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Abstract: We show how piecewise quadratic Lyapunov functions can be used to estimate
regions of attraction for linear systems with saturation. The central issues of how to restrict
the analysis region and how to optimize the size of the domain of attraction are addressed, and
the approach is demonstrated on several examples. We observe that the piecewise quadratic
Lyapunov functions yield significant improvements over recently proposed methods based on
the circle and Popov criteria.
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1. INTRODUCTION

Linear control systems closed by saturated feedback
loops occur frequently in practice. Such system ex-
hibit nonlinear behavior such as local stability, finite
disturbance rejection and performance degradation
when operating in saturation. In many applications it
therefore becomes essential to determine the domain
of attraction of the system and desirable to estimate
the performance degradation when the system oper-
ates in saturation.

The problem of determining the stability domains
for nonlinear systems has received considerable at-
tention in the literature. Most techniques use a Lya-
punov function to estimate the domain of attraction,
see the survey by Genesioet al. (1985). Tradition-
ally, such Lyapunov functions were found by trial-
and-error, or by graphical or analytical procedures,
see (Weissenberger, 1968; Margolis and Vogt, 1963).
Since the late 70’s, various computer-generated Lya-
punov functions have been used for estimating the do-
main of attraction, see,e.g., (Ohtaet al., 1993; Blan-
chini, 1995) and the references therein. More recently,
it has been shown how both stability domains and
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local performance measures based on quadratic and
Luré-type Lyapunov functions can be computed using
semi-definite programming (Pittetet al., 1997; Hindi
and Boyd, 1998). In particular, the paper (Hindi and
Boyd, 1998) shows that the search for the quadratic
or Luré-type Lyapunov function that guarantees the
largest domain of attraction can be cast as a convex
optimization problem.

Unfortunately, current analysis tools tend to either
provide conservative estimates or be computationally
demanding. Conservativeness typically comes from
limiting the analysis region to the unsaturated region
(Kamenetskiy, 1996) or from treating the saturation
as an uncertain (sector-bounded) element (Pittetet
al., 1997; Hindi and Boyd, 1998). Procedures that
exploit the exact description of the saturation nonlin-
earity, such as (Romachuk, 1996), are computation-
ally demanding and not easily extended to system of
higher order or systems with multiple saturation loops.

In this paper, which is of methodological rather than
theoretical nature, we show how piecewise quadratic
estimates of the domain of attraction can be computed
via convex optimization. The approach uses a piece-
wise quadratic Lyapunov function and a piecewise
linear description of the closed-loop system. The cen-
tral issues of how to restrict the analysis region, and
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how to optimize the “size” of the domain of attraction
are addressed, and the approaches are compared on
several examples from the literature.

This paper is organized as follows. Section 2 describes
the set-up and discusses the models of the closed-
loop system that arise when the saturation nonlinearity
is considered as an uncertain element or described
using piecewise linear techniques. Section 3 details
an approach for estimating regions of attraction based
on the circle criterion, while Section 4 describes the
novel approach based on piecewise quadratic Lya-
punov functions. We compare the computational tech-
niques on a number of examples from the literature in
Section 5, and conclude the paper in Section 6.

2. LINEAR SYSTEMS WITH SATURATION

2.1 System Model and Problem Formulation

Consider a linear system under saturated feedback
{

ẋ(t) = Ax(t)+Bpp(t) x(0) = x0
q(t) = Cqx(t) p(t) = sat(q(t)) (1)

where sat(·) denotes the unit saturation

sat(q) =





1 if q ≥ 1
q if |q| ≤ 1
−1 if q ≤ −1

For simplicity, we will focus on the case of a single
saturation nonlinearity; extensions to multiple satura-
tions are discussed in Section 6. Hence, we assume
thatx∈ Rn, A∈ Rn×n, Bp ∈ Rn andCq ∈ Rn.

Let x(t,x0) be the solution of (1) with initial condition
x(0) = x0. The set

D =
{

x0 | x(t,x0)→ 0 ast → ∞
}

is called thedomain of attractionof the system (1).

The aim of this paper is to derive a computationally
efficient approach for obtaining good estimates of the
domain of attraction for linear systems with saturation.
In particular, we will develop an approach that

(1) provides good estimates of the domain of attrac-
tion,

(2) is simple to implement and computationally effi-
cient to execute,

(3) applies to systems of arbitrary order and with
multiple saturation loops.

