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Abstract: A procedure for global optimization of PID type controller parameters for
SISO plants with model uncertainty is presented. Robustness to the uncertainties is
guaranteed by the use of Horowitz bounds, which are used as constraints when low
frequency performance is optimized. The basic idea of both the optimization and the
parameter tuning is to formulate separate criteria for low, mid and high frequency
closed loop properties. The trade-off between stability margins, high frequency
robustness and low frequency performance is then elucidated and, hence, the final
choice of parameters is facilitated. The optimization problems are non-convex and ill-
conditioned and we use a combination of new global and standard local optimization
algorithms available in the TOMLAB optimization environment to solve the problem.
The method does not rely on a good initial guess and converges fast and robustly. It is
applied to a controller structure comparison for a plant with an uncertain mechanical
resonance. For a given control activity and stability margin as well as identical tuning
parameters it is shown that a PID controller achieves slightly improved low frequency
performance compared to an H∞ controller based on loop-shaping. The reason for this
somewhat surprising result is the roll-off in the H∞ controller, which adds additional
high frequency robustness compared to the PID controller. Computationally, a factor
of 10−20 has been gained compared to an earlier, less general, version of the procedure.
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1. INTRODUCTION

In many controller design techniques a mixed,
possibly weighted, performance criterion is used to
ensure that the closed loop achieves desirable be-
havior. This criterion includes multiple closed loop
objectives and is minimized to obtain an optimal
solution with respect to the performance objec-
tives (as in, e.g., the mixed sensitivity optimiza-
tion). However, it is important to have separate

criteria for the closed loop properties at different
frequency regions such that the trade-off between
performance and robustness can easily be evalu-
ated, especially in case of a change of closed loop
specifications. Such a procedure has been used to
evaluate PI and PID controllers, as well as for
tuning the controller parameters by optimization
(Lennartson and Kristiansson, 1997; Kristiansson
and Lennartson, 1999).
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For plants with uncertainties, the mid frequency
(MF) robustness properties are crucial, whereas
the low frequency (LF) performance and robust-
ness are less affected by the uncertainties due to
high gain (integral action). For high frequencies
(HF) it is simply a question of having a small loop
gain. In case explicit descriptions of the plant un-
certainties have been formulated, the Quantitative
Feedback Theory (QFT) by Horowitz (1993) can
be used to design controllers such that specified
bounds on, e.g., the sensitivity function S(jω)
and the control sensitivity function KS(jω) are
satisfied in spite of the uncertainties. The basis
for this method is a translation of the bounds
on S and KS to so-called Horowitz bounds on
the nominal open loop. For this purpose a tool-
box QSYN (Gutman, 2001) running on MATLAB
(Mathworks, 2000) can be used.

The aim of the traditional QFT method is a min-
imization of the HF open loop gain (Bryant and
Halikias, 1995; Gera and Horowitz, 1980). It has
no fixed structure of the controller and, hence,
in its general form it gives an unlimited num-
ber of tuning parameters. Zolotas and Halikias
(1999) used the QFT approach with bounds on
the complementary sensitivity but fixed the struc-
ture to an ideal PID controller and minimized the
derivative gain. Neither of these design methods
considers the trade-off between the LF, MF and
HF properties of the closed loop. This trade-off
is important since, e.g., the process disturbance
rejection can often be significantly improved at
only a marginal reduction of the HF robustness
(Kristiansson and Lennartson, 1999). To pursue
this, Fransson et al. developed a constrained opti-
mization procedure where PID and PID weighted
H∞ loop shaping controllers were designed based
on an optimization of the LF performance subject
to specified bounds on the maximum sensitivity
‖S(∆)‖∞ and the maximum nominal control sen-
sitivity ‖KS‖∞ (Fransson et al., 2000; Fransson et
al., 2001b). Robustness to plant model uncertain-
ties (for S) was guaranteed by Horowitz bounds.
The procedure, however, suffered from the fact
that local optimization methods were used to
solve highly nonlinear problems with potential
discontinuities in the parameter space. As a result,
difficulties with initial guesses, convergence and
local optima were frequently experienced.

