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Abstract: Unlike earlier work, this paper identifies parts of the state space where it is
possible to invoke feedback linearization and uses the closed-loop paradigm [8] to
accommodate input constraints while utilizing an extremely efficient online receding
horizon strategy. The key to this development is a partial invariance property that is
derived through the use of linear difference inclusion made possible due to the bilinear
nature of the models considered here. For all other parts of the state space the proposed
algorithm switches to a bilinear controller which is designed to give invariance and
feasibility over low complexity polytopes. Without increasing computational
complexity, the use of bilinear controllers affords extra freedom with which to
maximize the region of attraction. The improvements in terms of this and closed loop
output performance are shown to be very significant.Copyright © 2002 IFAC
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1. INTRODUCTION

I/O feedback linearization (FL) allows linear results
to be grafted into the NL (NL) problem. Hence it
has had some success in NMPC (e.g. Nevistic and
Morari, 1995;Henson and Seborg,1997; Kravariset.
al, 1998) but this was limited because: (i) the penalty
term in the cost is on the actual not the FL input; (ii)
input constraints are not convex; (iii) unstable inverse
dynamics imply instability. Limitation (i) is not
significant because MPC handles constraints
explicitly. Objection (ii) can be partially remedied
through the use of short horizons provided that an
additional stability constraint is added steering the
state to a region which is invariant/feasible under a
known control law. However the design of terminal
control laws that result in large terminal regions is
not trivial and the online computational demands are
high. The difficulty with NMP (NMP)
characteristics prohibits the use of FL; stable/anti-
stable and inner-outer approximations (Doyleet. al,
1992, 1996), or equivalent synthetic outputs (e.g.
Niemec and Kravaris, 2001), or interpolation
(Bloemenet. al, 2001) offer partial remedies.

Here we show that the “closed loop paradigm” in
Kouvaritakis et. al (2000) can be used to reduce
dramatically the online computation and accom-
modate NMP characteristics in certain regions of the
state space. The remainder of the operating region is
covered by an alternative sub-optimal NL controller.
The work focuses on bilinear systems, but extensions
to more general classes are possible through the use
(e.g. Boyd et. al, 1994) of Linear Difference
Inclusion (LDI). For bilinear systems the calculation
of invariant sets is straight-forward and defines

regions, say flX , within which FL provides an

implementable optimal solution. Invariance,
feasibility and optimality are handled as for the linear
case through the use of the “closed loop paradigm”.
It will be shown that flX cannot include points

where there is a change in relative degree nor can it
include the origin for NMP systems. These two
problems are overcome through a switch to an
alternative underlying control law. This law is such
that feasibility/invariance computations are tractable,
yet due to its NL nature it allows for the definition of
much larger regions of attraction. The very
significant benefits in respect of size of region of
attraction as well as output performance are
illustrated by means of simulation studies.

2. LINEAR SYSTEM CLOSED LOOP PARADIGM

In linear MPC, the “closed loop paradigm” allows
for a significant reduction in the on-line computation
at a small cost in terms of sub-optimality
(Kouvaritakis et al, 2000; Boydet. al, 1994). The
key here is that the stability constraint is invoked at
current time (notN steps ahead), and this trivializes
the treatment of uncertainty. The degrees of freedom
are no longer the predicted control moves, but rather
perturbations on an unconstrained optimal law, and
this is combined with the introduction of the vector
of perturbations as states. Thus given a model
(A,B,C) with input constraints |u| u≤ it is possible to
compute the optimal control law (w.r.t. the LQ cost),

Kxu −= , which can be modified as

kkikkik cKxu +−= ++ || to avoid constraint violations.

