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Abstract: In this paper, we present an adaptive extremum seeking control scheme for
continuous stirred tank bioreactors. The proposed adaptive extremum seeking approach
utilizes the structure information of the kinetics of the bioreactors to construct a seeking
algorithm that drives the system states to the desired set-points that extremize the value of
an objective function. Lyapunov’s stability theorem is used in the design of the extremum
seeking controller structure and the development of the parameter learning laws. Simulation
experiment is given to show the effectiveness of the proposed approach.

Keywords: Extremum seeking, Lyapunov function, parameter estimation, persistence of
excitation

1. INTRODUCTION 1995), (Sternby 1980) and (Drkunet/al. 1995)). Re-
cently, Krstic et. al ((Krstic 2000), (Krstic and Wang

dapti I sch d dinthe I 2000)) presented several extremum control schemes
Most adapiive control schemes documented in the Iit- 55 stability analysis for extremum-seeking of linear

erature ( (Landau 1979), (Goodwin and Sin 1984), ;i nown systems and a class of general nonlinear

(Astrom and Wittenmark 1995), (Narendra and An.- systems ((Krstic 2000), (Krstic and Wang 2000) and
naswamy 1989), (loannou and Sun 1996) and (Krstic (Krstic and Deng 1998)).

et al. 1995)) are developed for regulation to known

set-points or tracking known reference trajectories. The implications for the chemical and biochemical in-
In some applications, however, the control objective dustries are clear. In these sectors, itis recognized that
could be to optimize an objective function which can even small performance improvements in key process
be a function of unknown parameters, or to select control variables may result in substantial economic
the desired states to keep a performance function atenefits. As an example, the potential benefits of ex-
its extremum value. Self-optimizing control and ex- tremum seeking techniques in the maximization of
tremum seeking control are two methods to handle biomass production rate in well-mixed biological pro-
these kinds of optimization problems. The task of cesses has been demonstrated in (Wray 1999).

ehxtremum s.eeklng IS t(_) f_md the op.era'glng fset-ppmts In this study, we investigate an alternative extremum
that maximize or minimize an objective function. geering scheme for continuous stirred tank bioreac-

_Smcr:]e the early rebslearch work on extremum ?OlerI tors. The proposed scheme utilizes explicit structure
in the 1920's (Leblanc 1922), many successful ap- iytormation of the objective function that depends

pllcat|ogs of extremumgcontrol approachdes have be(T(non system states and unknown plant parameters. The
reported (e.g., (Vasu 1957), (Astrom and Wittenmar scheme presented in this paper is based on Lyapunov’s

stability theorem. As a result, the global stability is
1 Research supported by the Natural Sciences and EngineeringeNsured during the seeking of the extremum of the

Research Council of Canada and the Canadian Foundation fornonlinear continuous stirred tank bioreactors. Itis also
Innovation.




shown that once a certain level of persistence of ex- From (2) and (4), we have
citation (PE) condition is satisfied, the convergence

of the extremum seeking mechanism can be guaran- 0Ye  —kopim
teed. The paper is organized as follows. Section 2 0% ki(Ks+%e)? (5‘29+2K559*50K3) ©6)
presents some notations and the problem formulation.
; L ) ._‘and
In Section 3, an parameter estimation algorithm is
developed. Section 4 presents the adaptive extremum o2y 2o
seeking controller and the stability and convergence of 5 ° = K 2mm (K§+SOKS) (7)
the closed-loop extremum seeking system. Numerical s 1(Ks + %)

simulation is shown in Section 5 followed by brief ;is shown thald—%e <0,Vse > 0. Hence, at the system
conclusions in Section 6.
equilibrium,ye(s) has a maximum

ko UmS"X*

2. PROBLEM Y =Yels) = g

with

(8)

Consider the following microbial growth models

= /K2 Ks—K 9
X = (X, S)X— Ux (1) S § 9088 ©

S= —ki (X, 5)X+U(So—9) (2) X = Sok S*. (20)
1
y = ke, 5)x (3) From the above analysis, we know that if the substrate
where statesx € [0,+%) and s € [0,+») denote  concentrations can be stabilized at the set-poisit
biomass and substrate concentrations, respectivelythen the production ratg is maximized. However,
u > 0 is the dilution ratey is the production rate since the exact values of the Monod’'s model param-
of the reaction productg denotes the concentration etersKs and iy, are usually unknown, the desired set-
of the substrate in the feed, akg k, > 0 are yield point s* is not available. In this work, an adaptive
coefficients. We consider the case where onignd extremum seeking algorithm is developed to search
y are measurable, the biomass concentraiis not this unknown set-point such that the production rate,
available for feedback control. y, is optimized.

