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Abstract: This paper describes two algorithms to calculate bounds on the largest
frequency response function that is attained when a large number of parameters
is perturbed simultaneously within a box. The algorithms have been created to
calculate worst-case responses of mistuned (perturbed) bladed disks, which is an
important step in the analysis and optimization of advanced turbomachinery com-
ponents. Numerical comparisons with other algorithms demonstrate the relative
efficiency and accuracy of the proposed algorithms.
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1. INTRODUCTION

The prediction and optimization of frequency re-
sponse functions for systems with high modal
density and low damping is of great interest to
the manufacturers of modern gas turbine aero-
engines. This interest is motivated in part by a
need to analyze and optimize vibratory responses
in new rotor designs which exhibit large number of
lightly-damped modes in the operating envelope.
Since 1998, we have been working with industry
in the development of metrics and effective tools
to analyze and optimize real-world rotors. These
systems typically posses a degree of spatial sym-
metry that can be exploited to develop improved
methods and tools for analysis and design.

A key problem in this industry is the calculation
of the worst-case frequency response that a bladed
disk may posses when several (on the order of hun-
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dreds) parameters are perturbed. These perturba-
tions, known in the industry as mistuning, could
cause large increases in vibration amplitudes with
respect to the unperturbed or tuned condition.
The importance of this problem has been dis-
cussed in numerous recent publications (Griffin
and Richardson, 1995; Thompson, 1999; Slater et
al., 1999).

The present paper discusses efficient algorithms
for the calculation of worst-case frequency re-
sponse γ, defined by 2

γ = max
δ=(δ1,...,δn)

σmax(T (ω, δ)) (1a)

s.t. |δ1| ≤ θ, . . . , |δn| ≤ θ (1b)

where the entries of the frequency response func-
tion T (ω, δ) depend rationally on the real pertur-
bations δ1, . . . , δn and ω is the frequency.

2 The symbol σmax denotes the largest singular value.
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It is known that the complexity of computing γ is
NP hard (Braatz et al., 1994). This fact suggests
that finding γ is computationally intractable ex-
cept for small or very special problems. For this
reason, the usual approach is to compute upper
and lower bounds for γ. The upper bound provides
a guarantee on the maximal response, while the
lower bound is used to asses the conservatism of
the upper bound.

To compute an upper bound for γ, we propose
the LFTB algorithm (D’Amato and Rotea, 2001;
Rotea and D’Amato, 2001). This algorithm com-
putes the bound for rational functions that follows
from the results in (Fan et al., 1991). This upper
bound is obtained as the solution of a structured
semidefinite program (SDP), which is a special
kind of convex optimization problem. To the best
of our knowledge, LFTB is the most efficient algo-
rithm for solving this structured SDP. Specifically,
with n real parameters in (1), LFTB requires O(n)
less memory and flops per iteration than generic
interior-point solvers for semidefinite programs.
Thus in problems with hundreds of parameters,
as is the case in mistuning analysis of industrial
bladed disks, LFTB offers substantial savings.

To compute a lower bound for γ we propose
LFTLB (D’Amato, 2001), which is a minor
modification of the cyclic algorithm reported in
(Packard et al., 2000). This algorithm actually
produces a perturbation δ achieving the lower
bound on the worst-case response γ. Our numeri-
cal experience indicates that LFTLB gives tighter
bounds than those obtained with the methods in
(Balas et al., 1995; Coleman et al., 1999) when
applied to mistuning analysis problems.

The algorithms are demonstrated in mistuning
analysis and optimization of a typical bladed disk
model with n = 56 real perturbations. In this
example, the ratio of the lower bound to the upper
bound is better than 0.999, which means that our
algorithms estimate the γ with 0.1% relative error.
In addition, the calculation of the upper bound
is extremely fast, with actual computing times
about 100x faster than the times required by the
generic solvers in (Gahinet et al., 1995).

The algorithms LFTB and LFTLB may be ob-
tained from roger.ecn.purdue.edu/~rotea

2. MODELS

We consider frequency domain models for mis-
tuned rotors of the form

(−ω2M(δ) + jωC(δ) + K(δ))x = Gu (2a)

y = Hx (2b)

where x is the vector of coordinates of motion,
u is the vector of external forces, y is the re-

sponse or output vector, and δ is a vector of
real perturbations or, as called in the industry,
the mistuning parameters. The entries of δ have
amplitude bounded by θ . The entries of the mass,
damping and stiffness matrices M(δ), C(δ) and
K(δ) are rational functions of δ. The matrix G is
the input matrix, and H is the output matrix.