The prediction dynamics can be written as:
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T is such that kTf has as elements 0,,,, 21 Nccc � .
Then the minimization of the usual MPC cost is

equivalent to that of norm kf subject to input

constraints which is achieved over an infinite horizon
by restricting z to lie within an ellipsoid

}1:{ ≤= zPzzE z
T

z , where zP is chosen such that
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Given (2) it can be shown (e.g. Boydet. al, 1994)
that zE is in-variant and feasible. The minimization

of kf is trivial (Kouvaritakis, et. al 2000) and a
simple scaling technique (Kouvaritakis,et. al 2001)
can be used to effect a further reduction of the cost.

3. FL AND LINEAR DIFFERENCE INCLUSION

It is possible to extend the closed-loop paradigm to
the NL case (Kouvaritakis,et. al, 2001), however the
use of linear feedback results in small invariant
feasible sets and compromises performance. Here we
overcome these difficulties. For simplicity, attention
is restricted to the case of SISO bilinear systems:

uukCxkykukFxBkAxkx ≤=++=+ ,,][1 (3)

with nRx∈ . For such systems the unconstrained

optimum w.r.t. to 	
∞=

++=
,1i

ik
TT

ik QCxCxJ is:

)](/[ kkk FxBCCAxu +−= (4)

for all }0)(:{ =+=Π∉ FxBCxx o . The opti-

mality of (4) follows from (3) according to which
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This may be deemed to be too aggressive and it may
be preferred to force the output to decay as

kkk pCxpyy ==+1 , which can be achieved by
replacingCA in (4) and (5) byC(A-pI).

The law of (10) can be implemented for all ox Π∉ ;

for ox Π∈ one could use (4) with its denominator

set to a small non-zero value. However such a
strategy could lead to infeasibility - (4) will not

necessarily meet the input constraints - and for
unstable inverse dynamics, (4) would drive the
output to zero but would not stabilize the origin. To
deal with feasibility we introduce the closed loop
paradigm according to which (4) is perturbed to give:

)](/[][ kkkk FxBCcCAxu ++−= (6)

which leads to the autonomous augment state matrix
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with PzzzxPxz TTT ≤ΨΨ )()( as the invariance

condition for zE . A convenient (albeit conservative)
way to ensure the invariance condition is to invoke
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For bilinear systems and xEx ∈ , the projection of

zE onto x -space, (8) can be written as a Linear
Matrix Inequality (LMI) in x and (8) can be invoked
over a convex polytope Π simply by considering its

vertices, νnivi ,,1, �= ,. This is similar to Linear

Difference Inclusion (LDI) and will be referred as
LDI-invariance (LDI-I) and Π will be referred to as

an inclusion box. Note that }1:{ ≤= xPxxE x
T

x ,

cxccxcxxx PPPPP 1−−= , with cccxxcxx PPPP ,,,
being the blocks of P corresponding to the partition
of z into x and f . Then the result below applies to

}2,,,1,1:{ nnnixT
ix ≥=≤=Π γγγ � (9)

Theorem 3.1 zE is LDI-I if )( ivα are of the same

sign for all νni ,,1 �= , γ= nj ,,1 � and

11,)(2)(
~

)(
~ ≤γ−γα≤ΨΨ jxPT

jPivivPivT (10)

Proof: For 1−= PS condition (22a) is equivalent to

0
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(11)

where the + sign is used only for 0)( ≥α x .Under

the assumption that )( ivα are sign definite, (10) will

be equivalent to (11) which is affine inx , thereby
ensuring (by superposition), that the LDI-I condition
will hold everywhere in zE provided that Π∈xE , a

condition which is guaranteed by (10b). !
Using the techniques of Boydet. al (1994), we can
ensure feasibility of (6) for all zEz ∈ by requiring:
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which like (10) can be re-written as an LMI inS .

Remark 3.1 Given the LMI nature of (10) and (12),
the maximization of the volume of an zE which is

invariant and feasible under (6) reduces to a convex
optimization problem (e.g. Boyd, et. al, 1994) that
can be solved efficiently using SDP.

