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Abstract: A coordinated-control scheme with a compensator for a fossil-fuel power plant is 
presented. The compensator is intended to reduce the interaction effects among the control 
loops to ease control during wide-range normal operating conditions. Placed between the 
controllers and the power plant, the compensator only introduces compensation factors 
among the control signals; preserving the direct control loop paths of the original control 
scheme. The compensation factors can be determined from an equivalent process gain 
matrix. Analysis shows that the proposed compensation is numerically well-conditioned, 
and simulation experiments show that it effectively handles control loop interaction 
throughout the power plant operation range. Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
Typically, a fossil-fuel power unit (FFPU) is required 
to provide fast and stable power supply during load 
changes and load disturbances. The thermal energy 
provided by the boiler must equalize, at all times, the 
energy needed by the steam turbine and the electric 
generator to match the electric load. Hence, the main 
duty of the coordinated-control (CC) scheme is to 
match the slow response of the boiler with the faster 
turbo-generator response to ease power generation 
for load tracking under normal operation conditions. 
 
Current CC schemes consist of multiple single-input-
single-output feedback control loops, which evaluate 
conventional PI or PID algorithms. These schemes 
have shown their adequacy for power regulation, but 
can be seriously challenged by wide-range operation 
requirements, such as load-following for frequency 
regulation in a power system. In these conditions, the 
FFPU performance may significantly decrease due to 
the nonlinear coupled process dynamics. To reduce 
or to eliminate the effects of control loop interaction, 
the basic CC configuration has been complemented 
with many different compensation schemes (Taft, 
1987, Dimeo, and Lee, 1995). However, with a few 
exceptions (Ray and Majumder, 1985), the design of 
most compensation schemes is not systematic, but 
heavily relies on the designer’s experience, nor the 
resulting schemes are good for wide-range operation.  

This paper introduces a CC scheme that eases power 
generation for wide-range load-tracking under normal 
operation conditions. The scheme consists of a three-
loop augmented CC and a feedforward compensator 
that effectively reduces the interaction among the 
control loops throughout the FFPU operation range. 
The interaction compensator (IC) is systematically 
designed using an equivalent process gain matrix, 
which is obtained through interaction analysis based 
on the relative gain array technique (McAvoy, 1983). 
Section 2 presents the FFPU models to be used in the 
following sections. Section 3 introduces the proposed 
CC+IC control scheme. Section 4 presents the design 
procedure for the IC and demonstrates its feasibility. 
Section 5 presents results of wide-range load-tracking 
simulations. Finally, Section 6 concludes this work. 
 
 

2. POWER PLANT MODELS 
 
2.1  Power Unit Nonlinear Model 
 
The essential dynamics of a FFPU for overall wide-
range simulations have been remarkably captured for 
an 160 MW oil fired drum-type unit through a third 
order nonlinear model (Bell and Astrom, 1987). The 
inputs are the positions of valve actuators that control 
the mass flow rates of fuel (u1 in pu), steam to the 
turbine (u2 in pu), and feedwater to the drum (u3 in 
pu). The three outputs are electric power (E in MW), 
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drum steam pressure (P in kg/cm2), and drum water 
level deviation (L in m). The three state variables are 
electric power, drum steam pressure, and the steam-
water density (ρf). The state equations are: 
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20.73 0.16 /10dE u P E

dt
= − −  (1a) 

9/8
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The drum water level output is calculated with the 
following algebraic equations: 
 

2 1 3(0.85 0.14) 45.59 2.51 2.09eq u P u u= − + − −  (2a) 
(1/ 0.0015) /(1/(0.8 25.6) 0.0015)s f Pα ρ= − − −  (2b) 

50(0.13 60 0.11 65.5)f s eL qρ α= + + −  (2c) 
 
where αs is the steam quality, and qe is the 
evaporation rate (kg/sec). The positions of the valve 
actuators are constrained to [0,1].  
 
Equations (1) and (2) constitute a nonlinear model: 
 

( , )x f x u=  
( , )y g x u=  (3) 

 
where x = [x1 x2 x3]T = [E P ρ]T is the state vector, u = 
[u1 u2 u3]T is the input vector, and  y = [y1 y2 y3]T = [E 
P L]T is the output vector.  
 