In this work, we consider the extremum seeking prob- Assumption 1: The upper bound dfs is known, i.e.,
lem for plant (1)-(2) with growth ratqu(x,s) ex-  Ks < Kg with known constanKg > 0.
pressed by Monod’s model. This model is given by

5 (yonoqy (4 3. ESTIMATION

where tm > 0 is the maximum value of the specific |n this section, we develop the parameter estimation

growth rate, ands > 0 is the saturation constant for algorithm for the unknown parameteks/ko, Ks and
the Monod growth rate model. Monod’s model is one .. It follows from (3) thatp(s)x = y/ko. Equations

of the most commonly used model for growth kinet- (1)-(2) can be re-expressed as
ics. However, it is important to note that the scheme
developed in this paper is not limited to this model and

H(x8) = H(s) =

can be easily extended to the plants with other growth =gy ™ a1
rate representations. The control objective is to design . 1

a controllery, such that the production ragechieves S=-— k—2y+ u(so—s) (12)
its maximum.

By (3)-(4) and (12)-(13), the time derivative pfs
We first calculate the system’s equilibria correspond-
ing to a constant dilution rate.. There are two equi- o koKspmX . 1
libria in this case. The first i& = 0 ands, = s which V= Tk 9> T leHOy — W

is called the wash-out equilibrium. The second is ) o
Since the biomass concentratirims not measurable,

KsUe S-S we re-expresy by replacingx with y/kop(s) as fol-
= )y Xe= lows
Hm — Ue ky
At the dsttt)aady—state, the production rate can be ex- S UmS2Y — leSy +Ksuy(sp—9) 13
pressed by y=-—uy (Ks+s)
 kopimSe(So — Se) 5) Let 8 = [65 6, 6] with 6, = 42, 6= =, 6 =
e = e\ e

k1(Ks+ Se) Equations (13) and (14) can be re ertten as



—6y+u(so—9) (14) 8.6, Bbs ékék

y=—uy+ 0,5y~ 8" + (S -y (15) M ¥ ~ Byl
R _ —’ ky(1+ Gss)e§
Let 8 denote the estimate of the true parameder 1+ 935
ands’andy be the predictions o§ andy by using
the estimated paramet@r respectively. The predicted +E [~ By +u(so s)}ef, (22)
statessandyare generated by where
—6ky+U(so—9) +kses (16) BB = 246 1 23)
A a S) = A —=~ " 7,
= uyt 0,5’y — By’ + (so—S)uy 262\/1+ 5085 02
S(1+ 6ss) We consider the following parameter updating laws
+kyey a7
with ks, ky > 0, the prediction errores = s— § and _ Yssyey if B> 1/Ksp
g =y—y. It follows from (15)-(18) that 6= 1t bss’ (24)
orbs= 1/Ksp andgsyey, > 0
) ~ 0, otherwise
&= —ks&s— By (18) .
&= ket fo(s,y, O)y (19) Ou = usye}, (25)
Y (14 655)(1+ bss) ekz—wy(gey+zs+es) (26)
where = 6 — 6 and®(s.y. 6) = [@ ¢ @ with with the initial conditiony(0) > 1/Kg > 0. Substi-

A A tuting the updating laws (25)-(27) into (23), we obtain
&=—(s0—9u— 6,5+ by

@ = (1+ B9)s V < z(ysBa(y. s B)ey+d(t) — By
qq(:f(l+éss)¥ +[1+VSBb(yaS763)ql]u(a)_ )) (27)
> ke — (14 Ois) [k — S0 =9
By 6s = g, the desired set-point (10) can be re- e +06s) lly 2(1+ 6s9) g

expressed as" = (\/1+5095— 1)/95. Since the  where
parameterfs is unknown, we first design a con-
troller to make the substrate concentrat®fiollow Ba(y, s, 65) =

