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Abstract : A new class of adaptive nonline&k, control for robotic manipulators is proposed in

this manuscript. Those control strategies are derived as solutions of particular nohlineantrol
problems, where both disturbances and estimation errors of unknown system parameters are regarded
as exogenous disturbances to the processes, ang t@ns from those uncertainties to generalized
outputs are prescribed explicitly. The resulting adaptive control systems are shown to be robust to the
estimation errors in the adaptation schem&opyright(©2002 IFAC
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1. INTRODUCTION schemes for robotic manipulators is proposed based on
inverse optimality (Krsti¢ and Deng, 1998; Miyasato,

Recently, there has been much progress in the control1999). Those control schemes are derived as solutions
of robotic manipulators. Some of those utilize useful of particular nonlineaH. control problems, where
physical properties of manipulators, such as positive both disturbances and estimation errors of unknown
realness or passivity, and the passivity-based controlsystem parameters are regarded as exogenous distur-
strategy has become one of the strong tools to dealbances to the processes (Miyasato, 2000). The result-
with nonlinearity and uncertainty in manipulators and ing control systems are bounded with guaranteed cer-
electrical-mechanical systems (Spong, 1992; OrtegatainH. control performance; that is, the gains from
and Spong, 1994). Additionally, nonline&k, con- those uncertainties to generalized outputs (including
trol schemes of manipulators have been also discussedcontrol terms) are prescribed explicitly. Especially, the
Some of those utilize the solutions of corresponding proposed control strategies are shown to be robust to
Hamilton-Jacobi-Isaacs (HJI) equations (Chenal., the estimations errors of tuning parameters, and thus
1994, Chenet al., 1997; Nougata and Furuta, 1998), the good transient properties are attained even for the
but there still remains the difficulty of solving nonlin-  large estimation errors in adaptation schemes.
ear HJI equation. Another approach of those utilizes
passivity and attains certald, control performance
without HJI equation (Shen and 2. PROBLEM STATEMENT
Tamura, 1999). However, the control efforts are not ) ] ) )
penalized in the cost functionals, and sometimes, thatConsider a robotic manipulator withdegrees of free-
approach gives rise to excessive control energy. Simi-dom described by the following equation:
lar approach is also found (Battilotti and Lanaru, 1997), -- A g -~
where HJI equation is introduced but no control efforts M(8)8+C(8,6)8+G(8) =T+d, @
are penalized in the cost functionals. wheref € R" is a vector of joint angledyl() € R™"

. . . is a matrix of inertia,C(6,8) € R™" is a matrix of
In this manuscript, a new class of nonliné&y control Coriolis and centrifugal forces5(6) € R" is a vector



of gravitational torquest is a vector of input torques  Define a positive functioll by
(control input), andd is a vector of external distur-

bance. It is assumed that the system parameters in V= }STM(B)S+}||e||2, (11)
M(8), C(8,8), G(8) and external disturbanckare un- 2 2
known. Only,6, 8 andt are assumed to be available and take the time derivative of it along the trajectory
for measurement. of s, e, and®.
It is known that robotic manipulator models with rota- V = —Ae|?+s' (Pre+ Pos+e+u+td)
tional joints have the following properties +sT{(M —M)8g + (€ —C)bq
(Spong and Vidyasagar, 1989). +G-0)), (12)
Properties of Robotic Manipulators. ®; = —A°M+AC,
. . . ®; = AM. (13)
1. M(8) is a bounded, positive definite, and sym-
metric matrix. The control signals are obtained in the following forms,
wherev is also a stabilizing control signal to be deter-
O< Ml < M(G) <Al <o, V6. (2) mined later.
2. M(8) — 2C(e,é) is a skew symmetric matrix. U= —®e—dys—e+y, (14)
. . S, — 22N\ A
ET{M(8) —2C(6,0)}E =0, VE. @3) b1 = —AM+AC,
d, = AM, (15)
3. The left-hand side of (1) can be written into the T = M(8yg+M%e—As)+C(6g—Ae)+G—e+v
following form, — Q(0,0,ab)Td ety (16)
M(8)a+C(8,6)b+G(8) = 0(6,8,ab)®, () a =By +Me-2s
b = 6g—\e a7

whereQ(6,6,a,b) is a known function o, 8, _
a, b, and® is an unknown system parameter. The substitution of the control signal (14) into(12)