In (Fransson et al., 2001a), the method was ex-
tended to MIMO systems, resulting in two major
differences compared to the earlier work. Firstly,
the QFT techniques were replaced with µ anal-
ysis because of the mathematical complexity of
QFT for MIMO systems. Secondly, to remedy the
numerical problems a combination of state of the
art global (Jones, 2001; Jones et al., 1993) and
local (Murtagh and Saunders, 1998) optimization
algorithms was used to solve the following non-

convex design problem:

K∗ = arg min
K

Jv (1)

‖S(∆)‖∞ ≤ cS , ‖KS(∆)‖∞ ≤ cKS ∀∆ ∈ ∆,
(2)

where K∗ is the controller obtained by minimizing
the LF performance measure Jv subject to user
defined specifications cS and cKS on ‖S‖∞ and
‖KS‖∞ respectively. ∆ defines a deviation from
the nominal plant model and ∆ is the set of all
such possible plant uncertainties. K is taken as
either a PID controller or a PID weighted H∞
controller, synthesized according to the method
by McFarlane and Glover (1992). Implementa-
tions of the algorithms in (Jones, 2001; Jones et
al., 1993) and (Murtagh and Saunders, 1998) are
available in the optimization environment TOM-
LAB (Björkman and Holmström, 1999; Holm-
ström, 1999; Holmström, 2001), which runs on top
of MATLAB (Mathworks, 2000).

In this paper, the design method in (Fransson et
al., 2000; Fransson et al., 2001b) is improved in
the following ways:

• A reliable test is given that determines if
Lnom is (pointwise) inside or outside the
Horowitz bounds in the Nichols chart.

• Robustness to plant model uncertainties for
‖KS‖∞ is guaranteed.

• The numerical procedure in (Fransson et al.,
2001a) is used, resulting in fast convergence
towards a global optimum of (1)–(2).

2. PLANT UNCERTAINTY AND HOROWITZ
BOUNDS

A plant having parametric uncertainty can be
defined as

G(s) ∈ {G(s,∆)},
where ∆ ∈ ∆ ⊂ R

p is a vector of uncertain
parameters. Approximate the set of transfer func-
tions obtained by the uncertainty representation
with {Gi(s)}N

i=1. For each frequency, ωk ∈ Ω, the
set {Gi(jωk)}N

i=1 in the complex plane is then
called a template (Horowitz, 1993). The template
should enclose all possible frequency responses of
the plant at the frequency ωk.

To design a controller that satisfies the specifi-
cations for all plant variations within the uncer-
tainty set, QFT can be used (Horowitz, 1993). It
is required that the plant uncertainty be repre-
sented by a set of templates and that the design
specifications be in the form of bounds on the
magnitudes of some frequency response functions.
The frequency response specifications, in turn,
result in constraints on the nominal open loop
Lnom(jω) = Gnom(jω)K(jω). These constraints
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Fig. 1. Nichols chart with Horowitz bounds and a nominal
open loop for ωk = 0.5, 1 and 2.

are called Horowitz bounds and reflect the interac-
tion between the plant uncertainty and the closed
loop specifications. We define

Si(s) =
1

1 + Gi(s)K(s)
, i = 1, 2, . . . , N,

where Gi is the uncertain plant, and further
impose an upper bound cS on the maximum
frequency response of this sensitivity function for
all plants in {Gi}N

i=1. To satisfy this bound, the
following must hold:

MS ≡ max
i

∣
∣
∣
∣

1
1 + Gi(jωk)K(jωk)

∣
∣
∣
∣
≤ cS ∀k. (3)

