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Abstract: In this paper, a definition of a class of rational function matrices called a type-1 
matrix is given. Two illustrative examples show that the type-1 matrix can describe most 
of linear physical systems. It is proven that the type-1 matrix satisfies two properties that 
its characteristic polynomial in the ring F(z)[ ] has no nonzero constant eigenvalues or 
nonzero multiple factors in F(z)[ ]. The author present some controllability criteria of 
the linear systems whose characteristic polynomials have no nonzero multiple factors in 
F(z)[ ]. The applications of the type-1 matrix and system to structural controllability are 
indicated.  Copyright 2002 IFAC 
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1 INTRODUCTION 

Consider a linear system 

      X& =AX+BU, Y=CX+DU,            (1.1) 

where X∈Rn, U∈Rg , and Y∈Re  . Let z1, z2 , … ,  zq be q  
independently variable parameters (independent 
parameters or paraemters for short). Let z=(z1, … ,  zq). 
The domain of z is Rq . Rq is also said to be the 
parameter space. Let F(z) denote the field of the 
rational functions with real coefficients in the q  
parameters z1 , … ,  zq. A matrix M(z) is called a rational 
function matrix (RFM) or a matrix over F(z) if each 
entry in M(z) is a member of F(z). The system (1.1) is 
called a rational function system (RFS) or a system 
over F(z) if all the coefficient matrices A, B, C and D 
are RFMs. Let F(z)[ ] denote the ring of all the F(z) 
coefficient polynomials in . 

The following two properties were introduced . by Lu 
and Wei (1991). 

                                                 
1This work was supported by the National Natural Science 
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Definition: Let A  be an n n  matrix over F(z). Then its 
characteristic polynomial det( I-A)∈F(z)[ ]. The 
martix A  is said to be of Property 1 if m* {z∈Rq | 
det( I-A)=0 has nonzero multiple roots}=0; A  is of 
property 2 if m* {z∈Rq |det(rI-A)=0}=0, where r is a 
nonzero constant, m*{…}=0 denotes that the Lebesgue 
measure of the point set {…} is zero. Property 1 means 
that the nonzero eigenvalues of A have multiplicity 1 
for almost all z∈Rq. Property 2 means that a nonzero 
constant r is not an eigenvalue of A for almost all z∈Rq. 

Definition: An n n matrix A =(aij) containing q  
independent parameters z1, … ,zi, … ,zn, zn+1,  … ,zq is 
called a type-1 matrix if when i<j, either aij= a constant 
or aij = a’ij zi and when i>j, aij=a’ij zi, where 
a’ij=a’ij(zn+1, … ,zq) is a rational function in only zn+1, … ,  
zq in both cases i<j and i>j. 

It will be proven in Section 4 that the type-1 matrix is 
of the two properties. 

It is well known that many important properties of 
linear systems such as stability and controllability 
depend on their characteristic polynomials. Since 
Properties 1 and 2 just are the ones about det( I-A) in 
F(z)[ ], they have an important application to the 
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problem of structural controllability (see Section 6). 
The type-1 matrix can describe most of linear physical 
systems (see Section 2) although it is a class of RFMs. 
Therefore, it is necessary to prove Properties 1 and 2 of 
the type-1 matrix so as to analyze structural 
controllability and observability of linear physical 
systems. A linear system applied to engineering is a 
physical system. Thus, the investigation may be of 
significance from the viewpoint of physics. 

In Section 2, the author presents three generic 
examples to show that the type-1 matrix can describe 
most of linear physical systems. Some lemmas are 
derived in Section 3. It is proven in Section 4 that the 
type-1 matrix satisfies the two properties. Some 
questions are mentioned in Section 5. The structural 
controllability criteria for the rational function systems 
with Property 1 are stated in Section 6. In Section 7, as 
an example, the controllability of a type-1 system (its 
coefficient matrix A  is a type-1 matrix) is analyzed. 