T . . ields
The control objective is to determine a suitable con- y

trol input T such that the joint angle vectérfollows V = —A|le?+s"v+s'd

the desired reference angle vedigr while certainH,, T A Y. -

control performance is attained. +s {(M=M)8y +(C~C)Ba+(GC-C)
—(P1—Pr)e— (D2 — Py)s}

= —\||el|?+s"v+s'd+s"Q(6,6,a,b)Td, (18)
3. TRACKING CONTROL SYSTEMS b=db_o (19)
The basic structure of the tracking control for robotic \ynerea andb are defined by (17). The control signals
manlpu]ators is shovyn (Shen anq Tamura, 1999). First, (14), (16) andv (18) are fundamental formulas, from
set the input torque in the following form, where the  \yhich all control schemes in this manuscript are de-

reference angle vect@y is utilized. duced.
T = u+M(8)84+C(8,6)84 +G(8)
= u+Q(6,6,64,64)" ®. (5) 4. NONLINEAR ADAPTIVE CONTROL
® is an estimate of the unknown parametgrandu First, it is assumed that = 0, and the conventional
is a stabilizing control signal to be determined later. adaptive scheme (Narandra and Annaswamy, 1989; Shen
Denote the tracking error by and Tamura, 1999) is applied to the control of robotic

manipulators. Determine the stabilizing control signal

e=0-8q, ©) v and adaptive laws such as

then, the next equation is derived.

v=—Ks (K=K'>0), (20)
M(8)é-+C(8,8)e= u+d+{M(8) —M(8)}8 ® = —roe,6,ab)s 1)
+{C(6.8)-C(8,0)}64 +{G(0) -G(8)}.  (7) (r=r">0).
The augmented error signsis introduced such as Define a positive functiolV by
s=é+\e ®) w=v+%&ﬂr*1&>, (22)

(A>0). . o . .
and take the time derivative of it. Then it follows that
The overall robotic system is rewritten by utilizireg _ , 1
ands as follows: W =—-M\l|¢]|—s Ks<O0, (23)
&=s—M\e (9) and the next theorem is obtained.
Ms$ = (AM —C)s—A(AM —C)e+u+d
+{M —M}by +{C-C}64+{G—G}. (10)



Theorem 1 : The adaptive control system of robotic 1 1 4 -1
manipulatos (1) defined by (14), (16), (20), (21) is R= ?' +?Q Q+K) -, (30)
uniformly bounded, and the tracking errors e, s con- ! 2

verge to zero asymptotically. (K=KT>0),
lime=0, and the input signal (stabilizing control signsiis ob-
tl._’°° _0 24 tained as a solution of the correspondidg control
S = (24) problem in the following way:
v= RNV
5. NONLINEAR ADAPTIVE H,, CONTROL = _%R_ls. (31)

The proposed nonlinear adaptivél, control
schemes are shown. First, the nonlineky control
schemes are discussed, where the tuning laws of
are not specified. Next, the projection-type adaptive

laws are introduced for the tuning @f, and the non-  Theorem 2 : The nonlinear control system of robotic
linear adaptivéd.,, control schemes are presented. Itis manipulators (1) defined by (14), (16), (31), (30) is
shown that both control systems are uniformly boundedyniformly bounded for arbitrary bounded design pa-
and attain certaihl, control performance. rameters @ (®q, D), and arbitrary
bounded disturbance d. Additionally, v is an opti-
mal control signal which minimizes the following cost

Then, the next theorem is obtained for the original
robotic manipulators (1).

