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Abstract: This paper describes a neural network based approach for flight control 
design of commercial aircraft. A neural flight control system is used to actuate the 
gains of a linear controller for gain scheduling purposes without any explicit system 
identification. The neural network system uses reference models to specify desired 
handling qualities. Simulation results demonstrate the good tracking performance of 
the proposed control approach and the learning capability of the proposed neural 
network controller by showing rapid convergence of the network weights. Copyright 
© 2002 IFAC 
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1. INTRODUCTION 

 
Over the last decades, a wide variety of control 
approaches have been used to achieve desired 
maneuvers (Honeywell, 1996).  Avionics field has 
consequently evolved remarkably from basic 
electrical systems to highly advanced engines. With 
the advent of fly-by-wire flight control technology, it 
is now possible to shape the handling qualities of an 
aircraft to desired specifications. However, while this 
approach has proven to be successful, the 
development process is generally very expensive and 
often results in aircraft specific implementations. 
 
In this paper, a flight control system based on 
artificial neural networks is proposed. Artificial 
neural networks are characterized by their learning 
capability. The learning process consists in adjusting 
connection weights between neurons (interconnected 
processing units) according to some criteria that the 
network should satisfy. Once the learning phase is 
completed the network is able to map the input-
output relationship without any information about the 
system internal structure. It has been proven that a 
two-layer feedforward neural network is able to 
approximate any continuous function (Cybenko, 
1989).  
 
The neural network proposed approach for flight 
control design realizes two main objectives. First, a 
multilayer neural network is used to optimize the 
gains of a linear controller. This network allows the 
gains of a linear controller to adapt according to the 
nominal configuration of the controlled system. In 
order to reduce the learning time, which can be very 

long, the Uniform Design method (Fang, 1994) has 
been adopted.  This method aims to reduce the 
learning space while conserving its characteristics. 
Second, while the system is always confronted to 
disturbance and thus its configuration may be 
affected, a self-organizing map (Kohonen, 1987) 
based controller is used to compensate for errors and 
adapt the linear controller gains to these changes. 
Thus, desired handling qualities can be achieved 
across flight conditions and for different aircraft 
configurations. Simulation evaluations have been 
performed on several aircraft configurations to 
ensure the accuracy of the proposed approach.  
  
This paper is organized as follows. A brief 
description of the handling qualities concept and the 
flight control system is provided. Then the neural 
network based flight control architecture is proposed. 
A description of the neural network design, including 
the learning and testing phases and the reduction of 
the learning space is detailed. For validation purpose, 
a simulation example is considered followed by some 
conclusions about the proposed approach. 
 
 

2. HANDLING QUALITIES 
 
Handling or flying qualities defined by Cooper and 
Harper (1969) are “those qualities or characteristics 
of an aircraft that govern the ease and precision with 
which a pilot is able to perform tasks required in 
support of an aircraft role”. They are expressed in a 
combination of time-domain and frequency-domain 
constraints on the aircraft dynamic behavior. The 
handling quality criteria considered in this paper are 
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pitch attitude bandwidth ω BW, phase delay pτ ,  
short period mode damping ratio spξ  and Gibson 
DropBack DB. The fixed boundaries about these 
criteria are given by MIL-STD-1797A (1990).   
Table (1) summarizes the boundaries of the handling 
qualities used in our design. 
 
Table 1. Handling qualities boundaries 

Handling Qualities Boundaries 
Attitude Bandwidth 

ω BW 
> 1.5 (rad. / sec.) 

Phase Delay pτ  < 0.2 (sec) 
Short Period Mode 
Damping Ratio spξ  

0.35 < spξ  < 1.35 

Gibson Dropback DB - 0.2 < DB/qss < 0.5 
(sec) 

 
 

3. FLIGHT CONTROL SYSTEM DESIGN 
 
This paper is interested in the longitudinal pitch 
response (figure 1).  
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Fig. 1. Closed-Loop Flight Control System 
 
The design of this flight control system consists of 
finding the appropriate gains for the linear controller 
such that the handling qualities can be satisfied. 
Obviously, this design can be modeled as parametric 
optimization problem. 
 
