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Abstract: Glucose–insulin interactions in the Type I diabetic patient are approximated in
an input–output sense using a third–order Volterra series model. Due to the large number
of unique coefficients present in a third–order model, efficient parameter identification
methods are developed. Several pruned model structures were examined, and maximum
dynamic accuracy was obtained when a linear plus nonlinear diagonal model was employed.
Increased steady state accuracy could be obtained by including semi–diagonal and off–
diagonal coefficients; however, this increase in static accuracy came at a cost of decreased
dynamic accuracy. Furthermore, calculation of semi-diagonal and off-diagonal coefficients
requires data acquisition times infeasible for clinical applications. Hence, the linear plus
nonlinear diagonal Volterra series model is a well–suited structure for approximating Type
I diabetic patient glucose–insulin dynamics using input–output methods.
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1. INTRODUCTION

Type I diabetes mellitus is a chronic condition char-
acterized by the body’s destruction of its own pan-
creatic β–cells and the resulting loss of endogenous
insulin production. This inability to secrete insulin
leads to glucose concentration deviations from nor-
moglycemia (defined as 70-120 mg/dL) with blood
glucose concentrations typically reaching into the hy-
perglycemic range (>120 mg/dL). Extended elevated
glucose concentrations are reported to contribute to
long-term health problems such as poor circulation
and retinopathy based on the findings of the Diabetes
Control and Complications Trial Research Group
(DCCT) (1993; 1996). Hypoglycemia (<60 mg/dL)
results from an over-delivery of insulin to the diabetic
patient and can lead to coma or death. As a re-
sult, blood glucose concentrations must be maintained
within a stringent set of physiological limits.

Current treatment of Type I diabetes involves the use
of inhalers, direct injections, or continuous infusion
pumps. However, these methods rely on patient com-
pliance to effectively regulate blood glucose levels.
The patient must adjust doses prior to meals, exer-
cise, or sleep to maintain blood glucose levels within
the normoglycemic range. An inaccurate estimate or
missed insulin dose could lead to complications as
described above (DCCT - The Diabetes Control and
Complications Trial Research Group, 1993). An alter-
native to patient self–care is a closed-loop system that
uses periodic samples of blood glucose to establish an
insulin dose, thereby eliminating the patient from the
control loop.

A closed–loop glucose control device would consist
of three primary components: (i) an insulin delivery
pump; (ii) a glucose sensor; and (iii) a mathemati-
cal algorithm to regulate insulin delivery based on
glucose concentration measurements (Parker et al.,
1999). This study focuses on diabetic patient model
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development, the initial step in the development of a
model–based glucose control algorithm. The follow-
ing sections describe the systematic construction of
an empirical relationship between insulin infusion rate
and glucose concentration using a control–relevant
data–driven model structure.

2. THIRD–ORDER VOLTERRA MODELING

The general Volterra series model has the form:

ŷ(k) = y0 +
N

∑
i=1

M

∑
j1=1

. . .
M

∑
jN=1

hi( j1, . . . , jN)×

u(k− j1) . . .u(k− jN) (1)

This is a single–input single–output discrete–time
model that can approximate fading–memory nonlin-
ear systems (Boyd and Chua, 1985). The output of
a fading memory system is affected by past input
changes over some model memory, M, such that inputs
occurring beyond the memory of the model no longer
affect the output significantly. A truncated Volterra
series model is constructed by selecting the order, N,
of the desired model. Using only insulin inputs and the
corresponding glucose measurements, an understand-
ing of the empirical relationship between insulin infu-
sion and glucose concentration can be identified and
consequently utilized for regulating glucose levels.
From the general Volterra series model in equation (1),
a third–order structure can be decomposed as :

y(k) = h0 +
�

(k)+ � 2(k)+ � 2(k)

+ � 3(k)+ � 3(k)+ � 3(k) (2)

