

FLIGHT CONTROL SYSTEM DESIGN FOR COMMERCIAL AIRCRAFT
 USING NEURAL NETWORKS

Madjid HAOUANI*, Maarouf SAAD* and Ouassima AKHRIF*

 * Electrical Engineering

Abstract: This paper describes a neural network based approach for flight control
design of commercial aircraft. A neural flight control system is used to actuate the
gains of a linear controller for gain scheduling purposes without any explicit system
identification. The neural network system uses reference models to specify desired
handling qualities. Simulation results demonstrate the good tracking performance of
the proposed control approach and the learning capability of the proposed neural
network controller by showing rapid convergence of the network weights. Copyright
© 2002 IFAC

Keywords: Flight control, Neural network, Optimization, Gain Scheduling, Handling
Quality

1. INTRODUCTION

Over the last decades, a wide variety of control
approaches have been used to achieve desired
maneuvers (Honeywell, 1996). Avionics field has
consequently evolved remarkably from basic
electrical systems to highly advanced engines. With
the advent of fly-by-wire flight control technology, it
is now possible to shape the handling qualities of an
aircraft to desired specifications. However, while this
approach has proven to be successful, the
development process is generally very expensive and
often results in aircraft specific implementations.

In this paper, a flight control system based on
artificial neural networks is proposed. Artificial
neural networks are characterized by their learning
capability. The learning process consists in adjusting
connection weights between neurons (interconnected
processing units) according to some criteria that the
network should satisfy. Once the learning phase is
completed the network is able to map the input-
output relationship without any information about the
system internal structure. It has been proven that a
two-layer feedforward neural network is able to
approximate any continuous function (Cybenko,
1989).

The neural network proposed approach for flight
control design realizes two main objectives. First, a
multilayer neural network is used to optimize the
gains of a linear controller. This network allows the
gains of a linear controller to adapt according to the
nominal configuration of the controlled system. In
order to reduce the learning time, which can be very

long, the Uniform Design method (Fang, 1994) has
been adopted. This method aims to reduce the
learning space while conserving its characteristics.
Second, while the system is always confronted to
disturbance and thus its configuration may be
affected, a self-organizing map (Kohonen, 1987)
based controller is used to compensate for errors and
adapt the linear controller gains to these changes.
Thus, desired handling qualities can be achieved
across flight conditions and for different aircraft
configurations. Simulation evaluations have been
performed on several aircraft configurations to
ensure the accuracy of the proposed approach.

This paper is organized as follows. A brief
description of the handling qualities concept and the
flight control system is provided. Then the neural
network based flight control architecture is proposed.
A description of the neural network design, including
the learning and testing phases and the reduction of
the learning space is detailed. For validation purpose,
a simulation example is considered followed by some
conclusions about the proposed approach.

2. HANDLING QUALITIES

Handling or flying qualities defined by Cooper and
Harper (1969) are “those qualities or characteristics
of an aircraft that govern the ease and precision with
which a pilot is able to perform tasks required in
support of an aircraft role”. They are expressed in a
combination of time-domain and frequency-domain
constraints on the aircraft dynamic behavior. The
handling quality criteria considered in this paper are

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

pitch attitude bandwidth ω BW, phase delay pτ ,
short period mode damping ratio spξ and Gibson
DropBack DB. The fixed boundaries about these
criteria are given by MIL-STD-1797A (1990).
Table (1) summarizes the boundaries of the handling
qualities used in our design.

Table 1. Handling qualities boundaries

Handling Qualities Boundaries
Attitude Bandwidth

ω BW
> 1.5 (rad. / sec.)

Phase Delay pτ < 0.2 (sec)
Short Period Mode
Damping Ratio spξ

0.35 < spξ < 1.35

Gibson Dropback DB - 0.2 < DB/qss < 0.5
(sec)

3. FLIGHT CONTROL SYSTEM DESIGN

This paper is interested in the longitudinal pitch
response (figure 1).

−

+ Linear
Controller

Sensor

Neural Network
Controller Sensor

Actuator Aircraft
Dynamics

Stick Fs

Fig. 1. Closed-Loop Flight Control System

The design of this flight control system consists of
finding the appropriate gains for the linear controller
such that the handling qualities can be satisfied.
Obviously, this design can be modeled as parametric
optimization problem.

