recursive state estimation. IEEE Transactions on 
Automatic Control, 44(9), 1750-1753. 

Park, S. H., Kim, P. S., Kwon, O. K., and Kwon, W. 
H. (2000). Estimation and detection of unknown 
inputs using optimal FIR filter. Automatica, 
36(10), 1481-1488. 

Singer, R. A. and Sea, R. G. (1973). New results in 
optimizing surveillance system tracking and data 
correlation performance in dense multitarget 
environments. IEEE Transactions on Automatic 
Control, 18(12), 571-581. 

Singer, R. A., Sea, R. G., and Housewright, K. B. 
(1974). Derivation and evaluation of improved 
tracking filters for use in dense multitarget 
environments. IEEE Transactions on Information 
Theory, 20(4), 423-432. 

Sittler, R. W. (1964). An optimal data association 
problem in surveillance theory. IEEE 
Transactions on Military Electronics, 8(4), 125-
139. 