 
2.2 State-Space Model 
 
A linear state-space model can be obtained from the 
Taylor series expansion of the nonlinear equations (3) 
around an equilibrium point defined by xe = [x1e x2e 
x3e]T and  ue = [u1e u2e u3e]T with ye = [y1e y2e y3e]T as 
the corresponding output. The linear model matrices 
are given by:  
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Then, the linear model approximation is given by:  
 

ˆ ˆ ˆx Ax Bu= +    ,    ˆ ˆ ˆy Cx Du= +  (5) 
 
where ˆ ex x x= − , ˆ eu u u= − , and ˆ ey y y= −  are the 
state, input, and output vector deviations, 
respectively. Hence, the system matrices are:  
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2.3  Transfer Matrix Model 
 
The transfer matrix model can be obtained directly 
from the linear state-space model in the previous 
section using the Laplace transform:  
 

1ˆ ˆ ˆ( )Y T U C sI A B D U− = = − +   (8) 
 

where Ŷ  and Û  are the Laplace transform of the 
output deviation, ŷ , and the input deviation, û , s is 
the Laplace complex variable, and T stands for the 
system transfer matrix. The elements of the transfer 
function matrix are found to be:  
 
T11 = [A12B21s] / d(s) 
T12 = [B12s2  + (A12B22-A22B12)s] / d(s) 
T13 = [A12B23s] / d(s) 
T21 = [B21s2  - A11B21s] / d(s) 
T22 = [B22s2  - A11B22s] / d(s) 
T23 = [B23s2  - A11B23s] / d(s) 
T31 = [D31s3  + (B21C32-D31(A11+A22))s2 + 

((A32C33-A11C32)B21 + D31A11A22)s] / d(s) 
T32 = [D32s3 + (B22C32 + B32C33 - D32(A11+A22))s2 

+ (A11A22D32 - A11B22C32 + A32B22C33 - (A11 
+ A22)B32C33)s + (A11A22B32C33 – 
A11A32B22C33)] / d(s) 

T33 = [D33s3 + (B23C32 + B33C33 - D33(A11+A22))s2 
+ (A11A22D33 - A11B23C32 + A32B23C33 - (A11 
+ A22)B33C33)s + (A11A22B33C33 – 
A11A32B23C33)] / d(s) 

(9) 

 
where  
 

2
11 22 3 11 22 11 22( ) ( )( ) ( )d s s s A s A s A A s A A s= − − = − + +  (10) 

 
 

3. CONTROLLER CONFIGURATION 
 
The CC strategies were introduced to capture the fast 
and stable response characteristics of formerly 
developed simpler strategies, without any of their 
disadvantages. To attain fast response, the turbo-



generator is allowed to use the thermal energy stored 
in the boiler. To achieve stability, the boiler control 
adjusts the fuel firing rate according to the required 
power, keeping the turbine from exceeding the 
energy provided by the boiler. To this aim, the unit 
load demand is simultaneously routed to both the 
boiler and the turbine controls, i.e., in an actual CC 
scheme, the control signal for the fuel/air valves is 
provided by the load controller from the unit load 
demand and the measured power, while the control 
signal for the throttle valve is provided by the 
pressure controller from the measured throttle steam 
pressure and the pressure set-point, which is obtained 
from the unit load demand through a non-linear 
mapping (Fig. 1). 
 
The proposed CC + IC scheme updates the 
conventional CC strategy in two steps (Fig. 2). First, 
from the fact that in a drum-type FFPU the electric 
power and steam pressure are tightly coupled and are 
affected heavily by the fuel/air flow and the steam 
flow, and that the feedwater flow slighly affects 
power and pressure, but greatly affects the drum 
water level, the typical power-pressure CC strategy is 
augmented with the drum water level control loop. 
With this approach, internal energy balanced 
operation can be achieved at any load in the entire 
FFPU operation range, which is a major need to be 
satisfied for effective wide-range operation. Second, 
an IC is inserted between the controllers and the 
FFPU. The objective of this addition is to provide a 
way to deal with the interaction effects among the 
feedback control loops along the whole operation 
range of the FFPU. It is expected that the IC will 
decrease the interaction effects at levels that are 
easily manageable by the controllers with lessened 
control effort. 
 
 

4. INTERACTION DECOUPLER DESIGN 
 
This section shows the design of the IC in two stages. 
First, the design is carried out for a single operating 
point. Then, the results are shown for the entire 
power unit operation range. For any given operating 
point, the IC is designed as a static decoupling 
compensator, that is, instead of using the process 
dynamic transfer functions, only the steady-state gain 
of the process transfer functions are used. 
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Fig. 1. Conventional coordinated-control. 
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Fig. 2. Coordinated-control with compensator. 
 
The main advantages of static, or steady-state, 
decoupling are that the design involves rather simple 
numerical computations, the resulting compensators 
are always realizable, and the design only requires 
knowledge of the process steady-state gain matrix, 
which may be calculated from experimental steady-
state input-output process data.  
 