 
3.1. Linear controller gains optimization    
 
The general formulation of optimization problems is 
given by  
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with 

nR  n-dimensional Euclidean space; 
f objective function; 
x vector of n design variables; 
g vector of p inequality constraints; 
h vector of q equality constraints; and 
xl, xu lower and upper bounds  

of design variables 

The design variables and the constraints form the 
feasible space 
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which describes the design freedom. 
 
If only one objective function )x(f  is taken into 
account, the problem is called scalar optimization. If 
several objectives are considered simultaneously, a 
vector or multiple objective optimization problem 
exists. In this case, the formulation (1) changes to 
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where ( ))x(,),x(),x()x( 21 kfffF K=  is now a vector 
of k objective functions. A multiple objective 
optimization problem can be solved by means of a 
substitute scalar optimization problem.  
 
A standard technique for multiple objective 
optimization problem is to minimize a positively 
weighted sum of the objectives, that is,  
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In this study, a performance evaluation function is 
assigned to each handling quality criterion. This 
results in an unconstrained optimization problem. 
Since the system configuration changes each time the 
flight conditions are modified and a certain number 
of different flight configurations are considered, the 
unconstrained optimization should be done for all 
these different cases. In other words, a set of gains 
should be determined for each different system 
configuration. However, the use of a classical 
optimization routine requires a considerable amount 
of time. In order to reduce this optimization time a 
neural network based approach is proposed. The idea 
is to design a multilayer neural network for the 
approximation of the inverse optimization function. 
Then, to use this network to determine the optimal 
set of gains corresponding to the minimum of this 
function.  Since the optimization problem is reduced 
to function approximation, a two-layer feedforward 
neural network is considered (figure 2).      
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Fig. 2. Multilayer neural network 



 

     

 
 
A schematic representation of a two-layer neural 
network is shown in figure (2).  The basic 
mathematical expression representing the network is 
given by: 
         

    )]),),(([([)](()( 12 bbkuWWkuNky ΓΓ==     (5) 
 
where W1 and W2 are )]1([ 12 +× mm  and )( 2mn×  
weight matrices, u(k) and  y(k) are m1 input and n 
output discrete vectors, and b is a bias term always 
equal to one.  The nonlinear sigmoid function 

)]1/()1[()( xx eeX −− +−=Γ  is applied to each element 
of the vector X.   Usually the learning stops when the 
weight matrices become stable. This is done by 
minimizing the quadratic error between the measured 
output y(k) and the desired output yd(k) for a given 
input u(k). In other words, the weight matrices are 
obtained by minimizing the function: 
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where n is the number of outputs nodes and L is the 
number of samples. To achieve the minimization, 
gradient methods of backpropagation errors are 
generally applied. Steepest descent method with a 
fixed step (Hertz, 1991) or Quasi-Newton (Fletcher, 
1987) method can be used to solve (6). Using Quasi-
Newton, the updating matrices are given by: 
 
                )()()()1( kkHkWkW ∇−=+ η                (7) 
 
where )(k∇ is the gradient, η  is the learning 
coefficient adjusted at each iteration (Fletcher, 1987) 
and H(k) is the estimation of the inverse Hessian 
matrix. Convergence is achieved only if H(k) remains 
symmetric and positive definite.  
 
At k = 0, the matrix H(0) is usually fixed equal to the 
identity matrix. In this case, the first iteration is a 
classic steepest descent minimization. In general, the 
learning algorithms with a variable step converge 
more rapidly than the methods with a fixed step. 
However, the implementation in real time of variable 
step algorithm is difficult. In this study, the learning 
is realized off-line and the Brayden-Fletcher-
Goldfarb-Shanno algorithm is used to accelerate the 
convergence process. 
 