5.1 Nonlinear K, Control. functional J.

In this section,® is an arbitrary bounded design pa- B t T

rameter. The proposed nonlinddg control schemes J = dzl;rzz /0(q+v RvdTt+V(t)

are derived as solutions of certafi,_control prob- o .

lems, wherel # 0 and parameter errdp are regarded 7y%/ ||d||2d'[7y%/ ||d>||2d1}, (32
as external disturbances to the process. For that pur- 0 0

pose, consider the following virtual process. Furthermore, the next inequality holds.

x= f(X)+g1109d + g12(X) P+ G2V, (25) S
e e /(q+v Rvdt+V(t)
RHESEN o

s M-1Cs t t .
. <V [ dlPde+43 [ 1@l2r+v (o). (33)
0 0
009 =000 = | 1 |,

0 .
912(x) = [ mM-1QT } . (26) Proof. By considering HJI equations (27), (28),is
evaluated as follows:
It should be noted that the time derivative \0f(11)

along the trajectory of the virtual system (25), (26) is V = —MeP+s"v+sTd+s'QTd
the same as (18). For the virtual system, consider the Is2 sTQ™@s 1.,
next Hamilton-Jacobi-Isaacs equation (HJI equation), = Tag g + 25 R™"s—q
where the solutioV is given by (11). oo
157 QTd+sTves'd
ov T
Pl = (v-|— %R’%) R (v-|— %R’ls> —VvTRv
1 ”LQMVHZ ”Lgle”z 1 T 2
+- + _ngv R (ngv) S
4{ Vi A -¥; d—ﬁ +vil|d]?
+q(x) = 0. (27) ! ,
The positive functiorg(x) and positive definite sym- —y3|®— s +V3||®||? —q. (34)
metric matrixR are to be obtained from (27) based on 2%

inverse optimality, for the given solutiovi (11) and - . . .
the positive constantg, y». The substitution of the Then, it is shown that (31) is an optimal solution to

; ; ; ; J, and that the inequality (33) holds. The substitution
solutionV (11) into HJI equation (27) yields the next ; ! .
(11) g @7y of v (31) into (34) yields the next relation,

relation.
g2 s'Q'as 1 V < —q— VI Rv+2[|d||? + 3| @2, 35
—Mlelf*+ % Foap TaSRsta0=0. (9 = Vil +v2ll (35)
1 2 from. which, uniform boundedness of the control sys-
Thenq(x) andR are given by tem is derived.

a2 42 that the time average lim,e £ f; (q+ V' Rv)dt can

Remark 1. ;, From the inequality (33), it is seen
q = Allef*+s" (iR‘l L 1QTQ) s (29) ¢ quality (33)



be made arbitrarily small by decreasing design param-
etersyy, vz.

Remark 2. In the proposed control strategy (14),
(16), (31), (30), letyp — . Then, the resulting con-
trol scheme is a usual nonlinelg, control structure,
where £, gain from disturbance to the generalized

outputy/q+ VT Rvis prescribed.

5.2 Nonlinear Adaptive k&l Control.

Proof. The projection-type adaptive laws attane

L%, Then, the boundedness of adaptive systems is de-
rived from Theorem 2. The optimality of and in-
equality (39) are easily deduced from replacibgnd

V by 0 andW, respectively, in (34).

Remark 3.

average liMg _yeo &
trarily small by

Similar to the previous case, the time

5 (q+V'RV)dt can be made arbi-
Jecreasmgl

Remark 4. Theorem 2 also holds for the adaptive

Next, the adaptivel, control scheme is proposed, wherecontrol scheme (14), (16), (31), (30), (36). Hence, the

® are tuned adaptively. Far# 0, the projection-type
adaptive laws are introduced such as

Q)s(t) <

b))
b(t)TT ()

if [|®(t)]| =No & BH)T
D(t) = —TQ)S(t) + T =2l TQ)s(t),
otherwise

B(t) = ~TQ)s(t),

where ||®|| < No and ||®(0)|| < No, andNg is as-
sumed to be known. Then, for the sawWwg22)

(36)

W=V+(d-0)rLd-o),

2(
W is obtained such as

W < —Ae2+s"v+s"d. (37)
That relation (37) corresponds to the virtual system
(25), (26) with® = 0. However, the same discussion
as 5.1 can be also applied to this case, and the next
theorem is derived for the sanwe(31), (30) and the

adaptive laws (36).

