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Abstract: In this paper, a robust filter for an in-flight alignment (IFA) is presented to
effectively eliminate system errors in the case where a strapdown inertial navigation
system (SDINS) has large initial attitude errors. First, an extended robust ∞H filter is
proposed for a general nonlinear uncertain system. We also analyze the characteristics of
the proposed filter, such as an ∞H  performance criterion, using the Lyapunov function
method. Analysis results show that the proposed filter has robustness against disturbances,
such as process and measurement noises, and against parameter uncertainties. Then the
IFA for the SDINS is designed using the presented filter. Simulation results demonstrate
that the proposed filter effectively improve the performance. Copyright © 2002 IFAC
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1. INTRODUCTION

A strapdown inertial navigation system(SDINS)
requires accurate alignment in order to achieve
good performance. However, for systems that require
rapid reaction time or have low-grade inertial sensors,
an initial alignment that is performed prior to launch
must have large attitude errors. In these cases, IFA is
important to remove the effects of initial alignment
errors and other types of navigation errors. IFA
utilizes acceleration data and angular rate data from
inertial measurement unit, together with data
provided by external sensors such as GPS, radar, or
odometer (Farrel 99, Siouris 93, Weinreb 78, Bar-
Itzhack 92, Yu 99, Yu 01). When an aided SDINS is
developed for IFA, the main concerns are the filter
and the SDINS error model since they play an
important role in achieving accurate alignment. A
considerable amount of effort has been made to
develop effective error models. However, in case of
system with large attitude errors, it is difficult to
accurately linearize the SDINS error model (Yu 99).
Therefore, error models include significant parameter
uncertainty. This uncertainty degrades performance
of the filter. During the last four decades, the Kalman
filter and the extended Kalman filter(EKF) have been
widely used in the SDINS IFA. They require not only
a precise system model, but also the statistical

property of noise to achieve accurate performance.
However, model uncertainty and incomplete
statistical information often occur in real applications
and make it difficult to precisely estimate the system
states, potentially leading to very large estimation
errors. These difficulties can be overcome by
studying a robust filter (Yu 01, Yaesh 93, Shaked 95).
   Recently, a robust filter has received considerable
attention. It has robustness against 1) statistical
incompleteness of system noise, such as process
noise and measurement noise, 2) system modeling
uncertainty, and 3) sensitivity caused by parameter
variation of the system model. They can be
categorized as 2H filters, ∞H filters, and mixed

∞HH /2  filters (Nagpal 91, de Souza 95, Bolzern 97).
In case of given statistical information and modeling
uncertainty, the 2H  filter has been usually
constructed to estimate system errors. A guaranteed
cost minimization has been widely used as the
performance index of 2H filter and upper bound
minimization or minimum variance of estimation
errors are used as the cost. Especially, the upper
bound minimization has less assumptions and simple
structure in developing robust filter compared to
other performance indices. The ∞H filter minimizes
the ∞H  norm of the transfer function between the
noise and the estimation error. Thus, the ∞H filter is
usually employed when the energy of the system
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noise is bounded and the statistical properties of the
noise are unknown. This filter minimizes the highest
energy gain of the estimation error for all initial
conditions and noises. In particular, a robust ∞H
filter, a robust filter with a modified ∞H
performance, can be established for a system with
model uncertainty as well as unknown statistical
noise properties (Shaked 95).
   For a nonlinear system, a second-order nonlinear
filter and an extended Kalman filter have been
utilized. Because the second-order nonlinear filter
considers higher-order terms in the computation of its
covariance, it is suitable for a highly nonlinear
system. However, it has large computational
complexity. Thus, the extended Kalman filter has
been widely used for real system applications. Since
the extended Kalman filter uses a linearized model of
a nonlinear system with an abbreviation of higher-
order terms, excessive estimation errors occur when it
is applied to a highly nonlinear system. In addition,
the extended Kalman filter requires a statistical
information about noise, such as white Gaussian
noise, which can hardly be obtained in real
applications. Therefore, several studies have been
conducted on the nonlinear robust filter. The ∞H
nonlinear filter with Hamilton-Jacobi inequality is the
result of one such study, but its computation
procedures for obtaining a filter are complicated and
it is very difficult to use in real applications. To
simplify complicated computation procedures, an
approximation solution to the robust filtering
problem has recently been developed based on a
linearization method. The robust filter derived based
on this approach is called the extended robust filter or
extended ∞H  filter (Shaked 95, Einicke 99). In
(James and Petersen 98), the nonlinear state
estimation with similar characteristics is especially
proposed for a nonlinear uncertain system with
uncertainties described by an integral quadratic
constraint.

In this paper, a new robust filter for nonlinear
uncertain systems is presented. The derivation is
similar to that of (James and Petersen 98). The robust
filter is constructed with local linearization of the
system at the reference point. This approach extends
the extended Kalman filter to a robust filter. By
introducing a state estimation set that is the solution
of Hamiton-Jacobi-Bellman partial differential
equation and by solving locally the filtering problem,
the robust filter is derived. Then the characteristics of
filter are analyzed. The proposed filter is applied to
the SDINS IFA.