Thus, the controller must be chosen such that
(3) is fulfilled for the complex numbers K(jωk).
Clearly, for each Gi there is a domain in the
complex plane of K(jωk) values for which (3)
does not hold. The union of all such domains
gives a domain, or possibly several domains, that
contains the unacceptable values of K(jωk). The
boundary of this domain is called the Horowitz
bound for K with respect to S and ωk and is
denoted BSK(ωk). Multiplying by the nominal
plant yields BSL(ωk). From the plant templates
and the specifications, the Horowitz bounds can
be computed with QSYN and placed in a Nichols
chart together with Lnom. To ensure that (3) is
satisfied for all plants within the uncertainty set,
Lnom must be shaped such that, at each frequency
ωk, it lies outside the bound for that frequency
(see Figure 1). Analogously to (3) we also define

MKS ≡ max
i,k

∣
∣
∣
∣

K(jωk)
1 + Gi(jωk)K(jωk)

∣
∣
∣
∣
≤ cKS . (4)

In an automated procedure one would like to have
a test that determines if L(jωk) lies outside, e.g.,
BSL(ωk) ∀ k or not. Now consider a single k and
transform the origin in the Nichols chart to the
interior of the considered B (where the subindex
SL and the argument ω have been dropped). If B
is transformed to polar coordinates we can write
rB = B(θB) and if L is transformed to the same
coordinates it can be represented by (rL, θL). The
test for L being outside B is then simply (see
Figure 2)

rL > B(θL). (5)
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Fig. 2. A nominal open loop and the corresponding

Horowitz bound for ωk transformed to polar coor-
dinates.

Note that the test can fail if B(θL) has more than
one solution (i.e. if the non-convexity of B is very
high). This is unlikely, however, if the origin is
chosen carefully.

3. CONTROLLER STRUCTURES

Both PID controllers and H∞ synthesis by loop
shaping (McFarlane and Glover (1992)) are con-
sidered when solving (1)–(2). By choosing a PID
structure for the weight function in the loop shap-
ing procedure and using its parameters for tuning,
we make the optimization procedure more or less
the same as for a standard PID controller. Fur-
ther, it has the advantage of not including a γ-
iteration. Instead, sub-optimality is introduced in
terms of a stability margin ε.

The first step in the method is to shape G with
a weight W to give an open loop that meets
some nominal performance specifications. For the
shaped system G̃ = GW , a controller K∞ is then
obtained by solving a set of Riccati equations. The
final feedback controller for the plant G is then
K = WK∞ (see Figure 3). For a given weight W
the controller derived in this way will, in some
sense, have optimal robustness. The degree of
optimality is determined by ε = εmaxα

−1, where
εmax is called the maximum stability margin and
α > 1 is a scaling factor. In this paper W is
parameterized as a PID controller,

KPID(s) = kI
1 + 2ζτs + (τs)2

s(1 + s τ
β )

. (6)

These PID parameters are then subject to tun-
ing (by an optimization procedure) such that a
desired closed loop behavior is obtained.
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Fig. 3. Closed loop system with an H∞ loop shaping
controller K, and a plant G.



4. PERFORMANCE MEASURES

In (Lennartson and Kristiansson, 1997) the fol-
lowing LF performance measure was suggested:

Jv = ‖s−1SG‖∞, (7)

The disturbance sensitivity function SG is the
transfer function from (LF) load disturbance v
to output y, which implies that Jv is a measure
of load disturbance rejection (see Figure 3). KS
is the transfer function from measurement noise
w to the control signal u and, thus, MKS is a
measure of the control activity caused by (HF)
measurement noise, c.f. (4). 1/‖S‖∞ is the short-
est distance from the open loop (GK) to the
instability point (−1, 0) in the Nyquist diagram
and, hence, MS is a natural robustness measure,
c.f. (3). We next introduce a general expression
for controllers including integral action as

K(s) =
κI

s
+ K̃(s), (8)

where |K̃(j0)| is bounded and |K(j∞)| = κ∞. It
can be readily shown that |(jω)−1SG(jω)| → κ−1

I

as ω → 0 (provided |G(j0)| �= 0) (Fransson et
al., 2000). For PID controllers, κI = kI and in
fact, k−1

I serves as a close approximation to Jv.
It means that this LF performance measure will
be relatively independent of the plant transfer
function and, hence, also the uncertainty.