However if }0{≠Π∩Πo then )( ivα cannot all
have the same sign and hence LDI-I (and feasibility)
will not hold. Also, if (3) is NMP , then (8) cannot
hold true at the origin, since under (4) the origin is
unstable. Then FL cannot be used over all ofzE . But

it is possible to define a smaller inclusion box,Π̂ ,
with vertices iv̂ for which (10a) gives a Partial LDI-

invariance (PLDI-I). Rather than insist that zk Ez ∈+1

for all zk Ez ∈ , we ask that zk Ez ∈+1 only for

zk Ez ∈ associated with }ˆ{ Π∩=Χ∈ xflk Ex .

Corollary 3.1 }ˆ{ Π∩=Χ xfl E is PLDI-invariant if

(10a) holds true at the vertices of Π̂ rather than Π .

Proof: As for Theorem 3.1 except that (10b) is no

longer needed because by definition Π⊆Χ ˆ
fl .

�

Earlier approaches were either restricted to the case
of minimum phase plant of definite relative degree or
otherwise avoided FL, and instead proposed
approximations (e.g. Doyleet. al, 1992; Doyleet. al,
1996) or the use of “statically equivalent synthetic
outputs” (Niemiec and Kravaris, 2001), or used
interpolation (Bloemen,et. al) between FL and a
“stabilizing” state feedback control,

KxxKu st −== )( . The strategy here is to use FL
whenever possible, and this is achieved through
PLDI-I which enables the use of FL for all flx Χ∈ .

The very significant benefits of this will be
demonstrated in Section 6.

Two problems are outstanding: (i) flΧ may be small;

(ii) even if the initial condition lies in flΧ , there is

no guarantee that it will remain there under (6). A
convenient solution that overcomes these is to switch
to )(xK st for all flx Χ∉ , however that would

compromise performance and/or would result in
small regions of attraction. In the section below we
investigate the design of a NL controller that will be
shown to lead to very much larger regions of
attraction (as illustrated in Section 6). First we
consider briefly the computation ofΠ̂ .

Corollary 3.1 The two hyperplanes defined by
C(I ± A)-1Fx=C(I ± A)-1B divide the x-space into four

sectors of which two exclude oΠ . Π̂ must lie in one
of those two sectors.

Proof: The two hyperplanes of the corollary define
all points for which )(xΦ has at least one eingen-
value equal to 1 or –1; monodromy arguments then
show that everywhere in two of the four sectors
defined by the hyperplanes, at least one eigenvalue of

)(xΦ will be more than one in modulus. These two
sectors include all x that satisfy 0=+ CFxCB

except the point BFx 1−−= . Π̂ cannot lie in those
two sectors because, given the triangular nature of

)(xΨ , it is clear that invariance requires the

eigenvalues of )(xΦ to lie inside the unit circle. �

Corollary 3.1 defines two linear constraints on the

vertices of Π̂ . To complete the computation ofΠ̂ , it
is possible to invoke procedures (Bloemenet. al,
2001) to maximize ofEx subject to invariance and
feasibility. Such procedures were basedKst(x)= -Kx
rather than FL, and did not suffer from the
difficulties of loss of relative degree which now must
be accommodated by generating the LMIs conditions
(11). On account of the sign change of )(xα , the

resulting inclusion boxΠ will not have the LDI-I

property but will contain Π̂ with its associated
PLDI-I property. Corollary 3.1 in conjunction with

Π can be used to complete the construction ofΠ̂ .
The computation of Π (though offline) can be

intensive; one could obtain suitable choices ofΠ̂
through the use of polytopic invariance (see Section
4) for which it is possible to deploy the sequential LP
procedures developed in Cannonet. al(2001).