�
(k) =

M

∑
i=1

h1(i)u(k− i),

� 2(k) =
M

∑
i=1

h2(i, i)u
2(k− i),

� 2(k) = 2
M

∑
i=1

i−1

∑
j=1

h2(i, j)u(k− i)u(k− j),

� 3(k) =
M

∑
i=1

h3(i, i, i)u
3(k− i),

� 3(k) =
M

∑
i=1

M

∑
j=1

h3(i, j, j)u(k− i)u2(k− j)

� 3(k) =
M

∑
i=1

M

∑
j 6=i

M

∑
p6= j 6=i

h3(i, j, p)×

u(k− i)u(k− j)u(k− p)

In the above partitioning,
�

represents the linear
terms, � n denote the nonlinear diagonal terms of order
n, � 3 are the third–order semidiagonal terms, and � n

are the off–diagonal terms of order n. Without loss
of generality, the coefficients of the above equations
(hi) are assumed to be symmetric. Furthermore, the
variables y(k) and u(k) are in scaled deviation form.

In developing a model of this form for the diabetic pa-
tient, the sampling rate (Ts) and model memory must
be determined. For the present study, the memory
and sampling rate were calculated so that a model of
memory M at sampling rate Ts would capture ≈ 99%
of the patient step response.

The Volterra series is a highly parameterized structure,
so significant quantities of data are required for accu-
rate coefficient identification. However, tailored input
sequences can be employed to efficiently identify
subsets of coefficients within the model. Input se-
quence properties for focused coefficient identification
are developed based on the prediction error variance
expression (Heemstra, 1996):
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where

δ1(i) = h1(i)− ĥ1(i)

δ2(i, j) = h2(i, j)− ĥ2(i, j)

δ3(i, j, p) = h3(i, j, p)− ĥ3(i, j, p)

Here, σ 2
0 was the prediction error variance obtained

in the absence of parameter estimation errors, and κ
was the kurtosis of the input sequence. The variables,
δi are the deviations between the actual and estimated
model coefficients. Input sequences can be developed
with particular moment and kurtosis properties that
excite certain terms while yielding minimal or zero
excitation of other model contributions. This method
not only ensures more accurate coefficient identifica-
tion (Parker et al., 2001), but also allows for a possible
reduction in the number of coefficients calculated if
pruned model structures are employed.

3. LINEAR/DIAGONAL IDENTIFICATION

The least complicated nonlinear extension of a linear
time series model is to include the nonlinear diagonal
terms. There are several motivations for this choice.
First, calculating only these terms significantly re-
duces the overall number of coefficients that require
estimation. Second, tailored identification sequences
can be developed for targeted identification of lin-
ear and nonlinear diagonal coefficients, and these



sequences will require less data than traditional cross–
correlation identification techniques. Third, all other
coefficient calculations have contributions from the
linear and/or nonlinear diagonal terms. Calculating
these coefficients when there are no other confounding
contributions allows for more accurate estimates for
all model coefficients.

To properly excite a third–order Volterra model, the
input sequence must have at least four discrete levels
(Nowak and Van Veen, 1994). For the purposes of
nonlinear diagonal identification a deterministic 5–
level sequence is employed. This can be interpreted
as a special case of a continuous switching–pace sym-
metric random sequence having the following form:

u(k) =















































γ1 k = 0
0 1 ≤ k ≤ M

−γ1 k = M +1
0 M +2 ≤ k ≤ 2M +1
γ2 k = 2M +2
0 2M +3 ≤ k ≤ 3M +2

−γ2 k = 3M +3
0 3M +4 ≤ k ≤ 4M +3

(4)

This sequence of 4M + 4 points will accurately iden-
tify 3M + 1 coefficients (linear, second– and third–
order diagonal, plus the bias, h0). The spacing of
M steps between pulses ensures that only linear and
nonlinear diagonal terms are excited by the input
sequence. Since only one input over the past horizon
M has non–zero value at any time, the contribution of
the semi– and off–diagonal terms to the output will be
zero by definition.