<\/1+_806_3— 1)/63 t_hat |s_an estlmat_e_cﬂ*. La_ter, (*éu32+ékY)y .
an excitation signal is designed and injected into the WB(GS)’ if 6> 1/Ksp
adaptive system such that the estimated paranfigter s or és — 1/Kg (28)
converges to its true value. The extremum seeking anda@ye, > 0
control objective can be achieved when the substrate 0 otherwise
concentratiors is stabilized at the optimal operating N
points*. Bo(Y; s,65) =
y ~
3 Bs), if s> 1/K,
Define “1i6s B(6s), s> /Kso
or6;=1/Kg (29)
1 ~
Zz=S— = (\/1+06s—1)+d(t) (20) andqyey > 0
95( ° ) 0, otherwise

whered(t) € C! is an excitation signal that will be

assigned later. We consider a Lyapunov function can-
didate 4. CONTROLLER DESIGN

Z 1 éﬁ 62 B2 Considering the following extremum seeking con-
V2+2<V;1+Vs+w<> troller
+§ +(1+ st)§ (21) u _ YsPaly.s be + qi(t) — By +kozs (30)
h 0. Taking the time derivati [1+ ysBo(y.s, 65)ey](so— )
with constants,, ys, k > 0. Taking the time derivative . . .
of V and substituting (15) and (19)-(20) leads to with kz > 0 and the gain function

. A n . —s)K
V=2 [B(8)8s+d(0) - By + s -9 =kt s @)



with kyo > 0, we have

V < —kzzg_ kseg_ kyoe)zf

In order to avoid the singularity that may happen
in equation (31) when 4 ysf3,(y, s, 6s)ey approaches
zero, a small learning gaia should be used to ensure
that

(32)

1+ ¥sBo (Y, S, 6s)ey > 0 (33)

Following LaSalle-Yoshizawa's Theorem, it is con-
cluded tha®, z;, s andey are bounded, and

tI|mzs 0, tIim e=0, tIime),:o (34)

l'I'J(t) = é;—CDa(S,y, CDT S y7 y29a — 7
If ®a(sy,0)PL(s,y.0)y? is positive definite, then
we may conclude tha® = 0. However, it is im-
possible to satisfy this condition because the matrix
Da(sy, 0)P! (s)y, 8)y? is singular at any given time.
We consider the condition

(37)

t+To
lim —

L[ [eTww)da|dr =
Tt/[qJ(t)}ro

(38)
t—oo 0
with positive constanTp. It can be shown from (25)-

(27) and lim_.. 5,6, = 0 that lim_.. § = 0, which
implies that 68 converges to a constant &s— oo.

It should be noticed that the convergence of the state

errors es and e, does not mean that the estimated
parameters converge to their true valuest as .

In the following, we investigate the condition that
guarantees the parameter convergence.

By LaSalle’s Invariance Principle, the error vector
(25,85, 8y, 6) converges to the largest invariant s&bf

the dynamic system (19)-(20) and (25)-(27) contained

in the setE = {(z,65,6,,0) € Rlzs =6 =8 =
0}. The purpose of the following is to study the
invariant setM to obtain the condition under which
parameter convergence can be achieved. Sipead
g converge to zero, we know thf® &sdt = e5(0) —
es(0) = —e5(0) and g’ §,dt = g (o) —&(0) = —8,(0).
This implies thates and €, are integrable. It follows
from the error equations (19)-(20) thet and €, are
functions ofy,sy,5, 6, d and its time derivatives.
Since 6, 6;,6, € Lo, and the excitation signal and
d are bounded, we know that ande, are bounded.
This implies the uniform continuity oks and e,.

Therefore¥(z, e, ey, 6)eM
t+To

{nm—/w dr}@a_
t—oo 0

As a result, we show that if the dither sigrdit) is
designed such that the following condition holds

(39)

t+TO
= >
t'ﬂlTo/q’ t)dt > col (40)
for somecgy > 0 and
1
ser:{s 3:5 (\/1+3095—1>—d(t),
S
05 > 1/Kso} (41)

then, the parameter errérconverges to zero asymp-

By Barbalat's Lemma (loannou and Sun 1996), we totically.

conclude thags, & — 0 ast — oo.

