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Abstract: In this paper, we present an adaptive extremum seeking control scheme for
continuous stirred tank bioreactors. The proposed adaptive extremum seeking approach
utilizes the structure information of the kinetics of the bioreactors to construct a seeking
algorithm that drives the system states to the desired set-points that extremize the value of
an objective function. Lyapunov’s stability theorem is used in the design of the extremum
seeking controller structure and the development of the parameter learning laws. Simulation
experiment is given to show the effectiveness of the proposed approach.
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1. INTRODUCTION

Most adaptive control schemes documented in the lit-
erature ( (Landau 1979), (Goodwin and Sin 1984),
(Astrom and Wittenmark 1995), (Narendra and An-
naswamy 1989), (Ioannou and Sun 1996) and (Krstic
et al. 1995)) are developed for regulation to known
set-points or tracking known reference trajectories.
In some applications, however, the control objective
could be to optimize an objective function which can
be a function of unknown parameters, or to select
the desired states to keep a performance function at
its extremum value. Self-optimizing control and ex-
tremum seeking control are two methods to handle
these kinds of optimization problems. The task of
extremum seeking is to find the operating set-points
that maximize or minimize an objective function.
Since the early research work on extremum control
in the 1920’s (Leblanc 1922), many successful ap-
plications of extremum control approaches have been
reported (e.g., (Vasu 1957), (Astrom and Wittenmark
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1995), (Sternby 1980) and (Drkunovet al. 1995)). Re-
cently, Krstic et. al ((Krstic 2000), (Krstic and Wang
2000)) presented several extremum control schemes
and stability analysis for extremum-seeking of linear
unknown systems and a class of general nonlinear
systems ((Krstic 2000), (Krstic and Wang 2000) and
(Krstic and Deng 1998)).

The implications for the chemical and biochemical in-
dustries are clear. In these sectors, it is recognized that
even small performance improvements in key process
control variables may result in substantial economic
benefits. As an example, the potential benefits of ex-
tremum seeking techniques in the maximization of
biomass production rate in well-mixed biological pro-
cesses has been demonstrated in (Wanget al. 1999).

In this study, we investigate an alternative extremum
seeking scheme for continuous stirred tank bioreac-
tors. The proposed scheme utilizes explicit structure
information of the objective function that depends
on system states and unknown plant parameters. The
scheme presented in this paper is based on Lyapunov’s
stability theorem. As a result, the global stability is
ensured during the seeking of the extremum of the
nonlinear continuous stirred tank bioreactors. It is also
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shown that once a certain level of persistence of ex-
citation (PE) condition is satisfied, the convergence
of the extremum seeking mechanism can be guaran-
teed. The paper is organized as follows. Section 2
presents some notations and the problem formulation.
In Section 3, an parameter estimation algorithm is
developed. Section 4 presents the adaptive extremum
seeking controller and the stability and convergence of
the closed-loop extremum seeking system. Numerical
simulation is shown in Section 5 followed by brief
conclusions in Section 6.

2. PROBLEM

Consider the following microbial growth models

ẋ = µ(x,s)x−ux (1)

ṡ =−k1µ(x,s)x+u(s0− s) (2)

y = k2µ(x,s)x (3)

where statesx ∈ [0,+∞) and s ∈ [0,+∞) denote
biomass and substrate concentrations, respectively,
u ≥ 0 is the dilution rate,y is the production rate
of the reaction product,s0 denotes the concentration
of the substrate in the feed, andk1,k2 > 0 are yield
coefficients. We consider the case where onlys and
y are measurable, the biomass concentrationx is not
available for feedback control.

In this work, we consider the extremum seeking prob-
lem for plant (1)-(2) with growth rateµ(x,s) ex-
pressed by Monod’s model. This model is given by

µ(x,s) = µ(s) =
µms

Ks + s
(Monod) (4)

whereµm > 0 is the maximum value of the specific
growth rate, andKs > 0 is the saturation constant for
the Monod growth rate model. Monod’s model is one
of the most commonly used model for growth kinet-
ics. However, it is important to note that the scheme
developed in this paper is not limited to this model and
can be easily extended to the plants with other growth
rate representations. The control objective is to design
a controller,u, such that the production ratey achieves
its maximum.