Pulse order and magnitude play a significant role in
the resulting model quality. The levels in this sequence
represent scaled deviations from the nominal input
value, and obey |γ1| < |γ2|. The magnitude choice
guarantees that larger output deviations resulting from
the larger pulses do not interfere with the smaller
pulse responses. The initial two pulses in equation (4)
primarily serve to excite the linear dynamics, and are
also used in the identification of the third–order di-
agonal coefficients. The larger insulin delivery pulses
stimulate nonlinear behaviors, and are explicitly used
to estimate the second– and third–order diagonal
coefficients. The decision to construct the second–
order diagonal estimator using only the larger pulse
series is a result of poor dynamic and steady state
accuracy of the resulting model when the second–
order coefficients were identified using the full 4–
pulse sequence.

Coefficient estimators for hi were constructed that
minimize the prediction error:

J =
4M+3

∑
k=0

e2(k) =
4M+3

∑
k=0

[y(k)− ŷ(k)] (5)

Estimators are calculated by taking ∂ J
∂ hn

= 0 for n =
0,1,2,3. Estimators for the bias term and second–

order coefficients are solved for simultaneously and
are similar to those used by Parker et al. (2001), but
with a shift because the second pair of pulses are the
only ones used for second–order identification:

ĥ0 =
y(0)+ y(M +1)

4

+
y(2M +2)+ y(3M+3)

4
(6)

ĥ2(k,k) =
(y(k +2M +2)− y(2M+2))

2γ2
2

+
(y(k +3M +3)− y(3M+3))

2γ2
2

(7)

Likewise, the equations for ∂ J
∂ h1(k) = 0 and ∂ J

∂ h3(k,k,k)
=

0 can be solved simultaneously to yield the estimators:

ĥ1(k) =
γ3

2 (y(k)− y(k +M +1))

2γ1γ2(γ2
2 − γ2

1 )

−
γ3

1 (y(k +2M +2)− y(k +3M+3))

2γ1γ2(γ2
2 − γ2

1 )
(8)

ĥ3(k,k,k) =
γ2(y(k)− y(k +M +1))

2γ1γ2(γ2
2 − γ2

1 )

−
γ1(y(k +2M +2)− y(k +3M+3))

2γ1γ2(γ2
2 − γ2

1 )
(9)

Note that the h1 estimator from (Parker et al., 2001)
has changed to include a correction term as a result
of using the third–order Volterra model structure. In
the noise–free case, the estimators in equations (6)
through (9) provide excellent coefficient identifica-
tion. To eliminate the effects of measurement noise,
the input sequence would have to be repeated and
the coefficient estimates averaged over the number of
pulse repetitions, as in (Parker et al., 2001).

4. DIABETIC PATIENT CASE STUDY

The goal of the current work is to approximate diabetic
patient glucose–insulin dynamics in an input–output
sense using a Volterra series model. The physiological
model in Parker et al. (2000) was treated as the “real”
patient and was therefore used as a data generator.
The steady state locus of the diabetic patient model
is shown in Figure 1. This system is linear in a local
region of the nominal state (ys ≈ 81,us ≈ 22), but
the hyperglycemic and hypoglycemic regions display
deviations from linear behavior. To account for this
nonlinearity, and because the steady state curve re-
sembles that of a third–order polynomial, a third–
order nonlinear model was chosen for describing the
insulin/glucose relationship. This empirical method
requires minimal physical knowledge of the patient
for model identification. A further advantage is the
individualizability of the approach, as new parameter
values would be identified for each patient. These
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Fig. 1. Steady state locus for the diabetic patient.
Nonlinear patient model (dashed), linear model
(solid).

patient–specific models would further tailor the re-
sulting control algorithm employed in a closed–loop
device. A further advantage of employing Volterra
series models is the relative ease with which a stan-
dard recursive least–squares algorithm can update the
model to match time–varying patient dynamics.