2. NONLINEAR ROBUST ∞H  FILTER

   Consider a nonlinear uncertain system described
by

)()())(()()(
))(()(

0211 twtBtxNttB
txftx

+∆+
=&

(1)

)())(()())(()( 02 tvtxNttxhty +∆+= (2)
where ))(()()( 11 txNttB ∆  and ))(()(2 txNt∆
represent the system uncertainties. )(1 tB  and

))(( txN  are known matrices. )(1 t∆  and )(2 t∆  are
unknown matrices satisfying the condition

1
)(2

2/1
1

)(1
2/1

1 ≤
∆

−
∆

−

tR

tQ  where 1Q  and 1R  are bounded

positive definite matrices. )(0 tw  is the process noise

and )(0 tv  is the measurement noise. They belong to

the set of 2L  norm and the statistical properties are

unknown. In addition, )(0 tw  and )(0 tv  are noises

satisfying the bound

ddttvRtv

twQtwx
T

T T

≤+

+Φ
−

−∫
)]()(

)()([))0((

0
1

20

0
0

1
20

where Tt ≤≤0 and d is an assigned positive real
number. Converting the uncertainties to the fictitious

2L  noises and introducing a freedom parameter, the
uncertain system (1) and (2) can be transformed into
as an auxiliary system,
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ε  is a freedom parameter. By the combination of the
state variables and )(tn , the filter output ))(( txz  is
of the form
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where γ  is a given positive real value that indicates
the level of noise attenuation in ∞H  filter design. To
construct a robust filter, it is assumed that the system
(3) and (4) satisfies Assumptions 1-6.
  Assumption 1: Every function shown in (3)-(5)
belongs to 1C  and the first derivative is bounded.
  Assumption 2: The matrix ))(( txN  is bounded.

Assumption 3: The functions Φ , 1L , and 2L
belong to 1C  and are bounded nonnegative functions.
They also satisfy

121212 )1()()( xxxxxx −++≤− θφφ (6)
where 0>θ  and 1, LΦ=φ , or 2L .
  Assumption 4: The function 1L  satisfies a
coercivity condition,



     1 ),( wcvwL ≥  where 0>c .
Assumption 5: The matrix B is of full rank.
Assumption 6: The matrix )(tL  is bounded by

       tIltLtLIl T ∀≤≤ ,)()( 21

where 1l  and 2l  are positive real numbers.

2.1 Extended Robust ∞H  Filter

In this section, a robust filter with a modified 2H
filter structure and a modified ∞H  performance
index is derived based on a local solution of the filter
problem. Similar to the development of the well-
known the extended Kalman filter, we derive the
filter by linearizing the system in the neighborhood of
the estimated trajectory, x̂ .
   We consider a system that satisfies integral
quadratic constraint given by
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For the system (3) and (4) with (7), a partial
differential equation is generally given by
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where ),( txV  denotes a value function and
)0()0,( Φ=xV . Assumptions 1-5 ensure that

),( txV is finite (McEneancy 95). To derive a robust
filter, we consider a system that satisfies an integral
quadratic constraint given by
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Using (8) and (9), the partial differential equation is

obtained as
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where )()()0,( 00 xxMxxxV T −−= .
   The )(ˆ tx  as an estimate value of the state
variable )(tx  is defined to be
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Equation (11) satisfies two conditions:
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The gradient of (10) with respect to x  is given by

.0))(()()()(

))(()()(

)(

1
2

12

2

=−∇−∇+

−∇+∇+

∇∇+∇∇+∇
∂
∂

−

−

xzzxzxnxn

xhyRxhxVf

VVBQBVxfV
t

T
x

T
x

T
xx

T
x

T
x

T
x

T
x

T
x

γ

(14)

Using (12) and (13) and evaluating at xx ˆ= , (14) is
simplified as
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Furthermore, suppose that the matrix ),ˆ(2 txVx∇ is
nonsingular for all t , the dynamic equation of state
estimate satisfying (11) can be written as
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In addition, the gradient of (14) with respect to x  is
expressed as
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Using (12) and (13) and evaluating at xx ˆ= , (17) is
simplified as
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where Vx2∇=Π and M=Π )0( . The corresponding
differential equation for 1)()( −Π= ttP  from (18) is
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From these results, a robust filter can be summarized
as
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where 1)0()0( −= MP , 0)0(ˆ xx = , and M is a

matrix which reflects the initial errors of the system.
   The proposed filter has the structure of an 2H
filter but with (21) and )()ˆ()ˆ()(2 tPxzxztP x

T
x ∇∇−γ  in

(22). However, by virtue of (21) and
)()ˆ()ˆ()(2 tPxzxztP x

T
x ∇∇−γ , this filter is robust against

the disturbances and the uncertainties, as shown in
the next section.