3.1. Linear controller gains optimization

The general formulation of optimization problems is
given by

 { }0)x(;0)x(;xxx)x(min

x
≤=≤≤

∈
ghf ul

Rn
 (1)

with

nR n-dimensional Euclidean space;
f objective function;
x vector of n design variables;
g vector of p inequality constraints;
h vector of q equality constraints; and
xl, xu lower and upper bounds

of design variables

The design variables and the constraints form the
feasible space

 { }0)x(;0)x(;xxxx ≤=≤≤∈≡ ghR ul

nΩ (2)

which describes the design freedom.

If only one objective function)x(f is taken into
account, the problem is called scalar optimization. If
several objectives are considered simultaneously, a
vector or multiple objective optimization problem
exists. In this case, the formulation (1) changes to

 { }0)x(;0)x(;xxx)x(min

x
≤=≤≤

∈
ghF ul

Rn
 (3)

where ())x(,),x(),x()x(21 kfffF K= is now a vector
of k objective functions. A multiple objective
optimization problem can be solved by means of a
substitute scalar optimization problem.

A standard technique for multiple objective
optimization problem is to minimize a positively
weighted sum of the objectives, that is,

 ∞<≤∑
=

∈ i

k

i
ii f αα

Ω
0,)x(min

1
x

 (4)

In this study, a performance evaluation function is
assigned to each handling quality criterion. This
results in an unconstrained optimization problem.
Since the system configuration changes each time the
flight conditions are modified and a certain number
of different flight configurations are considered, the
unconstrained optimization should be done for all
these different cases. In other words, a set of gains
should be determined for each different system
configuration. However, the use of a classical
optimization routine requires a considerable amount
of time. In order to reduce this optimization time a
neural network based approach is proposed. The idea
is to design a multilayer neural network for the
approximation of the inverse optimization function.
Then, to use this network to determine the optimal
set of gains corresponding to the minimum of this
function. Since the optimization problem is reduced
to function approximation, a two-layer feedforward
neural network is considered (figure 2).

 W1 W2

u1
u2
u3
u4

b

y1

y2

y3

y4
y5

Fig. 2. Multilayer neural network

A schematic representation of a two-layer neural
network is shown in figure (2). The basic
mathematical expression representing the network is
given by:

)]),),(([([)](()(12 bbkuWWkuNky ΓΓ== (5)

where W1 and W2 are)]1([12 +× mm and)(2mn×
weight matrices, u(k) and y(k) are m1 input and n
output discrete vectors, and b is a bias term always
equal to one. The nonlinear sigmoid function

)]1/()1[()(xx eeX −− +−=Γ is applied to each element
of the vector X. Usually the learning stops when the
weight matrices become stable. This is done by
minimizing the quadratic error between the measured
output y(k) and the desired output yd(k) for a given
input u(k). In other words, the weight matrices are
obtained by minimizing the function:

 ∑∑
= =

−=
L

l

n

i
idi lylykJ

1 1

2)]()([
2
1)((6)

where n is the number of outputs nodes and L is the
number of samples. To achieve the minimization,
gradient methods of backpropagation errors are
generally applied. Steepest descent method with a
fixed step (Hertz, 1991) or Quasi-Newton (Fletcher,
1987) method can be used to solve (6). Using Quasi-
Newton, the updating matrices are given by:

)()()()1(kkHkWkW ∇−=+ η (7)

where)(k∇ is the gradient, η is the learning
coefficient adjusted at each iteration (Fletcher, 1987)
and H(k) is the estimation of the inverse Hessian
matrix. Convergence is achieved only if H(k) remains
symmetric and positive definite.

At k = 0, the matrix H(0) is usually fixed equal to the
identity matrix. In this case, the first iteration is a
classic steepest descent minimization. In general, the
learning algorithms with a variable step converge
more rapidly than the methods with a fixed step.
However, the implementation in real time of variable
step algorithm is difficult. In this study, the learning
is realized off-line and the Brayden-Fletcher-
Goldfarb-Shanno algorithm is used to accelerate the
convergence process.

Since there is no explicit information about the
location of the optimal solution for our
multiobjective optimization problem, a considerable
amount of learning data is needed to perform the
training of the network. To reduce the optimization
solution space, preliminary simulation of the
multiobjective function is performed (see figure 3).