4.1 Linear/Diagonal Identification

Prior to model identification, memory and sampling
rate were determined. Upper bounds on both parame-
ters (M ≤ 40,Ts ≤ 10 min) were imposed by numerical
sensitivity of the parameter identification problem and
closed–loop controller performance (based on author
experience), respectively. Within these constraints, a
sampling rate of 10 minutes and a memory length
of 40 provided accurate model approximation. A 5–
level sequence is adequate for the identification of
linear, second–, and third–order diagonal coefficients.
However, the placement of the symmetric pulses in
equation (4) must be addressed.

While the output achieves 99% recovery after each
pulse input, the 1% remaining from the larger pulse
magnitudes has a magnitude equivalent to 5% to 10%
of the small pulse magnitude output response. As
such, the ordering of large pulses followed by small
pulses resulted in models having decreased predictive
accuracy. Hence, the 5–level quad–pulse sequence
was implemented with small magnitude pulses fol-
lowed by the larger pulses, as shown in Figure 2. The
mathematical representation is given in equation (4),
where γ2 = 7γ1 = 22.3 mU/min. The spacing of M
steps (400 minutes) between pulses ensures that only
linear and nonlinear diagonals terms are excited by the
input sequence. By limiting the identification to linear
plus nonlinear diagonal terms a reduction is achieved
in the number of unique unknown coefficients from
12,341 to 121 (for M = 40), a > 99% reduction.
The total input sequence (on–line) time for accurate
linear/diagonal coefficient calculation using the above
estimators is 1630 minutes.
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Fig. 2. Input sequence (top) and output response
(bottom) for linear plus nonlinear diagonal coef-
ficient identification.

4.2 Less Complicated Model Structures

Linear Model: Linear model identification used the 3–
level binary pulse sequence from (Parker et al., 2001),
with χ = γ2 = 22.3 mU/min. The time required for
identification was 810 minutes (≈ 1

2 that required for
linear plus second– and third–order diagonal terms).
The performance of this model, shown in Figures 3
and 4, is worse than the nonlinear model in both
dynamic (517% worse) and steady state (10% worse)
accuracy using sum–squared error (SSE) as the error
metric. A controller designed using a linear model
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Fig. 3. Dynamic comparison versus a less complicated
model. Actual patient (solid), linear plus second–
and third–order diagonal model (dashed; nearly
overlays solid), and linear model (dash–dot).

would suffer performance penalties due to the de-
creased dynamic accuracy.

Linear plus second–order diagonal: This model iden-
tification used the same sequence as for the lin-
ear model alone. When compared to the linear plus
second– and third–order diagonal model, a loss of
dynamic (37% worse) and steady state (7% worse)
accuracy was observed based on SSE. Furthermore,
the diabetic patient steady state locus does not pos-
sess input multiplicity, a qualitative characteristic of
second–order polynomial models. As a result, the
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Fig. 4. Steady state comparison versus a less com-
plicated model. Actual patient (solid), linear
plus second– and third–order diagonal model
(dashed), and linear model (dash–dot).

linear plus second-order diagonal structure is not a
viable option for modeling the diabetic patient.

Linear and third–order diagonal: This model requires
at least a 4–level input sequence, so the sequence from
the top panel of Figure 2 was used. The resulting
predictive accuracy of the model was significantly
worse in both dynamic (462% worse) and steady
state (57% worse) cases based on SSE. This error
is primarily associated with the asymmetry observed
in the actual patient glucose–insulin interaction that
this model structure was unable to capture. Hence, the
linear plus second– and third–order diagonal model
is the least complex structure that adequately predicts
glucose concentration as a function of insulin delivery
rate.

