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Abstract: In this paper, a novel expression for the convergence of an iterative learning control
algorithm for sampled linear multivariable systems is stated. The convergence analysis shows
that, applying this algorithm, the input sequence converges to the system output inverse
sequence, specified as a finite-time output trajectory, with zero tracking error on all the
sampled points. Also, it gives insight on the learning gain matrix selection to act on the
convergence speed or the decoupling of inputs, allowing for an easy tuning using methods
from modern control theory. The results are illustrated by some examples, showing a number
of options to be investigated.Copyright ©2002 IFAC
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1. INTRODUCTION

Iterative learning is a well known methodology allow-
ing to incorporate the acquainted experience in the use
of preliminary designs to get the final one. Since the
seminal work of Arimoto, (Arimotoet al., 1984), this
has been successfully applied in the field of control,
mainly for repetitive working conditions, like it is the
case in many manufacturing applications, with a finite
time control horizon.

The iterative feature is very attractive from the user
viewpoint but a number of formal problems arise, the
main one being the existence of a final design, in
some sense defined asoptimal, to which the iterative
solution converges. Some sufficient conditions have
been proved, (Moore, 1993; Chen and Wen, 1999),
for special cases. Another important problem, if this
approach is intended to be applied in a more general
range of working conditions, is the need of general-

1 Partially supported by projects USM 23.01.11 and GV00-100-14

ization, that is, to get a final design able to control
the plant under operating conditions differing to those
in which the learning process was carried out. This
can be partially solved in the case of affine in control
systems, where some sort of scaling can be applied.

One of the drawbacks of the approach is that the
controller tends to implement the inverse model of the
plant, restricting its application to stable and inverse
stable open loop plants. Again, thea priori knowledge
of the plant model is a usual requirement that also
limits the range of applications.

The way the iterative learning approach is imple-
mented, usually leads to afeedforwardcontroller. In
any control application, an additional control loop
would be required to guarantee some kind of distur-
bance rejection (Amannet al., 1996b), bounded steady
state error and stability margin, as basic controlled
system features.

In the literature, like in (Shoureshi, 1991; Amann
et al., 1996a), there are many proposed algorithms
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and learning rules to perform the iterative learning.
They consider an unknown model of the plant, as
in (Lee et al., 2000), and the convergence is usually
proved under restrictive cases (Owens, 1992; Chen
and Wen, 1999). The purpose of this paper is to anal-
yse a learning algorithm which is suitable for lin-
ear multiple-input-multiple-output (MIMO) systems,
denoted as multivariable systems. The learning rule
introduces some tunable parameters that determine
important features such as the convergence speed.

To introduce the idea of getting the inverse model for
a MIMO plant, assume the sampled one described by

x(t +1) = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t)
(1)

wherex 2 Rn is the discrete state vector,u 2 Rv is
the input vector andy 2 Rp is the output vector. In
this paper, as it is usual,D is assumed to be square,
i.e., v = p. The input-output matrix transfer function
is given by

y(z) = G(z)u(z)

G(z) =C(Iz�A)�1B+D
(2)

and the pulse responseH(i) allows for the equivalent
representation

y(t) =
t

∑
i=0

H(t� i)u(i); t � 0

H(0) = D; H(i) =CAi�1B; i > 0

(3)

The inverse system, that is the system havingy(t)
as input andu(t) as output, exists if the following
equivalent conditions are satisfied

(1) D is full rank
(2) G(1) is full rank
(3) H(0) is full rank

Plants with delay. In general, the above conditions
are not satisfied, as usuallyD = 0, i.e., there is no
direct input/output coupling. Moreover, a delay ofm�
1 sampling time units is present, yielding

H(i) = 0; i < m (4)

In that case, the system output expression (3) can be
reduced to show the input-output causality explicitly.
Also, for convenience, the cumulated past inputs can
be grouped inη(t) and considered as disturbances to
the present output

y(t +m) = H(m)u(t)+η(t)

η(t) =
t�1

∑
i=0

H(t +m� i)u(i)
(5)

Let us consider a finite time horizonN. The following
block vectorsU;Y 2Rp(N�m+1) can be defined:

U =
�
uT(0) uT(1) � � � uT(N�m)

�T

Y =
�
yT(m) yT(m+1) � � � yT(N)

�T (6)

and the matrix relationshipY = HU holds, where

H =

2
6664

H(m) 0 � � � 0
H(m+1) H(m) � � � 0

...
...