It should be emphasized that there have been some 
parametrizations: Lin (1974) introduced a structured 
matrix (SM). A matrix is called an SM if each entry of 
the matrix is either fixed zero or free nonzero where its 
nonzero entries are considered to be mutually 
independent parameters. Corfmat and Morse (1976), 
Anderson and Hong (1982), and Willems (1986) 
proposed three kinds of matrices whose entries are 
one-degree polynomials in independent parameters. 
They are said to be one-degree polynomial matrices for 
short. A matrix is called a column-structured matrix 
(CSM) if the different entries in a column of the matrix 
contain the same parameter factor, but the factors in 
distinct columns are independent of each other 
(Yamada and Luenberger (1985)). A matrix of the form 
M=T+G is a mixed matrix if the 6nonzero entries of T 
are algebraically independent over the field to which 
the entries of G belong (Murota (1987,1998)). Lu and 
Wei (1994) defined a class of RFMs with the form 
A=(C+V)-1U, where C=diag(z1,z2,...,zn), V  and U are 
two n×n matrices over F(zn+1,...,zq), F(zn+1,...,zq) denote 
the field of rational functions in zn+1,...,zq, and z1,..., zn, 
zn+1,...,zq are q independent parameters. The matrix is 
here called the one (C+V)-1U for simplicity.  

According to the above definitions, SM, CSM and 
(C+V)-1U do not contain any nonzero constant entries, 
but the type-1 matrix may contain. Generally, a type-1 
matrix is not a one-degree polynomial matrix in 
independent parameters, but it is an RFM. Clearly, it is 
not a mixed matrix. For instance, let us consider a 
type-1 matrix 
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Obviously, SM, CSM, one-degree polynomial matrix, 
mixed matrix or (C+V)-1U can not express it. 

2. TWO KINDS OF PHYSICAL SYSTEMS 

The following examples show that the type-1 matrix 
can describe most of linear physical systems. 

Example 1: Consider a linearized system consisting of 
mechanical, electric, thermal, pneumatic, liquid level, 
and hydraulic, etc., components in which there are n  
energy storage elements. The initial conditions of the n  
energy storage elements are considered to be 
independent. This assumption is very mild since it is 
satisfied in most linear physical systems.  

One can choose the (angular) velocities of (inertia 
moments) masses, the capacitor voltages, the inductor 
currents, the temperatures of thermal capacitances, the 
air pressures of capacitances of vessels and the liquid 
heads of capacitances of tanks, etc., as the state 
variables of the system. One has the force (torque), 
current, voltage, heat flow, air flow rate and liquid rate, 
etc., balance equations (Ogate,1970)  

 

where a"
ij∈R, ij∈R, bir∈R, i∈{ 1 , … ,n},j∈{ 1 , … ,p}; 

z1
-1 ,..., zj

-1, … ,  zn
-1 are the masses (inertia moments), 

capacitances, inductances, and thermal, air and liquid 
capacitances, etc., which are the parameters of n energy 
storage elements. Let 

 

Then          by (2.1) and (2.2). Since the initial 
conditions are independent, det( ij) 0 and 

 

When i=j, yj =
1−

jj zx& can be written as  

          )4.2(.1−= iii zxy &    

Substituting (2.2) and (2.4)into (2.3)yields 

       ),(, ijaABUAXX =+=&           (2.5) 

where ),...,(, 1
'''

qnijijiijij zzaazaa +==  is the 

rational function in zn+1, … ,  zq which denote the 
physical parameters of q-n non-energy storage 

∑ ∑
= =

−

=+=

==

n

j

p

r

T
nrirjijj

T
njjj

aaaubxaa

yyyyzx

1 1
1

1
1

)2.2(.)",...,"(,""

,),...,(,&

ayij =)(λ

)3.2(.)(
1
ay ij

−
= λ

)1.2(,"
111

∑∑∑
===

+=
p

r
rir

n

j
jijj

n

j
z ubxax

j

ij &
λ



 

elements. Obviously, the matrix a is a type-1 matrix. 

Example 2: Consider a linear RLC network with n  
energy storage elements whose network without 
sources has not any capacitor-only loops or 
inductor-only cut-sets. According to the circuit theory 
(Kuh and Rohrer, 1965), the state equation is  
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where mii ,,1 L  are, respectively, the currents through 
the inductors mLL ,,1 L ; nm vv ,,1 L+  the voltages 

across the capacitors nm CC ,,1 L+ ; Ra ij ∈' , 

{ }ni ,,1 L∈ , { }nj ,,1 L∈ . Let 

      ),,(),,,,,( 1
11

1
11

1 nnmm zzCCLL LLL =−−
+

−− .  

Then, iijijij zaaaA '),( == . Obviously, there do not 

exist any relations between 
1iz  and nia ij ,,1,' 1 L= . 

A is a type-1 mat rix. 

 

3. SOME LEMMAS FOR P(λ) IN F(z)[λ] 

It is necessary to derive some lemmas before proving 
that a type-1 matrix is of the two properties. 