 
4.1 Design Procedure 
 
Regarding its development, the IC takes into account 
the best characteristics of the three main decoupling 
approaches (Luyben, 1970).  First, design is carried  
out as in the simplified decoupling case. Then, the 
realization is made as with the inverse decoupling 
structure. Finally, the resulting IC equates the fully 
decoupled apparent transfer functions of the ideal 
decoupling case in steady-state conditions. The IC 
structure is shown in Fig. 3.  
The simplified decoupling approach, in the steady-
state case, requires the product of the process steady-
state gain matrix K: 
 

0
lim ( )
s

K T s
→

=  (11) 
 
and the interaction compensator matrix D to be equal 
to a decoupled steady-state gain matrix M satisfying:  
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Fig. 3. Control-loop interaction compensator. 



where the Dij, i=1,2,3, j=1,2,3, forming matrix D, are 
the decoupling factors, or interaction compensation 
factors, to be determined, and the M1, M2, and M3, 
forming matrix M, are the decoupled steady-state 
gains for the power, pressure, and level control loops, 
respectively. Carrying out the product on the right 
hand side of (12), and equating to zero the resulting 
off-diagonal elements, yields the system of equations:  
 

31232122210 DKDKK ++=  

31332132310 DKDKK ++=  

32131212110 DKKDK ++=  

32333212310 DKKDK ++=  

13231213110 KDKDK ++=  

23232213210 KDKDK ++=  

(13) 

 
which can be solved simultaneously, by pairs, giving:  
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Relations in (14) define the interaction compensator, 
with steady-state decoupled process gains: 
 

M1=K11  ,   M2=K22   ,   M3=K33  (15) 
 
 
4.2 Wide-Range Interaction Compensation 
 
For the FFPU case, the main problem in the above 
procedure to calculate the decoupling factors is to 
know the steady-state gain matrix (11). The inclusion 
of the the drum water level control loop, to extend the 
scope of the of the CC scheme to achieve wide-range 
operation, adds in integrative process dynamics, for 
which steady-state gain becomes undetermined. This 
problem makes it difficult to quantify control loop 
interaction to provide any reasonable compensation. 
However, interaction analysis based on the relative 
gain array (RGA) method shows that the interaction 
information provided by the process steady-state gain 
matrix can also be retrieved from an equivalent gain 
matrix (McAvoy, 1983). Thus, the equivalent gain 
matrix can be utilized to design the compensator 
following the same procedure.  
 
From (11) and (9), the elements of the process 
steady-state gain matrix K are calculated as:  
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where γ31, γ32, and γ33, are appropriately defined for 
the equalities to hold. Because of K31, K32, and K33, 
the steady-state matrix K is undetermined. This voids 
direct calculation of the RGA through the Hadamard 
product (element by element):  
 

( )1 *
T

K K−Λ =  (17) 
 
Fortunately, there is a simple mechanism to calculate 
the RGA in these cases. Matrix K may be written as: 
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then,  
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Introducing L, appropriately defined:  



11 12 13
1

21 22 230

31 32 33

11 12 13

21 22 230

31 32 33

1 0 0
lim 0 1 0

0 0

lim

s

s

L L L
K L L L

L L L s

L L L s
L L L s
L L L s

−

→

→

   
   =    
      
 
 =  
  

 (20) 

 
The RGA is obtained from (18) and (20) taking the 
Hadamard product, canceling s, and taking the limit:  
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which would be the same if K was simply given by:  
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Hence, (22) can be taken as the FFPU equivalent 
steady-state gain matrix to design the interaction 
compensator following the procedure in Section 4.1.  
 
As a numerical example, Table 1 presents decoupling 
factors for the entire FFPU operation range along a 
typical sliding pressure operation policy. In the next 
two sections, the adequacy of the CC+IC scheme for 
wide-range operation is demonstrated by analyzing 
the numerical feasibility and sensitivity of the IC 
along the same operation policy. 
 

Table 1. Compensator elements 
 

Ed Pd D12 D13 D21 D23 D31 D32 
20 38.2 -0.085 0.239 3.96 0.00 1.22 0.006 
40 50.7 -0.077 0.239 2.91 0.00 1.19 0.020 
60 63.2 -0.082 0.239 2.29 0.00 1.17 0.029 
80 75.8 -0.092 0.239 1.88 0.00 1.15 0.038 

100 88.3 -0.102 0.239 1.59 0.00 1.13 0.046 
120 100.8 -0.115 0.239 1.37 0.00 1.12 0.054 
140 113.3 -0.127 0.239 1.21 0.00 1.11 0.061 
160 125.8 -0.141 0.239 1.08 0.00 1.10 0.069 

 
 