Theorem 3 : The nonlinear adaptive control system
of robotic manipulators (1) defined by (14), (16), (31),
(30), (36) is uniformly bounded for arbitrary bounded
disturbance d. Additionally, v is an optimal control
signal which minimizes the following cost functional
J.

J = sup

d,ber?

AN

Furthermore, the next inequality holds.

{/()t(q+vTR\/)dT+W(t)

(38)

/Ot(q-|—vT RV)dT +W(t)

t
< [ ld%ar+w(o). (39)
Especially, when & £2, the tracking errors e, s con-
verge to zero asymptotically.

I|m e=0,
t—o0

lims=0.
t—o

proposed adaptive system is robust to the estimation
errors of tuning parameters, and this leads to good
transient property with less control efforts.

Remark 5. The proposed adaptive control schemes
are closely related to the work (Tomei, 1999), where
similar nonlinear damping terms are introduced. How-
ever, the present method is derived as a solution for
certainH., control problems and the control efforts are
also penalized.

6. SIMULATION STUDIES

A numerical simulation study is performed to show the
effectiveness of the proposed adaptive control scheme.
A SICE-DD arm (the standard manipulator model in
theSociety ofl nstrument an€ontrolEngineers (SICE))
with two-degree of freedom is considered. Physical
parameters of the manipulator are written as follows:

=1227kg mp=2.083kg
I, =0.1149kg m?, |, =0.0114kg n?,
I1=02m, 1|,=0.2m,
ri =0.063m r,=0.080m

The desired trajectories are given by

(
(
841(0) =0,
B842(0) =T,
B31(1) =T,
B42(1) = -,
841(0) = 641 (1) = By2(0) = Bg2(1) = 0.

For comparison with the conventional adaptive control
scheme, it is assumed that= 0.

The design parameters are chosen such that

r=1, A=1 K=I.

The simulation results are shown in the followings,
wheree; = 0; — g1, & = 6, — By, and



<

[y

/0 e (t)2dt = 0.21286E- 02,
/ e (t)2dt = 0.24662E- 02,

[y

o

1
/ |le(t)||dt = 0.45948E- 02,
0
1
/0 T1(t)2dt = 0.58322E+ 01,
1
/ To(t)2dt = 0.37925E+ 00,
0

1
/0 I[T(t)]2dt = 0.62115E+ 01

e Case 2: usudh, control scheme witly; = 0.1,
Y2 — oo (Theorem 3)

V= f% <él + K) S,

/0 e1(t)2dt = 0.14007E- 02,
/0 " eo(t)%dt = 0.11984E- 02,
/01 ||e(t)]|?dt = 0.25992E- 02,
/0 lTl(t)Zdt = 0.52174E+ 01,
/0 lrz(t)zdt = 0.36290E+ 00,

1
/0 I[t(t)|2dt = 0.55803E+ 01

e Case 3: proposed control scheme witl= 0.1,
y2 = 0.1 (Theorem 3)

11, 1
v=—>3l+5Q"Q+K]|s,
(e
1
/ e;(t)2dt = 0.30649E- 03,
0
1
/ e(t)?dt = 0.24101E- 03,
0
1
/ ||e(t)||>dt = 0.54750E- 03,
0
1
/ T4(t)2dt = 0.43353E+ 01,
0

1
/ To(t)2dt = 0.32726E+ 00,
0

1
/ I[t(t)|[2dt = 0.46626E+ 01
0

7. CONCLUSION

e Case 1: conventional adaptive control scheme both disturbances and estimation errors of unknown
(Theoreml)

system parameters are regarded as exogenous distur-
bances to the processes. ¢ From the several numerical
simulation studies (Case~l Case 3), itis seen that the
proposed control strategy (Case 3) has better transient
properties with less control energy compared with the
conventional adaptive control (Case 1) or even usual
nonlinearH, control schemes (Case 2). Those are
owing to that the control efforts are also penalized in
the correspondinbl., control problems. Nevertheless,
there is no necessity of solving nonlinear HJI equation
in the proposed control schemes.
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robotic manipulators is presented in this manuscript.
The proposed control schemes are derived as solutions
of particular nonlineaH., control problems, where