Measures and criteria for each frequency range
(LF, MF and HF) have now been presented and
these can be used to determine a controller that
gives an acceptable behavior of the closed loop
system for all frequencies, in spite of the uncer-
tainties. The constrained optimization problem to
be solved is

min
kI ,ζ,τ,β

Jv s.t. MS ≤ cS , MKS ≤ cKS . (9)

If we choose the loop shaping weight W = KPID ,
the difference between optimizing PID controllers
and H∞ controllers with (9) is that the optimiza-
tion for H∞ design consists of two steps: an outer
loop for tuning the weight W , and an inner loop
for the standard H∞ optimization.

5. GLOBAL OPTIMIZATION

The optimization problem (9) is non-convex, non-
smooth and ill-conditioned. Using a standard se-
quential quadratic programming (SQP) method
(see e.g., Bertsekas (1995)) is troublesome because
it is only guaranteed to find a local optimum, and
relies heavily on a good initial guess. Furthermore,
analytic gradients are not available and numer-
ical differences must be used. However, recent
development of algorithms for non-convex global
optimization makes it possible to overcome these
problems.

Jones et al. (1993) have developed an algorithm
DIRECT for finding the global minimum of a
multi-variate function subject to simple bounds,
using no derivative information. The algorithm
is a modification of the standard Lipschitzian
approach that eliminates the need to specify a
Lipschitz constant. The idea is to carry out si-
multaneous searches using all possible constants
from zero to infinity. In (Jones et al., 1993) the
Lipschitz constant is viewed as a weighting param-
eter that indicates how much emphasis to place
on global versus local search. In standard Lips-
chitzian methods, this constant is usually large
because it must be equal to or exceed the maxi-
mum rate of change of the objective function. As
a result, these methods place a high emphasis on
global search, which leads to slow convergence.
In contrast, the DIRECT algorithm carries out
simultaneous searches using all possible constants,
and therefore operates on both the global and
local level. It is guaranteed to converge to the
global optimal function value if the objective func-
tion is continuous in the neighborhood of a global
optimum (this could be guaranteed because as the
number of iterations goes to infinity, the set of
points sampled by DIRECT forms a dense subset
of the unit hypercube).

The most recently developed DIRECT algorithm
(Jones, 2001) handles nonlinear and integer con-
straints, whereas the original algorithm does not.
Both of them have been implemented in the opti-
mization environment TOMLAB as the routines
glcFast, and glbFast (Björkman and Holm-
ström, 1999) and have been successfully used in
train design optimization (Björkman and Holm-
ström, 2000) and for the design of trading algo-
rithms in computational finance (Hellström and
Holmström, 1999). TOMLAB runs on top of
MATLAB and includes a large set of solvers, e.g.
the NPSOL solver, implementing an SQP algo-
rithm (npsol) by Gill et al. (1998).

Since glcFast can handle nonlinear constraints,
it is suitable for solving (9). In this algorithm
one has to specify lower and upper bounds for
the independent variables and also the maximum
number of function evaluations N . The DIRECT
algorithms converges to the global optimum in
the limit N → ∞. However to achieve results in
finite time, N must be finite and a global optimum
can no longer be guaranteed. To increase the
performance of the optimization procedure, and
allow for smaller N , we switch to NPSOL when
the global algorithm has reached the convergence
region for npsol (which is estimated prior to the
optimization). With this approach the probability
of finding the global minimizer K∗ to (9) increases
significantly compared to using SQP-like methods
alone. To summarize, the procedure is described
in the following algorithm:
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Algorithm 1:

(1) Define the plant model and the uncertainty
set ∆ along with the grid for each uncertain
parameter.

(2) Specify cS , cKS and Ω along with its grid,
then generate BSL(ωk) and BKSL(ωk) with
QSYN.