4. BILINEAR CONTROLLER

The use of LDI requires that Π∈xE , which is
ensured by (10b). This restriction raises questions as
to the wisdom of the use of ellipsoidal sets, and it has
been shown that for bilinear systems (Cannonet. al,
2001), LDI can be deployed to define invariant
polytopes of much larger volume. The definition of
both invariant sets (polytopic/ellipsoidal) were based
on a state feedbackKst(x)=-Kx. It was seen however
in Section 3 that for bilinear systems, LDI can be
applied even when the controller itself is NL , e.g.
(6), provided the NL ity enters as a denominator that
is linear in x . Although (6) itself cannot be used
outside flΧ , one could still use the same form of

controller:

]1/[ xTKxu µ+−= (13)



and still be able to use LDI (in a straightforward
manner). By analogy to the “bilinear transform” this
form of controller will be referred as “bilinear”. For
simplicity of presentation in this section we shall not
resort to the use of perturbationsc .

The class of (13) contains )(xK st and the “synthetic
output FL controller” (Niemiec and Kravaris, 2001)
as special cases and should result in larger regions of
attraction. As explained above the associated
invariant set will be taken to be polytopic, say

}1:{ ≤∞=Π Wxxx , nnRW ×∈ ,

0)det( ≠W , which are invariant iff:

x

KFxB
AxWxxW

Tµ+
+−=Φ≤Φ

∞∞ 1

)(
)(,)( (14)

To reduce online computation, it is not intended that
(13) should be tuned online. Thus and to allow a
handle on performance (14) can be strengthened to:

CxWxxW ε−≤−Φ
∞∞

)( (15)

Invoking this at the different prediction instantsk
and summing overk establishes that the output
converges to zero, the upper bound on the rate of
convergence being controlled by the size ofε . As
with the ellipsoidal sets of Section 3, LDI can be
invoked to get a convenient test for the invariance
and feasibility of xΠ under the control law of (13).

Theorem 4.1 Let T
lw denote the rows of W and iv

denote the vertices of xΠ . Then xΠ is invariant
and feasible under the dynamics of (3) and the
control law of (13) if for all vji ,,1, �= , nl ,,1 �=

KFxBAxx

Cvvvvw

T

ji
T

ji
T
l

)()1()(
~
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~

+−+=Φ

≤++Φ

µ

µε
(16)

01,)1( >µ+µ+≤ ivTuivT
iKv (17-18)

Proof: For xx Π∈ (18) implies that 01 ≥+ xTµ and

(15) is equivalent to 1)( ≤+Φ CxxxwT
l ε or

xTCxxTxxT
lw µ+≤µ+ε+Φ 1||)1(|)(

~
| (upon

pre-multiplication by xTµ+1 ) which through LDI

can be made to hold everywhere inxΠ by invoking

(16). Similarly, pre-multiplying (2) written for the

law of (13) by xTµ+1 we get uxKx T )1( µ+≤
which is affine in x and will hold everywhere in xΠ
if and only if condition (17) of the theorem is
satisfied.

�

Remark 4.1 The test of the theorem is convenient
because for fixed xΠ , conditions (15-18) are linear

or affine in K , µ . Also unlike ellipsoids xE which
are constrained to lie within an inclusion polytope,
Π , for polytopic sets the inclusion polytope Π can
be coincidental with the invariant polytope xΠ . To

maximize the volume of xΠ or increase the value of

ε , one has to resort to NL constrained optimisation
(which of course could be performed offline).
Alternatively fixing µ one can deploy the sequential

LP approach to the problem proposed in (Cannonet.
al, 2001). It is noted that the direction of the
inequality in (18) is stated without loss of generality,
because a reversal in this direction could be
absorbed in the sign of K . Finally it is also noted
that Theorem 4.1 can be used to generate suitable

choices for Π and Π̂ of Section 3: simply substitute
TK µ, by )/(),/( CBCFCBCA .