...
H(N) H(N�1) � � � H(m)

3
7775 (7)

H(i) =

�
0 i < m

CAi�1B m� i � N
(8)

Matrix H in (7) is block lower triangular Toeplitz,
referenced here by its leading matrix elements as
H = ToeplitzfH(m);H(m+ 1); : : :g for short. Thus,
the inverse system representation in finite time exists
if rank[H(m)] = p

U = H�1Y = MY (9)

where, due to the triangular structure inH, M =
ToeplitzfM(m);M(m+1); : : :gwith M(m)=H�1(m).
From (9), the system input can be expressed as the
output of the non causal system

u(t) =
t

∑
i=0

M(m+ i)y(m+ t� i); t � 0 (10)

2. MIMO ITERATIVE LEARNING

According to (9), the ideal control sequence to track a
desired outputYd is given byU�=H�1Yd. Let us anal-
yse an iterative scheme to get this control sequence
from an initial estimate, denoting asUk the control
action vector at iterationk. Each elementuk(t) in the
block vectorUk can be learnt iteratively by means
of the general setting shown in figure 1, where the
next sequence of inputsUk+1 is determined from the
current one,Uk, plus a corrective term delivered by
the learning algorithm based onYd and the actual out-
put sequenceYk. The corrective term should consider
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Fig. 1. Iterative learning setting

the plant delaym to meet the causality relationship
(10) between the input-output sequence elements. The
learning process is repeated for eachk (iteration axis),
applying a full set of precalculated inputs sequentially,
until a specified maximum tracking error is achieved.

The general linear learning algorithm considers the
plant and the iterative learning blocks,fH and fL, as
linear operators, and can be expressed by

uk+1(t) =
n

∑
j=0

α j uk� j(t)+Γek(t +m)

ek(t +m) = yd(t +m)�yk(t +m)

(11)



whereek(t) represents the output error vector at time
t in the iterationk, α j are the past control factors and
Γp�p is the learning gain matrix. The non causality
of (11) is avoided because of the iterative calculation
of the next input sequence. Additional terms involving
ek� j(t) could be also considered in (11). Forα0 = 1,
α j = 0 8 j > 0, and accordingly to (5), the whole iter-
ative learning process fort 2 [0;N�m] can be repre-
sented by a set ofN�m+1 closed loop subsystems, as
shown in figure 2. This setting originates the following
theorem.
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Fig. 2. Plant subsystems with learning

Theorem 1.(Learning Algorithm Convergence). For
the multivariable system plus delay (1), (2), (5), and
D = 0, the first order iterative learning control algo-
rithm designed to track a desired finite time trajectory
sequenceYd

uk+1(t) = uk(t)+Γ(yd(t +m)�yk(t +m)) (12)

i. Converges if and only if

F = I �H(m)Γ is Hurwitz (13)

ii. the maximum steady state tracking error is

lim
k!∞

�
max

m�i�N
jyd(i)�yk(i)j

�
= 0 (14)

iii. the input sequenceU� converges to

U� = lim
k!∞

Uk = H�1Yd (15)

iv. and the maximum convergence speed is achieved
for

Γ =
�
CAm�1B

��1
= H�1(m) (16)

Proof: The learning law (12) may be rewritten using
(10), that yields

t

∑
i=0

M(m+ i)yk+1(m+ t� i) =

t

∑
i=0

M(m+ i)yk(m+ t� i)+Γek(t +m)

(17)

Subtracting from both sides the ideal input,∑t
i=0M(m+

i)yd(m+t� i), the following tracking error equation is
obtained

t

∑
i=0

M(m+ i)ek+1(m+ t� i) =

t

∑
i=0

M(m+ i)ek(m+ t� i)�Γek(t +m)

(18)

Now, theZ -transform in the iteration axisk is applied
to (18), obtaining the following relationship among
the temporal tracking errors

[(z�1)I �M(m)+Γ]ez(t +m) =

�(z�1)I
t

∑
i=1

M(m+ i)ez(t +m� i)
(19)