0

5

10

0
2

4
6

8
10

3.8

4

4.2

4.4

4.6

4.8

5

Gain 2 (Ki)Gain 1 (Kff)

C
os

t v
al

ue

Fig. 3. First two dimensions of the solution space

The above figure shows the first two dimensions of
the solution space in the case of our example
(detailed in section 4). This simulation method shows
that the optimization solution space may be reduced
to the following:

Table 2. Example of solution space reduction

Linear Controller Gains Interval
Gain 1(Kff) 0 < Kff < 5
Gain 2 Ki 0 < Ki < 2

Gain 3 (Kprop) 0 < Kprop < 2
Gain 4 (Knz) 0 < Knz < 8
Gain 5 (Kfb) 0 < Kfb < 1

The solution space proposed in Table 2 is still large.
This results in a considerable amount of data and
consequently a long time of simulation to explore the
whole space. However, an experimental design
method called Uniform Design (Fang, 1994) is very
useful for this problem. The uniform design main
objective is to sample a small set of points uniformly
scattered from a given set of points. In the following,
the main features of uniform design are given and the
reader is referred to (Wang and Fang, 1981) for more
details. Consider the first three gains of our linear
controller and suppose that each gain may take ten
possible values from the solution space. To find the
optimal set of gains, one thousand combinations
should be considered. When it is not possible to
consider all these combinations, uniform design
allows to select a small but representative sample of
combinations. Let n be the number of gains
considered in the optimization and q the number of
possible values for each gain, the uniform design
selects q combinations out of the qn possible
combinations, such that these q combinations are
scattered uniformly over all possible combinations
space. The selected combinations are expressed in
terms of uniform array G(n,q) = [Gi,j]q x n, where Gi,j
is the value of jth gain in the ith combination. Uniform
arrays are determined as follows. Consider a unit
hypercube over an n-dimensional space, denoted by:

 C = {(c1, c2,. . .,cn) | 0< ci< 1 for i = 1, 2,. . . , n} (8)

Consider any point r = (r1, r2 ,. . ., rn) in C. A hyper-
rectangle between 0 and r is formed and can be
denoted by the set of points:

 C(r) = {(c1, c2,. . .,cn)| 0< ci< ri for i=1,2,. . .,n} (9)

A set of q points is selected such that they are
scattered uniformly in the hypercube. Suppose that
q(r) of these points pertain to the hypercube C(r).
The fraction of points in the hypercube would be
q(r)/q. The volume of the unit hypercube is one and
hence the fraction of this hyper-rectangle is r1r2 ... rn.
The uniform design is to determine q points in C
such that the following discrepancy is minimized:

 n
Cr

rrr
q
rq ⋅⋅⋅−

∈
21

)(sup (10)

Then the obtained q points are mapped in the unit
hypercube to the space with n gains and q values.
When q is prime and q > n, Gi,j can be determined
using the following relation (Wang and Fang, 1981):

 1)mod(1

, += − qiG j
ji σ (11)

where σ is a parameter given in Table 3. (Fang,
1994).

Table 3. Values of σ for different number of gains
 and different number of values per gain.

Number of values
per gain

Number of gains σ

5 2 - 4 2
7 2 - 6 3
11 2 - 10 7

2 5
3 4

13

 4 – 12 6

17 2 - 16 10
2 - 3 8 19

 4 - 18 14
2, 13 – 14, 20 - 22 7

8 - 12 15
23

 3 – 7, 15 - 19 17

2 12
3 9

4 - 7 16
8 – 12, 16 - 24 8

13 - 15 14

29

25 - 28 18
2, 5 – 12, 20 - 30 12 31

3 – 4, 13 -19 22

Unfortunately, only uniform arrays with at most 37
values have been tabulated (Fang, 1994). Since the
solution space for the linear controller may be
remarkably larger, much more points are needed for a
better coverage. To bypass this difficulty, the
solution space can be subdivided into multiple
subspaces, and then the uniform design can be

applied on each subspace. The obtained sets of gains
are then used in the multiobjective cost function to
calculate their corresponding sets of four cost values
corresponding to the four objective functions. For the
training of the two-layer network, the obtained cost
values are used as inputs and the corresponding gain
sets are used as outputs. Thus, the network will learn
to approximate the inverse of the multiobjective cost
function. Once the training is finished, the network
should be able to respond to a given set of cost values
by the appropriate set of gains. Since the optimal set
of gains Gd

i corresponding to ith flight system
configuration is the one that responds with a
minimum cost value, this optimal set can be obtained
using the following relation:

)]),,0([([)0(12 bbWWNG ii

d ΓΓ== (12)

For validation purposes, the system is simulated with
the obtained set of gains. The handling qualities are
verified and the obtained cost is compared to the one
presented at the network’s input. If the difference is
significant the input value is increased slightly and
the same operation is repeated until the difference
becomes insignificant. The obtained set of gains can
then be considered as the optimal solution for the
considered flight case. This operation is repeated for
all the different cases. The obtained results are then
stored in a Table with the case number and the
corresponding optimal set of gains. This Table will
then be used by the neural network controller. The
design of this controller and the way it uses this
Table to control the system is detailed in the
following sections.

3.2. Neural network controller design

The role of the neural network controller is to
provide the linear controller with its five optimal
gains such that the handling qualities are verified.
This operation is made continuously to maintain the
aircraft in this level of performance at all times. The
neural controller should thus react to any change in
the flight conditions and modify, if necessary, the
linear controller gains. These flight conditions are
characterized by variables such as the Mach number,
the dynamic pressure, the gravity center, the weight
and the stability angle. The neural network
considered in this work is a self organized map of
Kohonen (1989). For the training of the network,
different nominal situations are considered. These
configurations cover almost all the main situations
that the system may have. In case a different situation
is presented, the neural network should converge
automatically to the closest flight condition within
the nominal cases. Then, the corresponding gains
should be loaded for this new situation. This
procedure is called gain scheduling. The training of
the neural network is made off-line. A detailed

description of the network training is presented in the
following subsection.

3.3. Neural Network training

One of the most important issues in pattern
recognition is feature extraction. For such a crucial
objective, self-organizing networks are very accurate.
These networks can learn correlations in their inputs
and adapt their future responses according to that
input. Self-organizing feature maps are one layer
nets with linear neurons using a competitive learning
rule. In such nets, there is one and only one winning
neuron for every input pattern (i.e. the neuron whose
weights are closest to the input pattern). In
competitive nets, only the weights of the winning
node get updated. Kohonen proposed a slight
modification of this principle with tremendous
implications. Instead of updating only the winning
neuron, the neighboring neuron weights are also
updated with a smaller step size. This means that in
the learning process (topological) neighborhood
relationships are created in which the spatial
locations correspond to features of the input data.

The self-organizing feature map algorithm is
resumed to the following steps. First, the weights of
the network are initialized with small different
random values for symmetry breaking. Each row of
the weight matrix is set to a random vector
normalized to a length of one. Then, for each input
data x(n), the winning neuron i(x) is obtained using a
minimum distance rule, i.e.

 ||)(||minarg)(jj wnxxi −= (13)

For the winning neuron, its weights and those in its
neighborhood are updated by

 [])()()()()1(nwnxnnwnw jjj −+=+ η (14)

The network should be trained for several iterations
until it stretches itself over the input vectors. The
network weights are adjusted so that each neuron
responds strongly to a region of the input space
occupied by input vectors. When the training phase is
completed, the network is tested, for validation
purpose, with a couple of cases, some of them are
taken from the learning data and the others are
completely different. The training and testing phases
being completed, the network becomes operational
and ready to be implemented in the flight control
system. In the following, a simulation example is
presented in order to illustrate the proposed
approach.

4. SIMULATION EXAMPLE

Results from simulations using the proposed neural
network approach are presented in this section. The
system to be controlled is the longitudinal flight
control system of figure (4). This classical control
architecture is adapted from (Tisher, 1997). The
adjustable gains are Kff, Ki, Kprop, Knz and Kfb. The
aircraft is represented by a 5th–order linearized
model. The available measurements are pitch rate q
and normal acceleration nz.

nz

−

+

Neural Network
Controller Sensor

Actuator Stick Fs

Kff

Ki/s

Kprop

+ +
Aircraft

Dynamics

Knz

1+sT
sT

nz

w
 q

Kfb

1
1
+sTnz

 Sensor

Fig. 4. Flight control system example

For the training of the neural controller, 160 different
flight cases are considered. For each flight
configuration, the proposed neural network based
optimization approach is used to determine a set of
five gains to be implemented on the linear controller.
To determine the optimal set of gains, a solution
space of 992 values, divided into 32 subspaces with
31 values per gain for each subspace is considered.
The uniform design method is then applied on each
subspace to determine the 31 values representative of
the 315 initial possible combinations. The obtained
992 sets of five gains are then used in the
multiobjective cost function to calculate their
corresponding 992 sets of four cost values
corresponding to the four objective functions. Then,
the obtained cost values are used as inputs and the
corresponding gain sets are used as outputs for the
training of the two-layer neural network. At the end
of the training, the network has learned to
approximate the inverse of the cost function and then
it can be used to determine the optimal gains for the
corresponding flight case. The results obtained for
one case among the different flight configurations are
shown on Table (4) below.