We first calculate the system’s equilibria correspond-
ing to a constant dilution rateue. There are two equi-
libria in this case. The first isxe = 0 andse = s0 which
is called the wash-out equilibrium. The second is

se =
Ksue

µm −ue
, xe =

s0− se

k1

At the steady-state, the production rate can be ex-
pressed by

ye =
k2µmse(s0− se)

k1(Ks + se)
(5)

From (2) and (4), we have

∂ye

∂ se
=

−k2µm

k1(Ks + se)2

(
s2

e +2Ksse − s0Ks

)
(6)

and

∂ 2ye

∂ s2
e

=
−2k2µm

k1(Ks + se)3

(
K2

s + s0Ks

)
(7)

It is shown that∂
2ye

∂ s2
e

< 0,∀se ≥ 0. Hence, at the system

equilibrium,ye(s) has a maximum

y∗ = ye(s∗) =
k2µms∗x∗

Ks + s∗
(8)

with

s∗ =
√

K2
s + s0Ks −Ks (9)

x∗ =
s0− s∗

k1
. (10)

From the above analysis, we know that if the substrate
concentrations can be stabilized at the set-points∗
then the production ratey is maximized. However,
since the exact values of the Monod’s model param-
etersKs andµm are usually unknown, the desired set-
point s∗ is not available. In this work, an adaptive
extremum seeking algorithm is developed to search
this unknown set-point such that the production rate,
y, is optimized.

Assumption 1: The upper bound ofKs is known, i.e.,
Ks ≤ Ks0 with known constantKs0 > 0.

3. ESTIMATION

In this section, we develop the parameter estimation
algorithm for the unknown parametersk1/k2, Ks and
µm. It follows from (3) thatµ(s)x = y/k2. Equations
(1)-(2) can be re-expressed as

ẋ =
1
k2

y−ux (11)

ṡ =−k1

k2
y+u(s0− s) (12)

By (3)-(4) and (12)-(13), the time derivative ofy is

ẏ =
k2Ksµmx
(Ks + s)2 ṡ+ k2µ(s)[

1
k2

y−ux]

Since the biomass concentrationx is not measurable,
we re-express ˙y by replacingx with y/k2µ(s) as fol-
lows

ẏ = −uy+
µms2y− k1Ks

k2
y2 +Ksuy(s0− s)

s(Ks + s)
(13)

Let θ = [θs θµ θk]T with θµ = µm
Ks

, θs = 1
Ks

, θk = k1
k2

.
Equations (13) and (14) can be re-written as



ṡ =−θky+u(s0− s) (14)

ẏ =−uy+
θµs2y−θky2 +(s0− s)uy

s(1+θss)
(15)

Let θ̂ denote the estimate of the true parameterθ,
and ˆs and ŷ be the predictions ofs and y by using
the estimated parameterθ̂, respectively. The predicted
states ˆs andŷ are generated by

˙̂s =−θ̂ky+u(s0− s)+ kses (16)

˙̂y =−uy+
θ̂µs2y− θ̂ky2 +(s0− s)uy

s(1+ θ̂ss)
+ kyey (17)

with ks,ky > 0, the prediction errorses = s − ŝ and
ey = y− ŷ. It follows from (15)-(18) that

ės =−kses − θ̃ky (18)

ėy =−kyey +
θ̃Φ(s,y, θ̂)y

(1+θss)(1+ θ̂ss)
(19)

whereθ̃ = θ − θ̂ andΦ(s,y, θ̂) = [φs φµ φk]T with

φs =−(s0− s)u− θ̂µs2 + θ̂ky

φµ = (1+ θ̂ss)s

φk =−(1+ θ̂ss)
y
s

By θs = 1
Ks

, the desired set-point (10) can be re-

expressed ass∗ =
(√

1+ s0θs − 1
)
/θs. Since the

parameterθs is unknown, we first design a con-
troller to make the substrate concentrations follow(√

1+ s0θ̂s − 1
)
/θ̂s that is an estimate ofs∗. Later,

an excitation signal is designed and injected into the
adaptive system such that the estimated parameterθ̂s

converges to its true value. The extremum seeking
control objective can be achieved when the substrate
concentrations is stabilized at the optimal operating
point s∗.