Since there is no explicit information about the 
location of the optimal solution for our 
multiobjective optimization problem, a considerable 
amount of learning data is needed to perform the 
training of the network. To reduce the optimization 
solution space, preliminary simulation of the 
multiobjective function is performed (see figure 3). 
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Fig. 3. First two dimensions of the solution space 
 
The above figure shows the first two dimensions of 
the solution space in the case of our example 
(detailed in section 4). This simulation method shows 
that the optimization solution space may be reduced 
to the following:    
 
Table 2. Example of solution space reduction 

Linear Controller Gains Interval 
Gain 1(Kff) 0  <  Kff < 5    
Gain 2 Ki 0 < Ki < 2 

Gain 3 (Kprop) 0 < Kprop  <  2 
Gain 4 (Knz) 0 < Knz  <  8 
Gain 5 (Kfb) 0 < Kfb  <  1 

 
The solution space proposed in Table 2 is still large. 
This results in a considerable amount of data and 
consequently a long time of simulation to explore the 
whole space. However, an experimental design 
method called Uniform Design (Fang, 1994) is very 
useful for this problem. The uniform design main 
objective is to sample a small set of points uniformly 
scattered from a given set of points. In the following, 
the main features of uniform design are given and the 
reader is referred to (Wang and Fang, 1981) for more 
details. Consider the first three gains of our linear 
controller and suppose that each gain may take ten 
possible values from the solution space.  To find the 
optimal set of gains, one thousand combinations 
should be considered. When it is not possible to 
consider all these combinations, uniform design 
allows to select a small but representative sample of 
combinations.  Let n be the number of gains 
considered in the optimization and q the number of 
possible values for each gain, the uniform design 
selects q combinations out of the qn possible 
combinations, such that these q combinations are 
scattered uniformly over all possible combinations 
space. The selected combinations are expressed in 
terms of uniform array G(n,q) =  [Gi,j]q x n, where Gi,j 
is the value of jth gain in the ith combination. Uniform 
arrays are determined as follows. Consider a unit 
hypercube over an n-dimensional space, denoted by: 
 
  C = {(c1, c2,. . .,cn) | 0< ci< 1 for i = 1, 2,. . . , n} (8)  
        
 
         



 

     

Consider any point r = (r1, r2 ,. . ., rn) in C. A hyper-
rectangle between 0 and r is formed and can be 
denoted by the set of points: 
 
 C(r) = {(c1, c2,. . .,cn)| 0< ci< ri  for i=1,2,. . .,n}  (9) 

  
A set of q points is selected such that they are 
scattered uniformly in the hypercube. Suppose that 
q(r) of these points pertain to the hypercube C(r). 
The fraction of points in the hypercube would be 
q(r)/q. The volume of the unit hypercube is one and 
hence the fraction of this hyper-rectangle is r1r2 ... rn.    
The uniform design is to determine q points in C 
such that the following discrepancy is minimized: 
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Then the obtained q points are mapped  in the unit 
hypercube to the space with n gains and q values. 
When q is prime and q > n, Gi,j can be determined 
using the following relation (Wang and Fang, 1981): 
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where σ  is a parameter given in Table 3. (Fang, 
1994).  
 
Table 3. Values of σ for different number of gains  
 and different number of values per gain. 

Number of values 
per gain 

Number of gains σ  

5 2 - 4 2 
7 2 - 6 3 
11 2 - 10 7 

2 5 
3 4 

13 
 
 4 – 12 6 

17 2 - 16 10 
2 - 3 8 19 

 4 - 18 14 
2, 13 – 14, 20 - 22 7 

8 - 12 15 
23 
 
 3 – 7, 15 - 19 17 

2  12 
3 9 

4 - 7 16 
8 – 12, 16 - 24 8 

13 - 15 14 

29 
 

25 - 28 18 
2, 5 – 12, 20 - 30 12 31 

3 – 4, 13 -19 22 
 
Unfortunately, only uniform arrays with at most 37 
values have been tabulated (Fang, 1994). Since the 
solution space for the linear controller may be 
remarkably larger, much more points are needed for a 
better coverage. To bypass this difficulty, the 
solution space can be subdivided into multiple 
subspaces, and then the uniform design can be 