Table 4. Handling qualities for a case example

Handling Quality Value
Attitude Bandwidth

ω BW
2.37

Phase Delay pτ 0.11
Short Period Mode
Damping Ratio spξ

0.82

Gibson Dropback DB -0.01

All the handling qualities are respected (Table 4).
Figure (5) shows a good tracking performance.

Time (sec)

Am
pl

itu
de

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 5. Pitch rate step response

This operation is repeated 160 times to obtain the 160
different sets of five gains for the training of neural
network controller.
Before starting the training phase the Matlab function
randnr is used to generate random normalized
vectors for our (5 by 32) layer neural network
corresponding to the 160 different cases.

One hundred and twenty epochs were required to
obtain satisfactory training (see figure 6).

0.4
0.6

0.8
0.4

0.6
0.8

0.4
0.5
0.6
0.7
0.8
0.9

W(i,1)

Weight Vectors

W(i,2)

W(i,3)

Fig. 6. Controller training results

The above figure shows the first three dimensions of
the weight matrix. After one hundred and twenty
training cycles, the network has adjusted its weights
so that each neuron responds strongly to a region of
the input space occupied by input vectors. Then it
has been tested for several cases and has responded
correctly. The trained controller is then implemented
on the system of figure (4). To test the controller on
the system, two situations were considered. The
system was first loaded with a given flight case and
after 4 seconds the flight conditions were changed
intentionally to observe the reaction of the neural
controller. For both situations, the neural network
was able to determine the adequate gains for the

linear controller in order to stabilize the system. The
handling qualities were tested for both situations and
the results were satisfactory.

5. CONCLUSION

A neural network approach for flight control system
design has been presented in this paper. An obvious
interest of the proposed approach is the combination
of classical flight control system architecture with
modern control theory without sacrificing the system
architecture presently in use. This method provides
guaranteed properties that are handling qualities. The
proposed method can be addressed to obtain good
performance for a large flight envelop using the
neural network scheduled gain controller. This
approach can be improved by considering the
neighborhood of each single flight case. Instead of
taking a unique set of gains per case, a space solution
will be provided and the neural scheduled gain
controller will select the closest one with small gains
variations.

REFERENCES

Cooper, G. E., Harper Jr R. P., (1969). The use of

Pilot Rating in the Evaluation of Aircraft.
Technical Report NASA-TN-D5153,
 Washington D. C.: National Aeronautics and
Space Administration.

Cybenko, G. (1989). Approximation by superposition
of sigmoidal functions. Mathematical Control
Signals and Systems, Vol. 2, pp. 303-314.

Fang K. T., 1994. Uniform Design and Design
Tables, Beijing, China: Science. In Chinese.

Fletcher R., (1987). Practical Methods of
Optimization. New York: John Wiley and Sons.

Hertz J., Krogh A., and Palmer R. G., (1991).
Introduction to the theory of Neural
Computation. Reading, MA: Addison-Wesley.

Honeywell, (1996). Markets Report, Tech. Rep.
NASA Contract NAS2-114279, Final Repot for
AATT Contract.

Kohonen, T. (1989). Self-Organization and
Associative Memory. Springer-Verlag, 3rd
edition , Berlin.

MIL-STD-1797A, (1990). Fling Qualities of Piloted
Aircraft, Military Standard 1797A Washington
D.C.: Government Printing Office.

Tisher M. B., Colbourne J. D., Morel M. R., Biezad
D. J., Levine W. S. and Moldoveanu M., 1997.
CONDUIT – A New Multidisiplinary Integration
Environment for Flight Control Development.
NASA Technical Memorandum 112203,
USAATCOM Technical Report 97-A009.

Wang Y. and Fang K. T., 1981. A note on uniform
distribution and experimental design, KEXUE
TONGBAO, Vol. 26, pp. 485-489. In Chinese.