Define

zs = s− 1

θ̂s

(√
1+ s0θ̂s −1

)
+d(t) (20)

whered(t) ∈ C1 is an excitation signal that will be
assigned later. We consider a Lyapunov function can-
didate

V =
z2

s

2
+

1
2

( θ̃2
µ

γµ
+

θ̃2
s

γs
+

θ̃2
k

γk

)

+
e2

s

2
+(1+θss)

e2
y

2
(21)

with constantsγµ ,γs,γk > 0. Taking the time derivative
of V and substituting (15) and (19)-(20) leads to

V̇ = zs

[
β(θ̂s) ˙̂θs + ḋ(t)−θky+u(s0− s)

]

− θ̃µ
˙̂θµ

γµ
− θ̃s

˙̂θs

γs
− θ̃k

˙̂θk

γk
− θ̃kyes − kse

2
s

+
θ̃T Φ(s,y, θ̂)yey

1+ θ̂ss
− ky(1+θss)e2

y

+
θs

2
[−θky+u(s0− s)]e2

y (22)

where

β(θ̂s) =
2+ s0θ̂s

2θ̂2
s

√
1+ s0θ̂s

− 1

θ̂2
s

(23)

We consider the following parameter updating laws

˙̂θs =




γsφsyey

1+ θ̂ss
, if θ̂s > 1/Ks0

or θ̂s = 1/Ks0 andφsyey ≥ 0
0, otherwise

(24)

˙̂θµ = γµsyey (25)
˙̂θk =−γky

(y
s

ey + zs + es
)

(26)

with the initial conditionθ̂s(0) ≥ 1/Ks0 > 0. Substi-
tuting the updating laws (25)-(27) into (23), we obtain

V̇ ≤ zs(γsβa(y,s, θ̂s)ey + ḋ(t)− θ̂ky

+[1+γsβb(y,s, θ̂s)ey]u(s0− s)) (27)

−kse
2
s − (1+θss)

[
ky − θs(s0− s)u

2(1+θss)

]
e2

y

where

βa(y, s, θ̂s) =


(−θ̂µs2 + θ̂ky)y
1+ θ̂ss

β(θ̂s), if θ̂s > 1/Ks0

or θ̂s = 1/Ks0

andφsyey ≥ 0
0, otherwise

(28)

βb(y, s, θ̂s) =


− y

1+ θ̂ss
β(θ̂s), if θ̂s > 1/Ks0

or θ̂s = 1/Ks0

andφsyey ≥ 0
0, otherwise

(29)

4. CONTROLLER DESIGN

Considering the following extremum seeking con-
troller

u = −γsβa(y,s, θ̂s)ey + ḋ(t)− θ̂ky+ kzzs

[1+γsβb(y,s, θ̂s)ey](s0− s)
(30)

with kz > 0 and the gain function

ky = ky0 +
(s0− s)Ks0|u|
2(1+Ks0s)

(31)



with ky0 > 0, we have

V̇ ≤−kzz
2
s − kse

2
s − ky0e2

y (32)

In order to avoid the singularity that may happen
in equation (31) when 1+ γsβb(y,s, θ̂s)ey approaches
zero, a small learning gainγs should be used to ensure
that

1+γsβb(y,s, θ̂s)ey > 0 (33)

Following LaSalle-Yoshizawa’s Theorem, it is con-
cluded thatθ̂, zs, es andey are bounded, and

lim
t→∞

zs = 0, lim
t→∞

es = 0, lim
t→∞

ey = 0 (34)

It should be noticed that the convergence of the state
errors es and ey does not mean that the estimated
parameters converge to their true values ast → ∞.
In the following, we investigate the condition that
guarantees the parameter convergence.