applied on each subspace. The obtained sets of gains 
are then used in the multiobjective cost function to 
calculate their corresponding sets of four cost values 
corresponding to the four objective functions. For the 
training of the two-layer network, the obtained cost 
values are used as inputs and the corresponding gain 
sets are used as outputs. Thus, the network will learn 
to approximate the inverse of the multiobjective cost 
function. Once the training is finished, the network 
should be able to respond to a given set of cost values 
by the appropriate set of gains. Since the optimal set 
of gains Gd

i corresponding to ith flight system 
configuration is the one that responds with a 
minimum cost value, this optimal set can be obtained 
using the following relation: 
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For validation purposes, the system is simulated with 
the obtained set of gains. The handling qualities are 
verified and the obtained cost is compared to the one 
presented at the network’s input. If the difference is 
significant the input value is increased slightly and 
the same operation is repeated until the difference 
becomes insignificant. The obtained set of gains can 
then be considered as the optimal solution for the 
considered flight case. This operation is repeated for 
all the different cases. The obtained results are then 
stored in a Table with the case number and the 
corresponding optimal set of gains.  This Table will 
then be used by the neural network controller. The 
design of this controller and the way it uses this 
Table to control the system is detailed in the 
following sections.      
 
 
3.2. Neural network controller design 
 
The role of the neural network controller is to 
provide the linear controller with its five optimal 
gains such that the handling qualities are verified. 
This operation is made continuously to maintain the 
aircraft in this level of performance at all times. The 
neural controller should thus react to any change in 
the flight conditions and modify, if necessary, the 
linear controller gains.  These flight conditions are 
characterized by variables such as the Mach number, 
the dynamic pressure, the gravity center, the weight 
and the stability angle.  The neural network 
considered in this work is a self organized map of 
Kohonen (1989).  For the training of the network, 
different nominal situations are considered. These 
configurations cover almost all the main situations 
that the system may have. In case a different situation 
is presented, the neural network should converge 
automatically to the closest flight condition within 
the nominal cases. Then, the corresponding gains 
should be loaded for this new situation. This 
procedure is called gain scheduling. The training of 
the neural network is made off-line. A detailed 



 

     

description of the network training is presented in the 
following subsection. 
 
 
3.3.  Neural Network training 
 
One of the most important issues in pattern 
recognition is feature extraction. For such a crucial 
objective, self-organizing networks are very accurate. 
These networks can learn correlations in their inputs 
and adapt their future responses according to that 
input.  Self-organizing feature maps are one layer 
nets with linear neurons using a competitive learning 
rule. In such nets, there is one and only one winning 
neuron for every input pattern (i.e. the neuron whose 
weights are closest to the input pattern). In 
competitive nets, only the weights of the winning 
node get updated. Kohonen proposed a slight 
modification of this principle with tremendous 
implications. Instead of updating only the winning 
neuron, the neighboring neuron weights are also 
updated with a smaller step size. This means that in 
the learning process (topological) neighborhood 
relationships are created in which the spatial 
locations correspond to features of the input data.  
 
The self-organizing feature map algorithm is 
resumed to the following steps. First, the weights of 
the network are initialized with small different 
random values for symmetry breaking. Each row of 
the weight matrix is set to a random vector 
normalized to a length of one. Then, for each input 
data x(n), the winning neuron i(x) is obtained using a 
minimum distance rule, i.e. 
 
                     ||)(||minarg)( jj wnxxi −=               (13) 
 
For the winning neuron, its weights and those in its 
neighborhood are updated by  
 
            [ ])()()()()1( nwnxnnwnw jjj −+=+ η          (14) 
 
The network should be trained for several iterations 
until it stretches itself over the input vectors. The 
network weights are adjusted so that each neuron 
responds strongly to a region of the input space 
occupied by input vectors. When the training phase is 
completed, the network is tested, for validation 
purpose, with a couple of cases, some of them are 
taken from the learning data and the others are 
completely different. The training and testing phases 
being completed, the network becomes operational 
and ready to be implemented in the flight control 
system. In the following, a simulation example is 
presented in order to illustrate the proposed 
approach.   
 