4.3  Numerical Feasibility 
 
Analyzing the numerical characteristics of the steady-
state gain matrix may assess the feasibility of the 
interaction compensator. With that aim, designing the 
interaction compensator is equivalent to solve the 
system of linear equations: 
 

y Ku Mv= =  (23) 
 
for the process input vector, u, in terms of the control 
signal vector, v:  
 

DvMvKu == −1  (24) 
 
Clearly, if K is degenerate, decoupling will be 
extremely difficult to achieve, and if K is not full-

rank decoupling can not be achieved. Degeneracy of 
matrix K can be assessed through the condition 
number, which is the single most reliable indicator of 
the conditioning of a matrix. The condition number is 
defined as the ratio of the largest to the smallest 
singular value of the gain matrix:  
 

( )
( )
Kcn
K

σ
σ

=  (25) 

 
The larger the condition number (>100), the poorer 
the numerical conditioning of the matrix, that is, the 
larger its degeneracy. Fig. 4 shows the condition 
number along the typical sliding pressure operation 
policy defined in table 1. It can be seen that the gain 
matrix does not degenerates. Thus, the compensator 
may be confidently designed.  
 
 
4.4  Numerical Sensitivity 
 
After the feasibility of the interaction compensator 
has been established, another closely related issue to 
examine is its sensitivity to modeling errors, since no 
process model is 100% accurate. In this regard, 
consider an error ∆K in the estimate of the steady-
state gain matrix:  

uKKy )( ∆+=  (26) 
 
The compensator D, designed in terms of K, yields:  
 

MvKKKDvKKy 1)()( −∆+=∆+=  (27) 
 
where the amount of error introduced into y due to 
the model mismatch is given by: 
 

MvKKy 1−∆=∆  (28) 
 
that can be rewritten using the definition of the 
inverse of a matrix as:  
 

K
MvKKAdjy )(∆=∆  (29) 

 
The output error ∆y is inversely proportional to the 
determinant of the gain matrix, |K|. Fig. 5 shows |K| 
along the typical sliding pressure operation policy 
defined in table 1. Clearly, it can be seen that the 
determinant is large enough to produce very small 
output deviations due to model errors; as required.  
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Fig. 4. Condition number of gain matrix. 
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Fig. 5. Determinant of gain matrix. 
 
 

5. SIMULATION RESULTS 
 
Simulation experiments were carried out to evaluate 
the response of the power unit. Fig. 6 shows the unit 
response to a wide-range unit load demand ramp for 
both compensated and uncompensated cases. The 
ramp goes from 50% (80 MW) through 100% (160 
MW) base load, with a 5%/min (8 MW/min) load 
rate, which is a rather fast loading according to 
american standards. Power and pressure responses 
are both good. However, a meaningful improvement 
is obtained in the compensated level response 
throughout the ramp transition, which means the 
compensator is effectively reducing the interaction 
among the control loops, thus helping the controllers 
to achieve their proposed goals. 
 
 

6. CONCLUSIONS 
 
A compound coordinated-control plus interaction 
compensator system for wide-range control of a 
FFPU was presented. Incorporation of the drum 
water level control loop into the coordinated control 
strategy is required to achieve wide-range balanced 
unit operation. Nevertheless, it challenged the design 
of the interaction compensator because of the 
integrative dynamics being introduced. The problem 
was solved using the RGA-based interaction analysis, 
which allowed building an equivalent steady-state 
gain matrix. Inclusion of the control-loop interaction 
compensator effectively reduced interaction among 
the feedback control loops, easing their job and 
improving their effectiveness throughout the FFPU 
operation range. 
 
The interaction compensator was found to be 
numerically well-conditioned. The proposed design 
procedure is a systematic design approach that does 
not require the solution of an optimization problem, 
nor years of design experience. Furthermore, its 
structure provides the compensator with the 
versatility and necessary characteristics for practical 
application. Also, the fact that control loops with 
integrative dynamics can be included in the design 
without any further complication adds for the 
generality of the approach. It should be emphasized 
that this kind of process dynamics are normally 
avoided by other control strategies (i.e., predictive  
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Fig. 6  Response to load ramp. Reference (dotted), 

uncompensated (dashed), compensated (solid). 
 
control), thus making them less desirable for the 
development of overall control strategies. 
 
Regarding the simplicity of the FFPU model being 
used for design, it is this characteristic which allowed 
getting insight into the control loop interaction 
problem. A follow up research will consider a more 
complete model for simulation experiments to better 
test the feasibility of the proposed scheme. Again, 
only normal operating conditions will be considered, 
since abnormal situations are commonly handled by 
other components of actual control systems. 
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