4.3 More Complicated Model Structures

Nonlinear diagonal (linear plus nonlinear diagonal
terms) plus third–order off–diagonal: Off–diagonal
coefficients ( � 2, � 3) can be calculated via cross–
correlation using a random binary sequence (Pearson
et al., 1996), given by:

u(k) =

{

γ2 0 ≤ p < 0.5
−γ2 0.5 ≤ p < 1

(10)

The random variable p takes values between zero
and one, meaning that at each sample time the input
either stays at its current value, or changes sign. A
portion of this input sequence is shown in the top
panel of Figure 5. Given the 9880 unique third–order
off–diagonal coefficients, the input sequence would
be at least 98,800 minutes, or ≈ 69 days, long at a
ratio of one data point per coefficient. This is clearly
infeasible in a clinical setting. As a computational
exercise, this model was evaluated using dynamic and
steady state SSE as an error metric. Figure 6 shows
the significant improvement in steady state prediction
(90% better), but the dynamic accuracy important in
closed–loop model–based control was 77% worse as
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Fig. 5. First 200 samples for the second– and third–
order off–diagonal (top) and third–order semi–
diagonal (bottom) input sequences.

shown in Figure 7. Overall, the dynamic performance
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Fig. 6. Steady state comparison versus a more com-
plicated model. Actual patient (solid), linear
plus second– and third–order diagonal model
(dashed), and nonlinear diagonal plus third–order
off–diagonal model (dash–dot).
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Fig. 7. Steady state comparison versus less com-
plicated models. Actual patient (solid), linear
plus second– and third–order diagonal model
(dashed), and nonlinear diagonal plus third–order
off–diagonal model (dash–dot).

and extended identification time required make this
model unacceptable for the diabetic patient problem.



Nonlinear diagonal plus second– and third–order off–
diagonal coefficients: The second–order off–diagonal
coefficients can be identified using cross–correlation
and a random binary input sequence as well. While
the steady state accuracy was better than the nonlinear
diagonal model (by 53%), this model is inferior to us-
ing the third–order off–diagonal coefficients alone. In
addition, the dynamic predictive accuracy decreased
by 273%. The extended identification time required
above is still a significant issue in this case. Hence,
this model is a poor choice for modeling this diabetic
patient.

Nonlinear diagonal plus third–order semi–diagonal
coefficients: An input sequence of at least four levels
is required to identify the semi–diagonal coefficients
( � 3). The current work used a 5–level input sequence
having the following probability distribution:

u(k) =























γ2 0 ≤ p < 0.01
γ2/56 0.01 ≤ p < 0.14

0 0.14 ≤ p ≤ 0.86
−γ2/56 0.86 < p ≤ 0.99
−γ2 0.99 < p ≤ 1.0

(11)

A portion of this input sequence is shown in the
bottom panel of Figure 5. While the steady state
accuracy of this model was the best of all models
considered (92% better), the dynamic performance
was still inferior to the nonlinear diagonal model
by 146%. Furthermore, to identify the 1560 unique
coefficients requires at least 15,600 min (≈ 11 days)
of on–line time at one data point per coefficient,
which is clinically unacceptable. Again, the increased
complexity requiring significant data acquisition time
is not adequate for patient modeling.

5. CONCLUSIONS

This paper presents an identification algorithm for
third–order Volterra series models. Using tailored in-
put sequences, specific coefficient contributions were
excited and identified from diabetic patient data. A
5–level sequence with M points between each pulse
was used to identify the linear and nonlinear diagonal
terms. The order of input pulses significantly affected
the predictive accuracy of the resulting model, such
that the small magnitude pulse pair must precede
the larger magnitude pulse pair. Partitioning the data
acquisition over two days, as would be necessary
in an actual hospital setting, did not significantly
effect model accuracy (results omitted due to space
constraints).

The nonlinear diagonal model was clearly demon-
strated to be superior to all Volterra series alternatives
for a variety of reasons. Based on a sum–squared
error metric, models of lesser and greater complex-
ity routinely demonstrated performance losses in dy-
namic accuracy. Steady state model approximations

improved (in general) as more contributions were in-
cluded, but often at the cost of dynamic performance.
Even for those processes where steady state approxi-
mation accuracy improved, it was often achieved using
input sequences that are clinically irrelevant in terms
of the required amount of data (up to 69 days). For
these reasons, a Volterra series model composed of
linear plus nonlinear diagonal contributions offers the
best trade–off in terms of: (i) model complexity, (ii)
predictive accuracy, and (iii) in–hospital patient time.
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