Model (2) is a fairly general representation of
perturbed rotors for forced response analysis and
includes the models in (Griffin and Hoosac, 1984;
Castanier et al., 1997; Yang and Griffin, 1999).

The frequency response function (FRF) of model
(2) is given by

T (ω, δ) = H(−ω2M(δ)+jωC(δ)+K(δ))−1G (3)

It is known that FRFs of any linear system that
depends rationally on n parameters δ1, . . . , δn

can always be expressed in the form (Doyle et
al., 1991)

T (ω, δ) = D + C∆(δ)(I −A∆(δ))−1B (4)

where the matrices A,B,C and D are functions
of ω and

∆(δ) = diag(δ1Ir1 , . . . , δnIrn
) (5)

for some integers r1, . . . , rn. The dependence on
the frequency ω of the matrices A,B,C,D is not
made explicit to simplify the notation. The rep-
resentation (4) is also known as linear fractional
transformation or LFT and is required by our
algorithms.

3. BOUNDS FOR THE WORST-CASE
FREQUENCY RESPONSE

3.1 An Upper Bound

The upper bound we propose follows from (Fan et
al., 1991). This bound is defined by the following
optimization problem

β = minw (6a)

s.t. X = X∗ = diag(X1, . . . , Xn) ≥ 0 (6b)

Y = −Y ∗ = diag(Y1, . . . , Yn) (6c)[
A B

θ−1I 0

]∗ [
X Y
Y ∗ −X

] [
A B

θ−1I 0

]

+
[
C∗C C∗D
D∗C D∗D − wI

]
≤ 0 (6d)

where w is a real scalar variable and the matrix
variables Xi and Yi are ri × ri complex matrices;
the integers n, r1, . . . , rn are from (5). The data
of problem (6) is given by the complex matrices
A, B, C, and D in (4), and the size θ of the
perturbations.

It has been shown (Fan et al., 1991) that γ, defined
in (1), and the number β in (6) satisfy

γ ≤
√

β (7)



when T is of the form (4) and the perturbations
δ1, . . . , δn are real numbers bounded by θ.

Problem (6) has become a key optimization prob-
lem in the analysis of uncertain systems. This
problem is a structured semidefinite program,
which is a special kind of convex optimization
problem. As such, it can be solved, to any desired
accuracy, using interior-point methods. To the
best of our knowledge, the most efficient method
for solving problem (6) is the interior-point algo-
rithm LFTB (D’Amato and Rotea, 2001; Rotea
and D’Amato, 2001).

LFTB exploits the specific structure in (6) to
lower the memory requirements and floating point
operations by a factor of n relative to generic
interior-point algorithms. Thus, LFTB achieves
substantial savings in problems with large number
of real parameters (n between 50 and 500) as is
the case in the mistuning analysis of industrial
rotors.

The efficiency of LFTB, relative to available
solvers, is shown in Fig. 1 for a typical mistun-
ing analysis problem (Rotea and D’Amato, 2001).
The figure shows the total time to solve (6) as a
function of the number of real parameters n. The
solver MINCX is from the LMI Toolbox (Gahinet
et al., 1995) and the solver SDPHLF is from the
package SDPT3 (Toh et al., 1999). LFTB solves
a problem with n = 50 real parameters in 50sec,
which is much less than the 750sec required with
SDPHLF, or the 6300sec with MINCX. The time
required by generic solvers grows like O(n)x the
time required by LFTB. In mistuning problems
n is large and, therefore, the savings with LFTB
are substantial. Further details on LFTB may be
found in (D’Amato and Rotea, 2001; Rotea and
D’Amato, 2001), which describe the pseudocode
for this algorithm.

3.2 A Lower Bound

The algorithm proposed for calculating a lower
bound for the worst-case response γ defined in (1)
is based on the approach presented in (Packard et
al., 2000). This algorithm produces a sequence of
vectors {δk}∞k=1 with non-decreasing values of the
cost function in (1), i.e.

σmax(T (ω, δk)) ≤ σmax(T (ω, δk+1)) k = 1, 2, . . .

At the k-th iteration, the estimate δk of the worst-
case perturbation is computed as follows. Certain
randomly chosen entries of δk are fixed at their
values in the previous iteration. The remaining
entries are allowed to vary along a randomly
chosen pattern.

To be more precise, let Jk denote the set of indices
for the entries of δk that are fixed at their previous
value. Let πk denote the real vector defining the

random pattern for the remaining entries of δk.
The perturbation δk is computed from

δk = φk + αoptπ
k (8a)

where the i-th entry of vectors φk and πk is given
by

φk
i =

{
δk−1
i if i ∈ Jk

0 if i /∈ Jk (8b)

πk
i =

{
0 if i ∈ Jk

random number if i /∈ Jk (8c)

max
1≤i≤n

|πk
i |= θ (8d)

and αopt is an optimal step size whose computa-
tion is explained below.