Let R denote the field of all the real numbers and 
],,[ 1 qzzR L  denote the ring of all the real coefficient 

polynomials in q parameters z1,...,zq. R[z1,...,zq] can be 
simply written as RZ or R[z], where z=(z1,...,zq). Let 
RZ[λ] denote the ring of the RZ coefficient polynomials 
in λ. The following lemma is a conclusion in the 
algebraic theory. 

Lemma 1: If a polynomial P(λ) in RZ[λ] can be 
decomposed in F(z)[λ], then P(λ) can be decomposed 
in RZ[λ]. 

Let P( ) be an n-degree polynomial in F(z)[ ]. If 

P( )= mϕ( ),0 m<n, ( , ϕ( ))=1, ϕ( )= 

ϕ1( )ϕ2( ) … ϕs ( ), ϕj( )∈F(z)[ ], degϕj( )

1,1 j s, then ϕ( ) is called the nonzero part of P( )  

and ϕj( ) the nonzero factor. If ϕ1( )=ϕ2( ), ϕ1( ) 

and ϕ2( ) are called nonzero multiple factors. 

Lemma 2: If P(λ) is an irreducible polynomial in 
F(z)[ ] (i.e., P(λ) can not decomposed in F(z)[ ]), 
then m*{z∈Rq | P(λ) =0 has multiple roots}=0.  

Proof: Since P(λ) is irreducible, P(λ) has no multiple 
factors in F(z)[ ]. Then, 1))(),(( =λλ PP & , where 

])[()( λλ zFP ∈&  denotes the derivative of P(λ). Thus 

m*{ 0}1))(),(( =≠∈ λλ PPRz q &  by Lemma 2 in [1], 

which implies m*{  z∈Rq | P(λ) =0 has multiple roots} 
=0.   

Lemma 3: Let P(λ)∈F(z)[ ]. P(λ) has no multiple 
factors in F(z)[ ] iff m*{ z∈Rq | P(λ) =0 has multiple 
roots}=0.  

Proof: Sufficiency is obvious. It is only necessary to 
prove necessity. Since P(λ) has no multiple factors, we 
let P(λ) be irreducible. Then necessity holds by Lemma 
2. Suppose P(λ)=φ1(λ)...φh (λ), where h≥2, deg(φj (λ))≥1, 
φj (λ)∈F(z)[ ] is irreducible and (φi(λ),φj(λ))=1, i≠j, 
h≥i,j≥1. Thus m*{z∈Rq | (φi(λ),φj(λ))≠1}=0 by Lemma 
2 in [1], which means that m*{ z∈Rq | P(λ)=0 has 
multiple roots}=0.  

Lemma 4: (i) m*{z∈Rq | det( I-A)=0 has nonzero 

multiple roots} = 0 iff det( I-A) has no nonzero 

multiple factors in F(z)[ ]; (ii) m*{z∈Rq  

|det(rI-A)=0}=0 iff det(rI-A) is a nonzero member in 
F(z), where r is a nonzero constant. 

Proof : (i) Clearly, this is the special case of Lemma 3. 
(ii) For necessity, if det(rI-A) is a zero member of F(z), 
then m*{z∈Rq |det(rI-A)=0}≠0. For sufficiency, if 
det(rI-A) is a nonzero member of F(z), it is obvious that 
m*{z∈Rq |det(rI-A)=0}=0.   

According to Lemma 4, in other words, the matrix A is 
said to be of Property 1 if det( I-A) has no nonzero 

multiple factors in F(z)[ ]; A is of property 2 if 
det(rI-A) is a nonzero member in F(z), where r is a 
nonzero constant. 

 

4. TWO PROPERTIES OF TYPE-1 MATRIX 

Theorem 1: Consider the polynomial (in ) 
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where the coefficient ak= )(za k  is a polynomial in q  
parameters qzz ,,1 L  and in )(za k  there are no 

nonzero constant terms, 1≤k≤n. Then )(rP  is a 



 

nonzero member of )(zF , where r is a nonzero 
constant. 

Proof: i) If n
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nonzero constant is not its root. ii) Let )()( λφλλ mP = , 
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Theorem 2: Consider a polynomial (in ) 
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and br is a constant including zero, then )(λP  has no 
nonzero multiple factors in ])[( λzF . 