On the invariant seM, we havees = ey = 0 and

& =6, =0. By settinges = gy = & = 6, = 0, equations
(19)-(20) lead tofy = 0 and

8T d(sy,0)y

m=0a (2s€5,6,6) €M (35)

Sinces > 0 andd are bounded, we know that

6T da(sy,0)y=0, (z,6e58,8)eM (36)

wheref, = [85 8,]T and®a(s,y, 8) = [@ @u]”
fore, the largest invariant skt in E is

. There-

M = {(zses,ey, 8) cR|lzs=es=6=0,

é;—cba(sa y7 é)y = 07 éky: 0}

It follows from (37) thatv(zs, &, 6y, ) € M

Theorem4.1. For the system (1)-(3), if

i) the learning ratey is chosen small enough such
that (34) holds, and

ii) the dither signald(t) satisfies the PE condition
(41),

then, the extremum seeking controller (31) with adap-
tive laws (25)-(27) guarantees that the production rate
y converges to an adjustable neighborhood of its max-
imumy*,

Proof: Since the PE condition (41) is satisfied,
we have lim_« 95 = 65 and |Imﬂm9k 6. By
lim¢_.w2zs=0and lim_.. e, = 0, we see from (21) and
(31) that

tIim s=¢ —tlim d(t)

By —d(t)
s—S

(42)

limu=Ilim

t—oo t—oo

(43)

Hence, by (3) and (12) we know that whien- o, the
following equation holds



) d(t) u(s)x We suppose that the upper bound Kf is known
X= [SO*SJF o) —kaix o_s asKg = 0.5. The design parameters in the adaptive
controller (31) and the adaptive laws (25)-(27) are
From (11) and (43), the above equation can be further

expressed as Ys=2.0, y, =200, ¥ =20

. [X* N dt) N d(t) » ke(s)x 65(0) =8.0, 6,(0)=20, 6((0)=4.0
B ki kip(s) SH—S The dither signal is chosen d&) = 2.2—cog0.5t) —

; " - co050.3t).
Sincex, u(s) andsy — s are positive definite, we see _ .
that (i) X < 0 whenx > x* + 90 1 40 iy 5 Figures 1 and 2 present _the simulation res_ult of the
0)x< > X F R T (i) x> adaptive extremum seeking controller. It is shown

0 whenx < x* + %) + ki(f()s). This implies that the  from Figure 1 that the production rate reaches a neigh-

biomass concentrationconverges to a neighborhood borhood of its maximum value B7 very quickly. Due

of x*. The size of the neighborhood depends on theto the injection of the excitation signdlt), the pro-
external dither signadl(t) and its changing rate. For duction rate keeps oscillating below the optimal point.
easy presentation, we denote This oscillation is necessary to ensure the convergence
to the true parameter values. It is interesting to note
that, in this case, the maximum is reached before the
parameters converge to their true values. This shows
. ) i the effectiveness of this technique. The convergence
Wheree(d,d) represents the effect of the dither signal. ¢ i algorithm can be confirmed by inspection of a
Itis clear thate(d,d) — O whend(t),d(t) — 0. simulation performed over a longer time period (i.e.

Using the Mean Value Theorem (Ortega and Rhein-t = 800), shown in Figure 3.
boldt 1970), we may re-expressing the production rate

lim x=x"+¢(d,d) (44)

yin (3) as
6. CONCLUSION
1
* oy [OH(SH)
y = kep(S")x+ko(s—s )X/ o5, dA We have solved a class of extremum seeking control
0 problems for continuous stirred tank bioreactors rep-

resented by Monod’s growth model with unknown pa-
rameters. The proposed extremum seeking controller
drives biomass and substrate concentrations to un-
) known desired set-points that optimize the production
me: y* +kop(s*)e(d,d) rate. A persistence of excitation condition is derived
1 to ensure the convergence of the production rate of the
/ au(sy) d/\] (45) bioreactor to a neighborhood of its maximum.
0

wheres, = As+ (1— A)s*. Considering (9), (43) and
(45), we have

_tlmo |:k2d(t) 35,
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