(3) Specify upper and lower bounds for the PID
parameters and the number of function eval-
uations N for the optimization. Also specify
when the switch from the global optimization
algorithm to the local is to occur.

(4) Run the optimization.
(5) Go to 2 and repeat with new specifications.
(6) Evaluate with respect to the proposed LF,

MF, and HF measures as well as other system
properties, especially in the time domain.

(7) If needed go to 2 and repeat.

6. EXAMPLE

Consider the following plant transfer function:

G(s) =
4s + 800

Js2 + d(1 + 0.08J)s + 16J + 200
,

where the uncertainty intervals are assumed to be
J ∈ [5 15] and d ∈ [5 10] (see Figure 4) and the
nominal plant is described by J = 10 and d = 7.5.
The design parameters were chosen as cS = 1.7
and cKS = 3, for which Horowitz bounds for 25
frequencies were computed with a grid of 16 points
for each of the uncertain parameters. Algorithm 1
was then performed both for an H∞ controller
(choosing the scaling factor α = 1.01) and a PID
controller. cKS was gradually increased up to 14 to
reflect less strict constraints on the control signal.
The entire procedure was repeated for cS = 1.5.
All calculations were done with MATLAB on a
1GHz Pentium III processor.

For a given cS and cKS the optimization required
roughly 300 function evaluations for glcFast (45
sec) and 50 for npsol (5 sec). This was more than
adequate and can be compared to 10−20 minutes
in (Fransson et al., 2000; Fransson et al., 2001b)
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Fig. 5. Jv versus cKS as obtained from Algorithm 1. The
upper two curves are for cS = 1.5 and the lower
two for cS = 1.7. Solid: PID control. Dashed: PID
weighted H∞ control.

for solving a less general problem than here. Fig-
ure 5 shows the results of the optimization in
terms of obtained Jv versus specified cKS and
cS . We note the general trade-off between per-
formance and control activity for all controllers,
i.e., increased performance (reduced Jv) can be
achieved without reducing the stability margin,
but at a cost of higher control signals (increased
cKS). It is seen that for a given bound on the con-
trol activity (fixed cKS), PID control can achieve
slightly better results in terms of LF performance.

We also choose to study the step responses from
process disturbance v(t) to output y(t), from
reference signal r(t) to control signal u(t) and
from reference to output for cS = 1.7 and cKS =
10. In Figure 6 the step responses are shown for
fixed values of the uncertain parameters and for
each of the controllers. The difference between the
two controller structures is seen to be marginal.
However, the general advantage that H∞ control
implies a roll off in the controller should be taken
into consideration. This means that unmodeled
HF dynamics will not be amplified to the same
extent as for PID control. Optimizing also over
α will benefit the H∞ design somewhat, in terms
of the criteria, but not enough to beat the PID
controller. Finally we note that the H∞ controller
is of order 6 compared to 2 for the PID controller.

7. CONCLUSIONS

An existing optimization method for the design
of robust PID and H∞ loop shaping controllers
has been extended. The new method includes
a combination of global and local optimization
algorithms and results in a fast algorithm with
robust convergence towards a global optimum. A
reliable test has been given that can determine
if the nominal open loop is (pointwise) inside or
outside the Horowitz bounds in the Nichols chart.

The criteria used take important aspects for
achieving robust performance into account, in-
cluding a guaranteed robustness to explicit plant
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uncertainties by use of Horowitz bounds. The
trade-off is elucidated in the same way as for
plants with no uncertainties. Having separate cri-
teria for the closed loop properties in the different
frequency regions allowed the trade-off between
robustness and performance to be studied easily
and clarified the consequences of a change of spec-
ifications.

The design method has been applied to an exam-
ple showing that a PID controller achieves slightly
improved low frequency performance compared to
an H∞ controller based on loop-shaping. Com-
putationally, a factor of 10 − 20 has been gained
compared to an earlier, less general, version of the
design procedure.
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