Proof:  i) If n
n Paaa λλ ===== )(,021 L . The 

theorem is true. ii) Let )()( λφλλ mP = , where 

)(,0,0,)( 1
1 λφλλλφ nmaaa mnmn
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 is the nonzero part of )(λP . If )(λφ  is irreducible, 
this theorem is true. If )(λφ  is a reducible polynomial 
in ])[( λzF , )(λφ  is also reducible in )(λzR  by 
Lemma 1. Let ),()()( 1 λφλφλφ hL=  where 2≤h≤n-m,  

][)( λλφ zj R∈  is irreducible, hj ≤≤1 . Since the 

leading coefficient of )(λφ  is one, the leading 

coefficient of )(λφ j  is a nonzero constant. It is clear 

from the assumption 1≤r1+r2+...+rq that )(za k  has no 
nonzero constant term. So it is impossible that each of 
the coefficients of )(λφ j  is a constant. Conversely, 

suppose that )(λφ  has nonzero multiple factors. Then 
there exist at least two integers jihjiji ≠≤≤ ,,1,,  

such that )()( λφλφ ji = , which implies that )(λP  

has at least one nonzero coefficient nkza k ≤≤1),( , 
containing at least one term which does not satisfy 

{ }1,0∈ir . This contradicts the assumption.   

Lemma 5: Let the nn ×  matrix )( ijaA=  satisfy that 

when ji < , either ija =constant or  iijij zaa '=  and 

when iijij zaaji ', =≥ , where ija'  is a constant 

including zero and nzz ,,1 L  are n  parameters (q=n). 
Then in its characteristic polynomial det(λI-A)= 
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nn aaa ++++ −

− λλλ 1
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1 L , the coefficient 
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where niii k ≤<<<≤ L211 . Since 
)(' hjiiiii iizaa

jhjhj
≥=  and when =<

hjiihj aii ,  

constant or 
jhjhj iiiii zaa '= , the conclusion is obvious 

by the definition of determinant.  

Remark 1: Obviously, the coefficient ak  in Lemma 5 
does not contain any nonzero constant terms. 

From Theorems 1, 2 and Lemma 5, Theorem 3 is 
immediate. 

Theorem 3: The nn ×  matrix A  with n parameters 
)(,,1 nqzz n =L  in Lemma 5 is of Properties 1 and 2. 

Theorem 4: The nn ×  type-1 matrix A with q  
parameters )(,,1 nqzz q >L  is of Properties 1 and 2. 

Proof: Arbitrarily, we fix (zn+1,....,zq)= ),,( **
1 qn zz L+ = 

a constant vector and Theorem 3 holds. This means 
that Theorem 4 holds.  



 

5. QUESTIONS 

It has been proved in Section 4 that a type-1 matrix 
satisfies Properties 1 and 2. In this section, the author 
would like to mention some relevant questions. 

We know that many matrices are of Property 1 and/or 
Property 2. It was derived (Murota [7]) that if a mixed 
matrix has an eigenvalue which is transcendental over 
the subfield K, then it is a simple root, which is similar 
to Property 1. It is well known that SM and CSM are of 
Property 1 and it is not difficult to prove that they 
satisfy Property 2. The matrix (C+V)-1U defined in [9] 
is also of the two properties. The type-1 matrix satisfies 
the two properties and can describe most of linear 
physical systems. Then, we have some questions. Does 
any linear physical system satisfy the two properties (if 
all of its physical parameters are regarded as 
independent parameters)? Are the two properties two 
fundamental properties depending on the structures of 
linear physical systems? The author hopes that the 
questions will invite further discussion. 

 

6. SOME CONTROLLABILITY CRITERIA OF 
RFSS WITH PROPERTY 1 

Let the system described by (1.1) be an RFS, T= 
),,,( 1BAABB n−L  and TTTnTTT CACACT ))(,,,( 1

0
−= L  

be its controllability and observability matrices 
respectively. Since they are dependent on z, T and 0T  
are denoted by )(zT  and )(0 zT . Let 

          { },0))()((det1 =∈= zTzTRzN Tq  

          { }0))()((det 002 =∈= zTzTRzN Tq . 

Let S  be a point set and m*S  denote the Lebesgue 
measure of the set S. 

Definition: RFS (1.1) is structurally controllable if 
m* ;01 =N  otherwise, it is not structurally controllable. 
RFS (1.1) is structurally observable if m* ;02 =N  
otherwise, it is not structurally observable. (This 
definition was introduced in [1]). 