2.2 Uncertain Linear Models of Closed Loop System

The classical approach for dealing with saturation
nonlinearities is based on absolute stability theory. Al-
though absolute stability analysis is often carried out
globally, extensions to systems with finite domains of
attractions were made over 30 years ago, see,e.g., the
papers by Walker and McClamroch (1967) and Weis-
senberger (1968). These authors propose to model the

saturation nonlinearity as a locally sector-bounded el-
ement

q/r ≤ sat(q)≤ q if |q| ≤ r

and consider the resulting polytopic model of the
closed-loop system

ẋ(t) ∈ co
{
(A+BpCq)x(t),(A+ r−1BpCq)x(t)

}

valid for all trajectoriesx(t) of (1) that satisfy

|Cqx(t)| ≤ r ∀t ≥ 0.

Recently, it has been shown how domains of attrac-
tions for systems described by local sector condi-
tions can be computed via semi-definite programming
(Pittet et al., 1997; Hindi and Boyd, 1998). In par-
ticular, the paper (Hindi and Boyd, 1998) shows how
the size of the domain of attraction can be optimized
in this framework. We will return to these results in
Section 3.

2.3 Piecewise Linear Models of Closed Loop System

An alternative approach is to exploit the fact that the
dynamics of the closed loop system is piecewise linear

ẋ = Aix+ai for x∈ Xi , i ∈ I (2)

Here,X = ∪i∈I Xi is a partition of the state space into
polyhedral cells, andI is the index set for the cells.
Specifically, the saturation nonlinearity partitions the
state-space of the system (1) into three regions

XN = {x |Cqx≤−1}
XL = {x | −1≤Cqx≤ 1}
XP = {x |Cqx≥ 1}

corresponding to negative saturation, linear operation,
and positive saturation, respectively. The dynamics of
(1) can be written on the form (2) since

ẋ =





Ax−Bp for x∈ XN

(A+BpCq)x for x∈ XL

Ax+Bp for x∈ XP

We will return to this model formulation in Sec-
tion 4 and see how it can be used to obtain piecewise
quadratic estimates of the domain of attraction of the
saturated system.

3. ESTIMATES FROM CIRCLE CRITERION

In this section, we will show how quadratic Lyapunov
functions

V(x) = xTPcx (3)

can be used together with the local polytopic model
from Section 2.2 to estimate regions of attraction for
the system (1). The main idea is to require that (3)
is a simultaneous Lyapunov function for the extreme



system of the polytopic model. Since the polytopic
model is only valid within the “slab”

SA = {x | − r ≤Cqx≤ r}
this analysis only guarantees that level sets of (3) fully
contained in the analysis regionSA are regions of at-
traction for the system (1). The following result shows
how to find the simultaneous Lyapunov function with
largest level sets (in terms of trace) fully contained in
the analysis region.

Proposition 1.Let Pc = PT
c be a solution to the convex

optimization problem

minimize Tr Pc

subject to0 > (A+BpCq)TPc +Pc(A+BpCq)
0 > (A+ r−1BpCq)TPc +Pc(A+ r−1BpCq)

0 <

[
r2 Cq

CT
q Pc

]

Then,

Dc =
{

x | xTPcx≤ 1
}

is a region of attraction for the system (1).

A more elegant solution that treats the multiple
saturation-case more efficiently is given in (Hindi
and Boyd, 1998). Furthermore, the papers (Pittetet
al., 1997; Hindi and Boyd, 1998) show how (often
superior) estimates based on the Popov criterion can
also be computed via optimization over linear matrix
inequalities.

4. PIECEWISE QUADRATIC ESTIMATES

A general procedure for analysis of piecewise linear
systems using piecewise quadratic Lyapunov func-
tions was developed in (Johansson and Rantzer, 1998;
Rantzer and Johansson, 2000). A particular feature of
the approach is that the search for Lyapunov, stor-
age, and value functions for piecewise linear systems
can be performed via convex optimization over lin-
ear matrix inequalities. However, for systems with fi-
nite stability regions the analysis conditions given in
(Johansson and Rantzer, 1998; Rantzer and Johans-
son, 2000) cannot be verified globally and the tech-
niques cannot be immediately applied. In this section,
we will describe how the original results can be ex-
tended to estimation of the domain of attraction. The
novel developments include an approach for restrict-
ing the domain of analysis, and a method for optimiz-
ing the size of the domain of attraction. Both develop-
ments are critical for obtaining good estimates.