Initial condition terms have been removed as they
do not affect stability. The characteristic equation
det[(z�1)I �M(m)+Γ] = 0 must have its roots (poles
of the iterative learning algorithm) inside the unit cir-
cle for stable learning. That can be easily shown to be
equivalent to the condition

jeig[M�1(m)(M(m)�Γ)]j< 1 (20)

which proves i. OnceΓ is properly chosen, ii is proved
applying the final value theorem to (19), that gives
zero steady state tracking error over all the sampled
points. Part iii is consequence of ii, as the inverse
problem solution is unique. Part iv just shows that
for the special gain matrix selectionΓ = H�1(m),
the poles of the characteristic equation are at the
origin. 2

Note that strong control actions could be applied if the
first non nullH(i) matrix has a rather small minimum
singular valueσ(H(m)). In that case, it could be better
to consider a new delay, ¯m> m, showing a stronger
dependency of the output with respect to the input
appliedm̄ time instants of time before. Both,H(m)
andm, can be estimated through the open-loop system
pulse response, if available.

Going for the maximum convergencespeed with (min-
imum time algorithm, high learning rates) can be a bad
solution in a noisy environment or if there is a model
mismatch.

After the learning process, afeedforwardcontrol is
applied. This implies the requirement of stable and
inverse stable open-loop plants, or the use of feed-
back stabilizing controllers or filters. In general, non
minimum phase systems yield unfeasibleU� input
sequences for big values of task lengthN.

Remark 1.To compute a learning gain matrix for
MIMO systems, an estimate ofH(m) must be avail-
able. That is considerably more difficult than the
choice of a learning gain in the SISO case, where
a small learning rate with the right sign would be
enough for convergence; in the MIMO case, direction-
ality effects arise. The task is considerably simpler if
good input-output pairings are chosen, so thatH(m) is
diagonal dominant.

Remark 2.High order learning laws, taking into ac-
count more previous terms, will lead to similar results.
This can be also a good option to filter the effect of
measurement noise.



3. EXTENSIONS

In the previous section a number of assumptions have
been taken. Some of them are easily removed because
it is just a matter of ease of notation, like it is the
case on the order of the learning law. Some other
assumptions can be also removed providing additional
insight in the proposed analysis.

Plant delay. The selection of the plant delay,m,
in the learning algorithm, is crucial. If the delay is
underestimated, the computed control action would be
influenced by the presence of noise andσ(H(m)) will
be very small or null. Thus, a very strong action will
result. This can also happen if, at timet = m some
outputs are excited, but others have longer delays or
negligible response at that time.

If the delay is overestimated, that is, if there is some
influence on the output fort < m, the previous control
actions will act as disturbances in the learning process.
As a result, the learnt control sequence,U , if it con-
verges, is no more the one theoretically obtained by
the inverse model.

Learning gain matrix. As pointed out in the theo-
rem, the selection ofΓ determines the convergence
and the velocity of the learning process. The compu-
tation of this gain matrix can be solved like a pole
placement problem.

Assuming a system matrixI , and an input matrix
H(m), if the pair (I ;H(m)) is controllable, the poles
of the matrixF in (13) can be assigned to the required
values. Given the special value of the system matrix,I ,
the necessary condition isH(m) to be full rank. Thus,
the learning gain matrix can be designed from a given
tracking error dynamics matrix,F, which should be
Hurwitz

Γ = H�1(m)(I �F) (21)

Generalization. The proposed approach has been
proved for linear systems. Thus, the linear systems
properties can be used to apply the learnt control se-
quenceU� to any combination of previously learnt
desired output trajectoriesYd. Notice that the learnt
control sequence is only valid for theYd used in the
training phase.

In principle, for multivariable systems, changes in
the references can be considered separately. In this
way, once the control inputs are determined for each
one, assuming constant the remaining references, any
tracking scenario can be solved by combining the
corresponding control actions. Also, it is allowed to
scale the control action if a desiredYd sequence is
proportional to the one for which the system has been
trained.

4. EXAMPLES

In order to illustrate the application of theorem 1,
three simple examples are shown. In the first case a
two-input two-output open loop stable plant,G1, is
controlled. Then, an unstable plant,G2, is considered
and a stabilizer controller is previously computed.
Finally, some discussion about the selection of the
gain matrixΓ, will point out the convergence issue in
the learning algorithm.

Example 1.(Stable plant). Given the external repre-
sentation of the plant

G1(s) =

2
664

2
4s2+1

0:5
3s+1

�(s+1)
s2+3s+1

2
2s2+2s+3

3
775

the target is to follow two independent finite time
references, in the interval[m;N], with N = 20. A
step change,yd1, for the first output and a triangular
reference,yd2, for the second one.