5. MPC switching strategy

Earlier work (Bloemenet. al, 2001) showed that it is
possible to combine the aggressive unconstrained
optimal law of (4) with a cautious law,

KxxK st −=)( , which stabilizes the origin and leads
to invariance/feasibility in an ellipsoidal
neighbourhood of the origin. This neigh-bourhood
however can be small and can be enlarged through
the use of polytopic sets (Cannonet. al, 2001). It will
be seen below that such polytopes can be made
considerably bigger through the use of the bilinear
controller of (13) in place of )(xKst . An attractive
feature of the earlier work( Bloemenet. al 2001) is
that it involves a single degree of freedom and thus
trivializes online computation. The use of a single
variable however can result in sub-optimality and the
proposal here is to overcome this by switching
between the perturbed unconstrained optimal law of
(6) and the bilinear law of (13). The idea is that
through (6) one can introduceν extra degrees of
freedom to get a far better handle on performance. Of
course (6) can only be used for flx Χ∈ , but by

switching to (13) it is possible to cater for all
}{ flxx Χ−Π∈ .

Algorithm 5.1
Step 0 (offline) Design µ,K so that xΠ is invariant

/feasible under (13) for a givenε . ComputeP such
that flΧ is PLDI-I and scaleP so that xxE Π⊆ .

Step 1 (feedback linearization) Use the procedure of

Kouvaritakis,et. al (2000) to minimize kf subject

to zk Ez ∈ . If the solution satisfies the convergence

constraint (15) and if either flkkx Χ∈+ |1 or flkx Χ∈



implement the first element of kf as per (6),

incrementk and at the next time instant repeat Step
1; otherwise goto step 2.
Step 2 (bilinear control) Implement (13), increment
k and at the next time instant go to Step 1.

Theorem 5.1 For any xx Π∈0 , under Algorithm 5.1

the state of (3) will remain bounded and within xΠ ,

while the output will converge to zero.

Proof: Since flΧ is PLID-I we have that Step 1 will

retain the nextx in xxE Π⊂ , whereas Step 2 will

retain x in xΠ . Thus x will remain bounded. With
respect to the output we have that if Algorithm 5.1
remains in Step 1 only, then by the “closed loop
paradigm”, it is known that the vector of pertur-
bations will decrease monotonically, so that Step 1
will, at some future instant, revert to the uncon-
strained optimal of (4) and from then on will
maintain the output at zero irrespective of whether
the state converges to the origin (or any other
equilibrium point) or not. On the other hand if Step 2
is entered andx remains outside flΧ , then by (15)

we have that the output will converge to zero. Finally
invoking (15) in Step 1 implies that the same
conclusion could be drawn even in the case when
Algorithm 5.1 switches between Steps 1 and 2.

�
Corollary 5.1 For AI − full rank and under Step 1,
system (3) has one equilibrium point at the origin
and up to 1−n equilibrium points given by

ii
T

T

iiii
MFAIB

BB
ssMx

γλ
γλ

)(
,)(*

−−
== (19)

where ),( ii γλ are the 1−n solution pairs of

0])([ =−− γλ MAINNFM (a generalized eigen

equation) and MN , are full rank matrix repre-
sentations of the left and right annihilators of B, C.

Proof: After algebraic manipulation it can be shown
that the equilibrium condition )(xx Φ= implies

)](/[),(1)(

0][

FxBCCATbFxBAIa

xTabI

+=+−−=
=+

(20)

which implies that axabT λ=−= ,1 for a scalarλ .

This in turn (after further manipulation) implies

γλγγ FMBMAIMAIFxB +=−−=+ )(,)( (21)

Pre-multiplication of (21a) byN and TB gives two
conditions; one being the eigen-condition of the

theorem and the other BBMFAIB TT =−− γλ ][ .

Thus ),( γλ is a generalized eigen-pair and the

eigenvector must be scaled by the factoris defined

in (19b); (19a) follows from (20) and (21a). Note that
0=is iff 0)( =−− MAI iλ , but then (21b) will not

hold and such ani will not lead to equilibrium. �
Remark 5.1 The corollary implies that if x remains
in flΧ , then Algorithm 5.1 can converge to a point

*
ix which is not the origin. This will only be possible

if )/()( **
ii CFxCBCAFxBA ++− has all eigenvalues

inside the unit circle. This applies to both minimum
and NMP systems, but in the latter case, equilibrium
at the origin will not be stable.