Piecewise linear systemsWe consider piecewise lin-
ear systems on the form

ẋ = Aix+ai for x∈ Xi , i ∈ I

Here, X = ∪i∈I Xi ⊆ Rn is a partition of the state
space into a number of closed (possibly unbounded)

polyhedral cells, andI is the index set of the cells. We
let I0 ⊆ I be the set of indices that contain the origin,
and I1 be the indices of the cells that do not contain
the origin. For linear systems with saturation,I0 will
contain the index of the region of linear operation,
while I1 will contain the indices of all other cells. For
convenient notation, we define

Āi =
[

Ai ai
0 0

]
x̄ =

[
x
1

]

and write the system dynamics as

˙̄x = Āi x̄ for x∈ Xi , i ∈ I (4)

Since the cells are polyhedra, they can be represented
as the intersection of a finite number of halfspaces. In
other words, for eachXi , there exist matrices

Ḡi =
[
Gi gi

]

such that

Xi = {x | Ḡi x̄º 0} i ∈ I . (5)

Piecewise quadratic Lyapunov functionsWe will
use Lyapunov functions candidates that are continuous
and piecewise quadratic

V(x) =

{
xTPix x∈ Xi , i ∈ I0
x̄T P̄i x̄ = xTPix+2qT

i x+ r i x∈ Xi , i ∈ I1

To enforce continuity, we construct matrices

F̄i =
[

Fi fi
]

with fi = 0 for i ∈ I0 that satisfy

F̄i x̄ = F̄j x̄ x∈ Xi ∩Xj i, j ∈ I . (6)

This is always possible, since the cells are polyhedra.
Now, by parameterizing the matricesPi andP̄i as

Pi = FT
i TFi i ∈ I0

P̄i = F̄T
i TF̄i i ∈ I1

the Lyapunov function candidate is continuous and
piecewise quadratic. The free parameters (over which
the Lyapunov function candidate is optimized) are
collected in the symmetric matrixT.

In our computations, we will also need matrices

Ēi =
[
Ei ei

]

with ei = 0 for i ∈ I0 such that

Ēi x̄º 0 for x∈ Xi

These matrices can be constructed directly from the
cell identifiers Ḡi without introducing any conser-
vatism in the analysis, see (Johansson, 1999). For lin-
ear systems with saturation, the general procedure in
(Johansson, 1999) reduces to

Ēi = 0 i ∈ I0

Ēi =
[
Gi gi
0 1

]
i ∈ I1



Describing the saturated systemProcedures for de-
termining matricesḠi andF̄i for polyhedral partitions
were given in (Johansson, 1999). For sake of com-
pleteness, however, we will show explicitly how the
saturated system (1) can be described in the notation
above, and how cell identifiers̄Gi and continuity ma-
tricesF̄i can be determined.

Let I = {N,L,P} be the indices for the regions corre-
sponding to negative saturation, linear operation, and
positive saturation, respectively. Hence,I0 = {L}, and
I1 = {N,P}. The dynamics of (1) can be written on the
form (4) with

ĀN =
[

A −Bp

0 0

]
AL = A+BpCq ĀP =

[
A Bp

0 0

]
.

The cells can be described as in (5) with

ḠN =−[
Cq 1

]
ḠL =

[
Cq 1
−Cq 1

]
ḠP =

[
Cq −1

]

while the matrices

F̄N =




Cq 1
0 0
I 0


 F̄L =




0 0
0 0
I 0


 F̄P =




0 0
Cq −1
I 0




satisfy the condition (6).

Local Analysis Since the systems that we consider
have a limited domain of attraction, any proper Lya-
punov function candidate can only be decreasing in a
limited region around the origin. Hence, to extend the
methods from (Johansson and Rantzer, 1998) to this
setting we have to restrict the analysis region accord-
ingly. A simple approach is to verify the Lyapunov in-
equalities on some ellipsoidEA⊂∪i∈I Xi , and a natural
choice of ellipsoid is to use an inflated version of the
domain of attraction estimated by the circle criterion.
To this end, consider the analysis ellipsoid

EA(t) =
{

x | xTPcx≤ t
}

=
{

x | x̄T S̄A(t)x̄≥ 0
}

with

S̄A(t) =
[−Pc 0

0 t

]
(7)

In this formulation, the analysis region can be inflated
by increasing the value of the parametert.