 
 
 
 

4. SIMULATION EXAMPLE 
 
Results from simulations using the proposed neural 
network approach are presented in this section.  The 
system to be controlled is the longitudinal flight 
control system of figure (4). This classical control 
architecture is adapted from (Tisher, 1997). The 
adjustable gains are Kff, Ki, Kprop, Knz and Kfb.  The 
aircraft is represented by a 5th–order linearized 
model. The available measurements are pitch rate q 
and normal acceleration nz.    
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Fig. 4. Flight control system example 
 
For the training of the neural controller, 160 different 
flight cases are considered. For each flight 
configuration, the proposed neural network based 
optimization approach is used to determine a set of 
five gains to be implemented on the linear controller.  
To determine the optimal set of gains, a solution 
space of 992 values, divided into 32 subspaces with 
31 values per gain for each subspace is considered. 
The uniform design method is then applied on each 
subspace to determine the 31 values representative of 
the 315 initial possible combinations. The obtained 
992 sets of five gains are then used in the 
multiobjective cost function to calculate their 
corresponding 992 sets of four cost values 
corresponding to the four objective functions.  Then, 
the obtained cost values are used as inputs and the 
corresponding gain sets are used as outputs for the 
training of the two-layer neural network. At the end 
of the training, the network has learned to 
approximate the inverse of the cost function and then 
it can be used to determine the optimal gains for the 
corresponding flight case.  The results obtained for 
one case among the different flight configurations are 
shown on Table (4) below.   
 
Table 4. Handling qualities for a case example  

Handling Quality Value 
Attitude Bandwidth 

ω BW 
2.37 

Phase Delay pτ  0.11  
Short Period Mode 
Damping Ratio spξ  

0.82 

Gibson Dropback DB -0.01 
 



 

     

All the handling qualities are respected (Table 4). 
Figure (5) shows a good tracking performance. 
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Fig. 5. Pitch rate step response 
 
This operation is repeated 160 times to obtain the 160 
different sets of five gains for the training of neural 
network controller.  
Before starting the training phase the Matlab function 
randnr is used to generate random normalized 
vectors for our (5 by 32) layer neural network 
corresponding to the 160 different cases. 
          
One hundred and twenty epochs were required to 
obtain satisfactory training (see figure 6).    
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Fig. 6. Controller training results 
 
The above figure shows the first three dimensions of 
the weight matrix. After one hundred and twenty 
training cycles, the network has adjusted its weights 
so that each neuron responds strongly to a region of 
the input space occupied by input vectors.  Then it 
has been tested for several cases and has responded 
correctly. The trained controller is then implemented 
on the system of figure (4). To test the controller on 
the system, two situations were considered. The 
system was first loaded with a given flight case and 
after 4 seconds the flight conditions were changed 
intentionally to observe the reaction of the neural 
controller.  For both situations, the neural network 
was able to determine the adequate gains for the 

linear controller in order to stabilize the system. The 
handling qualities were tested for both situations and 
the results were satisfactory. 
 
 

5. CONCLUSION 
 
A neural network approach for flight control system 
design has been presented in this paper. An obvious 
interest of the proposed approach is the combination 
of classical flight control system architecture with 
modern control theory without sacrificing the system 
architecture presently in use. This method provides 
guaranteed properties that are handling qualities. The 
proposed method can be addressed to obtain  good  
performance for a large flight envelop using the 
neural network scheduled gain controller. This 
approach can be improved by considering the 
neighborhood of each single flight case. Instead of 
taking a unique set of gains per case, a space solution 
will be provided and the neural scheduled gain 
controller will select the closest one with small gains 
variations.      
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