By LaSalle’s Invariance Principle, the error vector
(zs,es,ey, θ̃) converges to the largest invariant setM of
the dynamic system (19)-(20) and (25)-(27) contained
in the setE = {(zs,es,ey, θ̃) ∈ R5|zs = es = ey =
0}. The purpose of the following is to study the
invariant setM to obtain the condition under which
parameter convergence can be achieved. Sincees and
ey converge to zero, we know that

∫ ∞
0 ėsdt = es(∞)−

es(0) =−es(0) and
∫ ∞

0 ėydt = ey(∞)−ey(0) =−ey(0).
This implies that ˙es and ėy are integrable. It follows
from the error equations (19)-(20) that ¨es and ëy are
functions of y,s, ŷ, ŝ, θ̂, d and its time derivatives.
Since θ̂,es,ey ∈ L∞, and the excitation signald and
ḋ are bounded, we know that ¨zx and ëy are bounded.
This implies the uniform continuity of ˙es and ėy.
By Barbalat’s Lemma (Ioannou and Sun 1996), we
conclude that ˙es, ėy → 0 ast → ∞.

On the invariant setM, we havees = ey ≡ 0 and
ės = ėy ≡ 0. By settinges = ey = ės = ėy = 0, equations
(19)-(20) lead toθ̃ky = 0 and

θ̃T Φ(s,y, θ̂)y
(1+θss)(1+ θ̂ss)

= 0, (zs,es,ey, θ̃) ∈ M (35)

Sinces > 0 andθ̂ are bounded, we know that

θ̃T
a Φa(s,y, θ̂)y = 0, (zs,es,ey, θ̃) ∈ M (36)

whereθ̃a = [θ̃s θ̃µ ]T andΦa(s,y, θ̂) = [φs φµ ]T . There-
fore, the largest invariant setM in E is

M =

{
(zs,es,ey, θ̃) ∈ R6

∣∣∣∣zs = es = ey = 0,

θ̃T
a Φa(s,y, θ̂)y = 0, θ̃ky = 0

}

It follows from (37) that∀(zs,es,ey, θ̃) ∈ M

Ψ(t) = θ̃T
a Φa(s,y, θ̂)ΦT

a (s,y, θ̂)y2θ̃a = 0, (37)

If Φa(s,y, θ̂)ΦT
a (s,y, θ̂)y2 is positive definite, then

we may conclude that̃θ = 0. However, it is im-
possible to satisfy this condition because the matrix
Φa(s,y, θ̂)ΦT

a (s,y, θ̂)y2 is singular at any given time.
We consider the condition

lim
t→∞

1
T0

t+T0∫
t

[
θ̃T

a Ψ(t)θ̃a

]
dτ = 0 (38)

with positive constantT0. It can be shown from (25)-

(27) and limt→∞ es,ey = 0 that limt→∞
˙̂θ = 0, which

implies that θ̃ converges to a constant ast → ∞.
Therefore,∀(zs,es,ey, θ̃) ∈ M

θ̃T
a

{
lim
t→∞

1
T0

t+T0∫
t

Ψ(t)dτ

}
θ̃a = 0, (39)

As a result, we show that if the dither signald(t) is
designed such that the following condition holds

lim
t→∞

1
T0

t+T0∫
t

Ψ(t)dτ ≥ c0I (40)

for somec0 > 0 and

s ∈ Ωs =

{
s

∣∣∣∣∣ s =
1

θ̄s

(√
1+ s0θ̄s −1

)
−d(t),

θ̄s ≥ 1/Ks0

}
(41)

then, the parameter errorθ̃ converges to zero asymp-
totically.

Theorem 4.1. For the system (1)-(3), if

i) the learning rateγs is chosen small enough such
that (34) holds, and

ii) the dither signald(t) satisfies the PE condition
(41),

then, the extremum seeking controller (31) with adap-
tive laws (25)-(27) guarantees that the production rate
y converges to an adjustable neighborhood of its max-
imum y∗.