First, a sampled data model of the plant, with sampling
period T = 1sec, is derived. Then, the learning rule
(12) is applied. As there is no delay,m= 1 is chosen.
Initially, the fastest learning gain is selected, being

Γ1 =
�
CAm�1B

��1
=

�
2:1961�0:9514
3:2619 1:6434

�

From iteration 19 onwards, the maximum tracking
error is lower than 10�9 on both channels. The final
control and output signals are shown in the figure 3.

Example 2.(Unstable plant). Again, the input-output
representation of the plant is initially considered, be-
ing

G2(s) =

2
664

1
2s2+2s+3

�2
2s+1

4
(2s+1)(4s�1)

1
4s2+3s+1

3
775

and similar references as before are required to be
tracked. As the subsystemG21(s) is unstable, it is
necessary to stabilize the system. The global controller
will be composed of a feedback part,uf b(t), (stabiliz-
ing) and a feedforward part,uf f (t), (tracking). In this
case, a state feedback is initially designed. An opti-
mal LQR, withQ= I7�7 andR= 20I2�2 is assumed,
taking the same sampling period as before,T = 1sec.

u(t) = uf b(t)+uf f (t); uf b =�Kx

K =

�
�0:19 0:63 �1:1 0:99 0 0 0

0 0 0 0 1:4 �0:55 0:61

�

The iterative learning law (12) is applied to getuf f ,
with the fastest learning gain, being

Γ2 =
�
CAm�1B

��1
=

�
0:4868 3:9539
�1:1695 0:8219

�

Again, from k = 19, the maximum tracking error is
lower than 10�5 on both channels. The results are
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Fig. 3. Control of plantG1(s)

shown in the figure 4, where the learnt control inputs
u1 f f andu2 f f are shown.

Example 3.(Convergence rate). Now, for the first plant,
G1, different learning gain matrixΓ are applied.
The learning gain is selected using (21), withF =
diagf f1; f2g, whose elements, determine the rate of
convergence. This allows for input learning decou-
pling.

Firstly f1 = 0:1 and f2 = 0:3 are chosen. The results,
at k = 50 iterations, are shown in fig. 5(a). In this
case, a good convergence is obtained for the control
sequencesu�(t), although a big transient tracking er-
ror appears.

Now if f1 = e�0:1 and f2 = e�10 are chosen, the learn-
ing process is slower, since 300 iterations are required
to get convergence, but the maximum transient track-
ing error is lower. Results are shown in figure 5(b).

Note that, as stated in theorem 1, the convergence
and its speed is determined by the learning law (by
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Fig. 4. Tracking for the unstable plantG2(s)

Γ among other factors), but the final “optimal” control
sequences are the same. The sampling period choice
and theYd selection affect the intersampling behavior,
as hidden oscillations shown in the previous figures.
To avoid hidden oscillations the reference model out-
put must satisfy some algebraic constraints, but they
can only be evaluated if the plant transfer function
matrix is known (and that is not the case in ILC). Also,
as the minimum time learning gain is referred to the
adopted sampling period, its choice could present a
high sensitivity to disturbances, reflected as big tran-
sient tracking errors.

5. CONCLUSIONS

A convergence analysis method has been proposed
for an iterative learning control algorithm, suitable
for MIMO systems. The resulting design approach
has been tested with a number of examples and the
parameter selection has been discussed.

The main result of this paper is a convergence the-
orem giving the feasibility of applying pole assign-
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Fig. 5. Results with diagonal matrix F

ment techniques in the iteration axis, rather than the
time axis. Other techniques could be also applied.
When convergence is assured, zero tracking error on
all sampling points is achieved in steady state. Other
approaches deal with the convergence problem, get-
ting learning convergence as a sufficient condition.

Many questions remain open. The generalization issue
is not addressed in this paper, as well as the possibil-
ity of implementing fuzzy logic controllers using the
same technique. In (Albertos and Olivares, 2000) an
attempt to design iterative learning fuzzy controllers
has been presented. The main idea being to learn the
controller structure and parameters instead of a control
sequence. As a result, some options for generalizing
the learnt controller to different operating scenarios
could be foreseen. A full analysis of these proper-
ties, for MIMO and SISO systems using fuzzy logic
controllers is the subject of (Olivares, 2001). This is
currently a topic of active research.
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