When we restrict the analysis to the ellipsoidx ∈
EA(t), we can also refine the descriptions of the sat-
urated regions. In particular, ifx∈ EA(t), then|Cqx| ≤
kmax where

kmax =
√

tCqP−1
c CT

q .

Hence, when we considerx∈ EA(t), we can describe
the relevant parts of the saturated regions by

ḠN =
[−Cq −1

Cq kmax

]
ḠP =

[
Cq −1
−Cq kmax

]

Analysis Conditions using Piecewise QuadraticsWe
are now ready to sum up the developments.

Theorem 1.Consider positive scalarswi , and sym-
metric matricesT andUi such thatUi has non-negative
entries, while

Pi = FT
i TFi i ∈ I0

P̄i = F̄T
i TF̄i i ∈ I1

satisfy

0 > AT
i Pi +PiAi i ∈ I0

0 > ĀT
i P̄i + P̄iĀi + ĒT

i UiĒi +wiS̄A(t) i ∈ I1
If Pi > 0 for i ∈ I0, then the system (1) is locally
exponentially stable and every level set

Dpwq(α) = {x | x̄T P̄i x̄≤ α x∈ Xi , i ∈ I}
such thatDpwq(α) ⊆ EA(t) is a domain of attraction
for the system (1).

Proof: Similarly to (Johansson and Rantzer, 1998).

Remark 1.Note that the matricesPi used to define
the quadratic term of the Lyapunov function in each
region do not need to be positive definite. It is straight-
forward to enforce positive definiteness in the LMI
conditions, but this might lead to unnecessarily con-
servative estimates (compare Example 1).

Remark 2.Since the choice of analysis region is im-
portant, it is natural to apply Theorem 1 iteratively.
Initially, we restrict the analysis region to an inflated
version of the domain of attraction estimated by the
circle criterion. Once a piecewise quadratic estimate
V(x) = x̄T P̄(0)

i
x̄ has been found, we can try to verify

the conditions of Theorem 1 on an inflated version of
this domain. We then replacēSA(t) by

[
0 0
0 t

]
− P̄(0)

i

in the analysis conditions, and sweept to find the
largest value for which the analysis conditions admit a
solution (compare Example 3).

Optimizing the Size Since there might be several so-
lutions to the inequalities in Theorem 1, it is natural to
try to maximize the “size” of the computed level sets.
However, even determining the volume of agivencon-
vex body (even if it is restricted to be a convex poly-
hedron) is computationally hard in general (Gritzmann
and Klee, 1994) and a formula that allows direct opti-
mization of the volume ofDpwq(α) appears to be out
of reach. Inspired by the developments for quadratic
Lyapunov functions, we suggest to minimize the sum
of traces of the matricesPi that describe the Lyapunov
function in each region. Hence, we propose to solve
the convex optimization problem

minimize ∑
i∈I

Tr Pi (8)



subject to the conditions in Theorem 1. This is a
heuristic criterion that, as we will see in Section 5,
appears to work very well in practice.

Finding Large Level Sets within Analysis RegionTo
extract the best estimate of the domain of attraction
provided by Theorem 1, we need to find the largest
level set ofV(x) contained in the analysis region.
A good estimate can often be obtained using the
following result.

Proposition 2.For everyi ∈ I , let α?
i be the largestαi

such that

S̄A(t) > wi

([
0 0
0 αi

]
− P̄i

)
+ ḠT

i WiḠi

has a feasible solutionWi º 0, wi ≥ 0. Then,

Dpwq(α)⊆ EA(t)

for all α < mini∈I α?
i .

Proof: For anyx ∈ Dpwq(α), the inequality implies
x̄T S̄A(t)x̄≥ 0, and hencex∈ EA(t).

4.1 Algorithm in Summary

Our methodology for finding a piecewise quadratic
estimate of the domain of attraction for the system (1)
can be summarized as follows:

Algorithm 1
(1) Compute an initial estimate of the domain of

attraction using the circle criterion described in
Proposition 1.

(2) Use this quadratic estimate to define an initial
analysis ellipsoid as in (7), and redefine the cell
identifiers for the saturated regions.

(3) Compute a piecewise quadratic estimate by min-
imizing the objective function (8) subject to the
conditions in Theorem 1. Extract the estimated
region of attraction using Proposition 2.