Proof: Since the PE condition (41) is satisfied,
we have limt→∞ θ̂s = θs and limt→∞ θ̂k = θk. By
limt→∞ zs = 0 and limt→∞ ey = 0, we see from (21) and
(31) that

lim
t→∞

s = s∗ − lim
t→∞

d(t) (42)

lim
t→∞

u = lim
t→∞

θky− ḋ(t)
s0− s

(43)

Hence, by (3) and (12) we know that whent → ∞, the
following equation holds



ẋ =
[
s0− s+

ḋ(t)
µ(s)

− k1x
]µ(s)x

s0− s

From (11) and (43), the above equation can be further
expressed as

ẋ =
[
x∗ +

d(t)
k1

+
ḋ(t)

k1µ(s)
− x

]k1µ(s)x
s0− s

Sincex,µ(s) and s0 − s are positive definite, we see

that (i) ẋ < 0 when x > x∗ + d(t)
k1

+ ḋ(t)
k1µ(s) , (ii) ẋ >

0 whenx < x∗ + d(t)
k1

+ ḋ(t)
k1µ(s) . This implies that the

biomass concentrationx converges to a neighborhood
of x∗. The size of the neighborhood depends on the
external dither signald(t) and its changing rate. For
easy presentation, we denote

lim
t→∞

x = x∗ + ε(d, ḋ) (44)

whereε(d, ḋ) represents the effect of the dither signal.
It is clear thatε(d, ḋ) → 0 whend(t), ḋ(t) → 0.

Using the Mean Value Theorem (Ortega and Rhein-
boldt 1970), we may re-expressing the production rate
y in (3) as

y = k2µ(s∗)x+ k2(s− s∗)x
1∫

0

∂ µ(sλ )
∂ sλ

dλ

wheresλ = λ s+(1−λ )s∗. Considering (9), (43) and
(45), we have

lim
t→∞

y = y∗ + k2µ(s∗)ε(d, ḋ)

− lim
t→∞

[
k2d(t)

1∫
0

∂ µ(sλ )
∂ sλ

dλ
]

(45)

The above equation implies that the production ratey
converges to a neighborhood of the desired production
ratey∗, whose size is adjustable by tuning the ampli-
tudes of the injected dither signald(t) and its time
derivative.Q.E.D.

5. SIMULATION RESULTS

To show the effectiveness of the proposed design, a
simulation study is performed using the experimental
conditions provided in the work (Wang et al. 1999).
The following parameters and initial states are used in
the simulation experiment.

Ks = 0.2, µm = 1.0, Y = 0.5, k1 = 2.0,

k2 = 1.0, s0 = 10.0, x(0) = 3.0,

s(0) = 0.9.

We suppose that the upper bound ofKs is known
as Ks0 = 0.5. The design parameters in the adaptive
controller (31) and the adaptive laws (25)-(27) are

γs = 2.0, γµ = 20.0, γk = 2.0

θ̂s(0) = 8.0, θ̂µ(0) = 2.0, θ̂k(0) = 4.0

The dither signal is chosen asd(t) = 2.2−cos(0.5t)−
cos(0.3t).

Figures 1 and 2 present the simulation result of the
adaptive extremum seeking controller. It is shown
from Figure 1 that the production rate reaches a neigh-
borhood of its maximum value 3.77 very quickly. Due
to the injection of the excitation signald(t), the pro-
duction rate keeps oscillating below the optimal point.
This oscillation is necessary to ensure the convergence
to the true parameter values. It is interesting to note
that, in this case, the maximum is reached before the
parameters converge to their true values. This shows
the effectiveness of this technique. The convergence
of the algorithm can be confirmed by inspection of a
simulation performed over a longer time period (i.e.
t = 800), shown in Figure 3.

6. CONCLUSION

We have solved a class of extremum seeking control
problems for continuous stirred tank bioreactors rep-
resented by Monod’s growth model with unknown pa-
rameters. The proposed extremum seeking controller
drives biomass and substrate concentrations to un-
known desired set-points that optimize the production
rate. A persistence of excitation condition is derived
to ensure the convergence of the production rate of the
bioreactor to a neighborhood of its maximum.
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Fig. 1. Production ratey (“—") and its maximumy∗
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Fig. 2. Control inputu(t)
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