If σmax(T (ω, δk)) ≥ σmax(T (ω, δk−1)) we accept
the new perturbation in (8). Otherwise, we set
δk = δk−1. In either case, we repeat the process
until σmax(T (ω, δk)) does not increase for a pre-
specified number of iterations.

The scalar αopt is the quantity that maximizes the
cost function σmax(T (ω, φk + απk)). That is

αopt = arg maxα σmax(G(α)) (9)

s.t. α ∈ [−1, 1]

where
G(α) = T (ω, φk + απk) (10)

The rational function G(α) in (10) can be ex-
pressed in the form

G(α) = Dg + Cgα(I −Agα)−1Bg (11)

using elementary operations on linear fractional
transformations. From this representation and the
results in (Packard et al., 2000) it can be shown
that problem (9) can be solved by solving a
sequence of eigenvalue problems.

The precise result from is as follows (Packard et
al., 2000). Define the complex matrix

H(ρ) =
[

Ag BgB
∗
g

0 A∗g

]

+
[

BgD
∗
g

C∗g

]
(ρ2I −DgD

∗
g )−1

[
Cg DgB

∗
g

]
where all matrices are from (11). Define the set

R= {ρ | H(ρ) has a real eigenvalue λ

satisfying |λ| ≥ 1} (12)

Let ρs denote the supremum of the set R. Let λs

denote a real eigenvalue of H(ρs) with magnitude
one or bigger. Then αopt = λ−1

s .

The proposed lower bound algorithm is coined
LFTLB. Its pseudocode is in Table 1. LFTLB



stops when the cost function makes no further
improvement for a pre-specified number of consec-
utive iterations. Further details on LFTLB may be
found in (D’Amato, 2001).

In the mistuning problems considered, LFTLB
has shown superior accuracy (higher lower bound)
than available algorithms for solving this problem
such as the power iteration method (Balas et al.,
1995) or the specialized functions in (Coleman et
al., 1999). A numerical comparison is in section 4.

Table 1. LFTLB pseudocode.

choose a random perturbation vector δ0 with |δi| ≤ θ

set k = 1

while no stopping criterion

choose the set of indices Jk randomly
calculate φk and πk using (8)
find a representation (11) for G(α) defined in (10)
calculate the supremum ρs of the set R in (12)
calculate a real eigenvalue λs of H(ρs) such that

|λs| ≥ 1 and set αopt = λ−1
s

if σmax(T (ω, δk−1)) ≤ ρs

δk = φk + αoptπk

end
k ← k + 1

end

4. APPLICATION EXAMPLE

The rotor example is a mass-spring model with
n = 56 sectors as shown in Fig. 2. There are two
degrees of freedom per sector, one DOF represents
blade motion and the other DOF disk motion. All
model parameters are known except for the blade-
alone stiffness which, for the i-th blade, is modeled
as

k1i = 1 + δi (13)

where k1 = 1 is the nominal (tuned) blade-alone
stiffness and δi is the unknown but bounded stiff-
ness perturbation or mistuning. The equation for
this model is of the form shown in (2). Damping
is added to the model assuming that the tuned
modes (obtained with all perturbations δi set to
zero) have uniform damping ratio ζ.

Let Fi(ω, δ) denote the transfer function from
forces at the blade degrees of freedom to the
displacement xbi of blade i. The objective is to
study the FRF

Ti(ω, δ) = Fi(ω, δ)f (14)

where f is a prescribed (complex) forcing vector.
Thus, the FRF Ti represents the complex dis-
placement of blade i in response to the excitation
f exp(jωt).

The combination of nominal symmetry and low
damping produces a practical device sensitive to
symmetry-breaking perturbations. Tiny blade-to-
blade variations lead to large variations of the
blade response Ti(ω, δ).

The high sensitivity of these devices to real-world
perturbations (e.g., due to manufacturing toler-
ances and wear) has created a strong need to pre-
dict the worst-case response that the rotor blades
may posses. That is to calculate γ(θ) defined by

γ(θ) = max
1≤i≤56

max
ω∈Ω

max
δ
|Ti(ω, δ)| (15)

s.t. |δ1| ≤ θ, . . . , |δ56| ≤ θ

where Ti(ω, δ) denotes the FRF of the i-th blade,
Ω a given frequency grid, and θ is the size of the
perturbations.