Definition: Since T(z) and T0(z) are two matrices over 
F(z), det(T(z)TT(z))∈F(z) and det(T0

T(z)T0(z))∈ F(z). 
RFS (1.1) is controllable over F(z) if det(T(z)TT(z)) is a 
nonzero member of F(z)(i.e.,T(z) has n column vectors 
which are linearly independent over F(z)); otherwise, it 
is uncontrollable over F(z). RFS (1.1) is observable 
over F(z) if det(T0

T(z)T0(z)) is a nonzero member of 
F(z); otherwise, it is unobservable over F(z). 

Lemma 6: Let f(z) ∈ F(z). If f(z) is a zero member of 
F(z) (simply f(z)=0), then f(z)=0 for all qRz ∈ ; if f(z) 

is a nonzero member of F(z) (simply f(z) ≠0 ), 
m* { } 00)( ==∈ zfRz q . 

This lemma is obvious form algebraic theory. 

Remark 2: By the above definitions and Lemma 6, the 
structural controllability (structural observability) is 
equivalent to the controllability (observability) over 

)(zF  for RFS (1.1). 

Let M be an nn ×  matrix over )( zF . M is said to be 
reducible over )(zF  or a reducible matrix over )(zF  
if there exists some nonsingular matrix P  over )(zF  
such that 
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where 
iM  is an 

ii nn ×  matrix, nni <≤= 11,2,1 ; 
otherwise M is irreducible over F(z) or an irreducible 
matrix over F(z). (Note: The words “over F(z)” are 
often omitted for simplicity). 

The proofs of the following theorems are omitted 
because of the length limitation. 

Theorem 5: Let A be an nn ×  matrix over F(z). 
),( BA  is controllable over F(z) for any  mn ×  

matrix B  over F(z), 0≠B , iff A  is irreducible. 

Theorem 6: Let A=diag ),( 21 AA , TTT BBB ),( 21= , where 

iA  and iB  are, respectively, ii nn ×  and mni ×  
matrices over F(z), i=1,2, and the polynomials 
det )( 1AI −λ  and det )( 2AI −λ  are relatively prime. 

),( BA  is controllable over F(z) iff ),( ii BA  is 
controllable over F(z), i=1,2. 

Corollary 1: Consider A=diag(A1,....,Ak), B=  
TT

k
T BB ),,( 1 L , where Ai and Bi are respectively an 

ii nn ×  and an mni ×  matrices over F(z), ki ,,1 L= , 
det )( iAI −λ  and det )( jAI −λ , ji ≠ , are relatively 

prime. Then (A,B) is controllable over )(zF  iff (Ai,Bi) 
is controllable over F(z), ki ,,1 L= .   

Theorem 7: Let the n×n matrix A  be of Property 1 and 
B an n×m matrix over F(z). Then there exists some 
invertible matrix P over F(z) such that  

          PAP-1=diag ],,,,[ 10 kAAA L   

          ,],,,( 10
TT

k
TT BBBPB L=   

where A0 is an n0×n0 nilpotent matrix and Ai (1≤i≤k) is 
an ni×ni  irreducible matrix over F(z), Bi (0≤i≤k) is an 



 

ni×m matrix over F(z), n=n0+n1+...+nk.. Then, (A ,B) is 
controllable over F(z) iff (A0,B0) is controllable and 
Bi≠0, 1≤i≤k . 

 

7. APPLICATIONS TO STRUCTURAL 
CONTROLLABILITY 

Since the structural controllability is equivalent to the 
controllability over F(z), it is only necessary to discuss 
the controllability over F(z) for an RFS. 

Example 3: Consider an RLC network shown in Fig.2 
after the references, whose state equation is 

             eBvAXX +=& ,  

where X=(X1
T,X2

T)T, B=(B1
T,B2

T)T , ve is the voltage of 
a voltage source,  

   A=diag(A1,A2),  X1=(v1, v2, i1)T,  X2=(v3, i2, i3)T, 
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Clearly, A=diag(A1,A2) and 
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1
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B
B  are two matrices 

over )(zF  and A is a type-1 matrix by the definitions. 
So, A is of Properties 1 and 2. 

Obviously, det )( iAI −λ  is an irreducible polynomial in 
)2,1]()[( =izF λ . Thus 1A  and 2A  are two irreducible 

matrices over F(z). 

Since A  is a type-1 matrix with Property 1, Ai is 
irreducible over F(z) and )2,1(0 =≠ iBi , ),( BA  is 
controllable over F(z) (that is, structurally controllable) 
by Theorem 7. 

In addition, some applications of Property 2 to 
structural controllability and observability were 
presented in the paper (Lu and Wei,1991). 
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