2.2 Analysis of Extended Robust ∞H  Filter

In this section, the analytical performances of the
filter proposed in section 2.1 are investigated. We
will consider ∞H  performance index, such as the
energy ratio between the noise and the estimation
error, as an important property of the filter.
   Now, a modified ∞H  performance index is
derived. The estimate errors can be defined to be
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and the dynamic equation of the estimated errors

)(tζ  is expressed as

  
)()())(ˆ),(()(

))(ˆ),(())(ˆ())(ˆ()(
)()()())()()(()(

tvtKtxtxtK
txtxtxntxntP

twtBttCtKtAt
T

x

−−
+∇−

+−=

χ
ϕ

ζζ&

  (24)

where ))(ˆ()( tx
x
ftA
∂
∂

= , ))(ˆ()( tx
x
htC
∂
∂

= , and

1)()()( −= RtCtPtK T . Nonlinear functions

))(ˆ),(( txtxϕ  and ))(ˆ),(( txtxχ  are defined as

  
))(ˆ),(())(ˆ)()(())(ˆ())((
))(ˆ),(())(ˆ)()(())(ˆ())((

txtxtxtxtCtxhtxh
txtxtxtxtAtxftxf

χ
ϕ

+−=−
+−=−
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order terms in the estimation errors. We make
Assumption 7 and Assumption 8.
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  Suppose that a Lyapunov function is chosen as
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Substituting (22) and (24) in (27), it is easy to show
that (27) becomes
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property, (28) can be expressed as
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Applying Lemma 1 to (29), we obtain the following
inequality,
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Provided that the estimate errors satisfy 2εζ ≤ ,
(30) can be modified to
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Finally, the cost function of the derived filter is
obtained as follows. By integrating both sides of (31) ,
the modified ∞H  performance index J  is
expressed as
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where 
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2l
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=µ .  The cost function J  of the robust

filter is less than 2
tγ . As µ  is less than 1, the new

value tγ is always greater than γ . tγ  is not only an
index of disturbance attenuation level, but also an
important parameter describing filter's estimation
ability in the worst case. Decreasing tγ  means that
robustness of the filter increases. Equation (32)
shows that the proposed filter guarantees robustness
against the noises, including process noise and
measurement noise and the system model uncertainty.
On the contrary, when the extended Kalman filter or
the 2H  filter is applied to the nonlinear system, the
cost function, such as (32), cannot be defined since
the value of γ  is ∞ . Therefore they cannot
guarantee robustness against noise and uncertainty
and have the effect of disturbance attenuation.

3. APPLICATION TO SDINS IFA

To verify the performance of the proposed filter, an
SDINS IFA with velocity-aiding is designed. GPS or
Doppler radar can be used for the aiding source. The
inertial navigation system is constructed in a local-
level frame (NED frame). The error models, such as
latitude error Lδ , longitude error lδ , height error

hδ , velocity error nvδ , and attitude error nq , are
adopted from references (Yu 99, Yu 01). When error
models are derived, it is desirable to reduce
uncertainty. So we use a multiplicative quaternion
error, nq  that is much simpler than an equivalent tilt
angle as an attitude error. These error models are
given by
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01). In the velocity error model, bn
b fC∆  is strongly

related to attitude errors. In the case where the system

has only large attitude errors, it is given by
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where nn cq += 10  and ][ QR denotes a skew-
symmetric matrix of nq . Equation (38) shows that

bn
b fC∆  is composed of the linear term and the

uncertainty. Thus the system equations involve
uncertainty. Convert the uncertainty into a factorized
form, as ))(()()( 11 txNttB ∆  in (1) is not difficult.
Measurement of the velocity-aided SDINS IFA is
given as

)()()()( tvtxtCty += (39)
where ]0,,0[)( 933333 ×××= ItC . 15 state variables
are composed of position (3), velocity (3), attitude (3),
accelerometer bias (3), and gyroscope bias (3). The
major errors of the inertial sensors considered in the
simulation are gyroscope bias error(3 deg/hr),
gyroscope scale factor error(500 ppm), accelerometer
bias error(1000 ug), and  accelerometer scale factor
error(200 ppm). The gyroscope bias and
accelerometer bias are assumed to be random
constants. The initial attitude errors are assumed to be
10 degrees horizontal plane attitude error and 20
degrees heading error. Monte Carlo simulations are
performed for 1000 seconds and the filter update
period is 0.1 second. The results are compared with
the results of the corresponding EKF. The results are
shown in Fig 1 and Fig 2. The proposed filter reduces
the attitude error and the position error compared
with the EKF. As shown in the figures, the proposed
filter reduces the heading error by about 50 % and the
position error by about 30 % more than the EKF. In
addition, the convergence of the attitude error is
much faster than that of the EKF. The simulation
results have shown that it is possible to further
improve IFA accuracy by employing the proposed
filter, which can consider uncertainties of the SDINS.

4. CONCLUSION

The extended robust ∞H  filter for SDINS in-flight
alignment with large initial attitude errors has been



presented. The extended robust ∞H  filter has been
derived by considering a nonlinear uncertain system
and by introducing the notion of a local solution to
the filtering problem. The proposed filter possesses
the ∞H  performance criterion. Thus, it is robust
against noise and uncertainty. The derivation method
and the characteristic analysis method of the
proposed filter are developed in general. Thus, they
can be extended to any other nonlinear uncertain
system problem. The simulation results for a
velocity-aided SDINS IFA have demonstrated that
the proposed filter is more effective in estimating the
attitude error and position error than the EKF.
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