The most inner maximization in (15) can be es-
timated using the algorithms LFTB and LFTLB
discussed in section 3. The maximization on the
frequency grid Ω may be done by repeated evalu-
ation at each frequency. Repeated evaluation can
also be used for the outer maximization. However,
this is not necessary as the symmetry of the tuned
rotor can be used to prove that all blades have
the same worst-case response and same bounds
on it. Thus, the outer maximization is eliminated
completely and the worst-case response bounds of
a single blade are calculated.

The results are in Fig. 3, which shows the vari-
ation of the worst-case response γ(θ) with the
mistuning size θ for three different damping ratios.
The plot shows the response normalized by the
response of the tuned rotor, which is obtained as
γ(θ)/γ(0).

Each point in the plot is obtained by solving a
problem of the form (15) over a grid Ω with 30
frequencies. There are 1260 upper bounds and 42
lower bounds, taking a total time of 3.4 hours
on a Pentium III PC at 600 MHz with 128
MB of memory. On average, each upper bound
computation took 6 seconds and each lower bound
1.7 minutes. This is a very reasonable computing
time for a problem with 56 simultaneous real
perturbations.

The quality of the bounds is excellent in the sense
that the ratio of the lower to upper bound is
very close to one for all cases. In fact, in all
cases this ratio was bigger than 0.999, which in
turn implies that we have computed γ(θ) with a
relative accuracy better than 0.1% in all cases.

Figure 3 demonstrates a known characteristic of
these rotors–the blade response is very sensitive to
perturbations. For example, with a damping ratio
of 0.5%, θ = 2% mistuning is enough to increase
the response by a factor of 3 in the worst-case.

Figure 4 provides a comparison between LFTLB
and two other methods for estimating a lower
bound: the power iteration algorithm (PIA) from
(Balas et al., 1995) and a subspace trust region
method (STIR) implemented in (Coleman et al.,



1999). The figure shows the worst-case frequency
response function used to get the point θ = 3%
mistuning size, ζ = 0.5% damping ratio, in Fig. 3.
For all 30 points, the result from LFTLB is on top
of the upper bound from LFTB. This is not the
case for the PIA and STIR methods.

Intentional mistuning is known to reduce the sen-
sitivity of the response to unintentional pertur-
bations. Intentional perturbations, that break the
nominal symmetry of a tuned rotor, are intro-
duced to reduce worst-case response in the pres-
ence of the unintentional perturbations. Due to
their efficiency, our algorithms can quickly deter-
mine an optimal intentional mistuning solution in
which the worst-case response is minimized.

As an example, consider the problem of calcu-
lating nominal blade-alone stiffness k1i that min-
imize the worst-case blade response, where the
worst-case is calculated over the entire set of unin-
tentional perturbations δ1, . . . , δ56. It is assumed
that there are two distinct nominal blades only,
type A and type B, arranged in the alternating
pattern ABABAB . . . AB.

The model is as before, see Fig. 2, except that the
blade-alone stiffness k1i is now modeled as

k1i = 1− ρ + δi and k1i = 1 + ρ + δi (16)

for type A and type B blades, respectively. In (16),
ρ is the intentional mistuning parameter. If ρ = 0
there is no intentional mistuning and the model
is tuned. If ρ > 0, there are 28 type A blades and
28 type B blades. As a result, the intentionally
mistuned rotor has a unit average stiffness; thus,
preserving the average stiffness of the tuned rotor.

Figure 5 shows the variation of nominal and worst-
case response with intentional mistuning ρ for the
case with 0.5% damping ratio. Both responses are
normalized by the tuned nominal response; i.e.,
the response for ρ = θ = 0. For each ρ > 0, and
θ = 3%, the worst-case response is quickly (and
accurately) estimated using LFTB.

Notice that the response of the nominal rotor with
no perturbations δi and intentional mistuning ρ >
0 is worse than the tuned rotor response obtained
with ρ = 0. However, nonzero intentional mistun-
ing ρ > 0 does reduce the worst-case response; the
optimum is ρ = 0.05. Thus intentional mistuning
makes the rotor more robust to perturbations.

5. CONCLUSION

Two efficient algorithms (LFTB and LFTLB) for
the calculation of worst-case frequency responses
have been presented. These algorithms have been
created to address vibration analysis problems
for uncertain models with a large number of real
perturbations. LFTB is believed to be the most

efficient algorithm to date for calculating a well-
known upper bound to the worst-case response.
LFTLB follows from an existing algorithm and it
works well in our rotor dynamics applications in
the sense that it provides a tight lower bound.
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Fig. 1. Time for convergence as function of the
number of parameters n for three algorithms.
LFTB is 2.4nx (0.28nx) faster than MINCX
(SDPHLF).
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