(4) If desired, use the piecewise quadratic estimate
to redefine the analysis region, and goto step 3.

5. EXAMPLES

In this section, we will compare the approaches on
several examples from the literature. The methods that
we will compare is analysis methods based on the cir-
cle and Popov-criteria from (Pittetet al., 1997; Hindi
and Boyd, 1998) and the piecewise quadratic approach
described in this paper. The piecewise quadratic esti-
mates are computed using Algorithm 1 without any
manual intervention. As stressed in (Hindi and Boyd,
1998), the choice of loop transformation is crucial for
obtaining good results with the Popov-criterion. In the
examples, we always use the loop transformation that
yields the best estimate of the domain of attraction.

Finally, note that all examples focus on planar systems
for illustration purposes only: the approaches apply
directly to systems of arbitrary order.

Example 1.(Pittetet al., 1997). Consider (1) with

A =
[

0 1
1 0

]
Bp =

[
0
−5

]
Cq =

[
2
1

]T

The domains of attraction estimated by the various
methods are shown in Figure 1. Note that the piece-
wise quadratic Lyapunov function matches the actual
region of attraction very closely, and that the dynam-
ics in the saturated regions have unstable equilibrium
points in±(−5 0). In fact, the level surfaces of the
computed Lyapunov function are parabolic (the matri-
cesP1 andP−1 both have one negative eigenvalue) and
not ellipsoidal in the saturated regions.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Fig. 1. Domain of attraction estimated by piecewise
quadratic, Popov and circle analysis. The shaded
region is the true region of attraction (obtained
via simulation).

Example 2.(Romachuk, 1996).Consider (1) with

A =
[−0.333−0.86

1.42 0.53

]
Bp =

[
0.41
−2.27

]
Cq =

[
0.3564
0.284

]T

The domains of attractions computed using the differ-
ent methods are shown in Figure 2. Note that the ap-
proach suggested in this paper produces a significantly
larger domain of attraction than the method developed
in (Romachuk, 1996) (not shown).

−10 −8 −6 −4 −2 0 2 4 6 8 10
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Fig. 2. Domain of attraction estimated by piecewise
quadratic, Popov and circle analysis. The shaded
region is the true region of attraction.

Example 3.(Johansson, 1999).Consider (1) with

A =
[

0 1
0 0.1

]
Bp =

[
0
−1

]
Cq =

[
2
3

]T

In this example, we apply the iterative procedure sug-
gested in Remark 2, and find the piecewise quadratic



estimate shown in Figure 3 (outermost level set).
Again, the result is significantly larger than the alter-
natives produced by the circle and Popov criterion.

−20 −15 −10 −5 0 5 10 15 20

−6

−4

−2

0

2

4

6

Fig. 3. The domain of attraction can be improved sub-
stantially using the iterative procedure suggested
in Remark 2 (outermost level set).

6. CONCLUSIONS AND EXTENSIONS

This paper has detailed a novel procedure for estimat-
ing the domain of attraction for linear systems with
saturation. The approach uses a piecewise quadratic
Lyapunov function and a piecewise linear description
of the closed-loop system. The central issues of how
to restrict the analysis region, and how to optimize
the “size” of the domain of attraction have been ad-
dressed, and the approach has been compared with re-
cent approaches based on the circle and Popov criteria.
Using several examples from the literature, we have
demonstrated superior performance of the piecewise
quadratic approach.

The approach presented in this paper can be extended
in many directions. Firstly, the method apply directly
to systems to multiple saturated feedback loops (sev-
eral saturating actuators). In this case, a system with
m saturation loops results in a piecewise linear model
with 3m regions. Secondly, although the application
focus has been linear systems with saturation, the
general approach applies to arbitrary nonlinear sys-
tems, provided that the nonlinear dynamics can be ap-
proximated by polytopic or piecewise linear models.
Methods for approximating nonlinear systems using
piecewise linear systems have been described in, for
example, (Ohtaet al., 1993; Johansson, 1999). Finally,
we mention that the approach can also be extended
to local performance analysis. Techniques for esti-
mating reachable sets for disturbances with bounded
L2 norm, as well as localL2-gain estimates can be
obtained by combining the techniques in (Hindi and
Boyd, 1998) with those presented in (Rantzer and Jo-
hansson, 2000).
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