Remark 5.2 The bilinear law of (13) can be thought
off as a back up for (4) in the sense that whenever (4)
runs into invariance/ feasibility problems (due to
NMP characteristics or loss of relative degree, or
due to release from initial conditions outside flΧ ),

then Algorithm 5.1 switches over to the bilinear
control law. With this in mind and in the interest of
maximizing the volume of flΧ , it is in fact possible to

define PLDI-I without condition (12); however under
such circumstances it would be necessary to check
the feasibility of (13) with the view to switching to
Step 2 whenever (13) violates constraints.

6. Illustrative example

For the purposes of comparison we select the same
example from Bloemenet. a(2001) for which:

��
����

−
=��

����=��
����

−−
−

=
65.041.0

36.034.0

62.1

71.0

59.078.0

78.028.0
FBA

[ ] [ ]2.069.,86.069.0,or 2121 −=−=== CCCCCC

which is open loop unstable and minimum phase for

1C but NMP (with a zero at 2.3) for 2C ; the two

choices of C will be referred to as SZD/ UZD
(Stable/Unstable Zero Dynamics). Throughout

4=ν , 01.0=ε and the choice ofP was based on

the box Π of [7] with [ ] 3/1 FT
n ==Γ γγ � in

conjunction with Corollary 3.1. The simulation
results for different initial conditions are shown in
Figures 1 (UZD) and 2 (SZD). xE as required by
Algorithm 5.1 have been scaled so as to fit inside the

bilinear controller inclusion boxes, xΠ . The dashed

lines that are nearly aligned with the major axes of

xE indicate the kernel ofC , whereas the other

dashed lines give plots of oΠ . The remaining two
lines on the figures correspond to the “hyperplanes”
of Corollary 3.1. Of these the ones associated with
the –1 eigenvalue of )(xΦ are inactive in that they

do not intersect xE whereas the lines associated with



+1 divide xE into two parts of which the top/bottom

corresponds to flΧ for the UZD/SZD case. The

instantaneous positions of the state vectors on the
various trajectories are marked with a cross or a
circle depending on whether at those points
Algorithm 5.1 uses Step 1 or 2, respectively. Not
unreasonably, the algorithm resorted to the use of the
bilinear controller for xEx ∉ and indeed for almost

all flx Χ∉ . Conversely, for all thex that belong to

flΧ , the algorithm has deployed FL resulting in a

closed loop cost (the sum of the squares of the
output), which is considerably better than of either of
the two interpolation schemes (here referred to as
Interpolation A and B) proposed in [7]:

Table 1 Comparison of closed loop costs
Initial condition Int. A Int. B Al. 5.1
[ ]7.15.0 - SZD 0.4124 0.6643 0.1173

[ ]8.05.0− - SZD 0.0321 0.0592 0.0022

[ ]7.15.0 - UZD 0.3717 0.2866 0.0051

[ ]8.05.0− - UZD 0.0910 0.0981 0.0606

It is noted that as per Remark 5.1 it is possible that
the algorithm drives the state to non-zero equilibrium
points (while retaining the output at zero); this was
the case for the initial condition [ ]2.08.0=ox for

which x tends asymptotically to[ ]028.0 .

Figure 1: Closed loop trajectories of the SZD plant.

Figure 2: Closed loop trajectories of the UZD.

The algorithm provide very significant reductions in
cost but it also enjoys much larger regions of
attraction due to the use of: (i) the polytopic setsxΠ
which result in sets of larger volume (than that

possible for ellipsoids); (ii) the bilinear controller of
(13). The benefits afforded by the bilinear controller

are considerable: the area of largest xΠ is 18.12

(SZD) and 18.23 (UZD) whereas that of the largest
possible KxΠ , is 10.28 (SZD) and 11.32 (UZD).
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