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Abstract: In this paper we consider the optimum control of heating, ventilation and air-
conditioning (HVAC) systems. The objective of the control is to balance energy efficiency,
against user comfort. The HVAC system it self is nonlinear, and the cost function to be
minimized, non-quadratic. Both adaptive and non-adaptive strategies are given.
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1. INTRODUCTION

A major contributor to energy consumption is envi-
ronmental conditioning of commercial buildings. In
the US it accounts for over a third of the net national
consumption (Metha and Thurmann (1991)). In some
countries this figure is even higher (Kelley (1992)).
It is clear that given this high proportion of energy
consumption cost attributable to heating and cooling
of commercial buildings, even moderate increase in
its efficiency can be expected to result in major energy
savings. Consequently, in recent years there has been
renewed interest in the design of heating, ventilation
and air-conditioning (HVAC) systems that are more
energy efficient and do not sacrifice thermal and envi-
ronmental comfort. This paper focuses on the formu-
lation and evaluation of a nonlinear optimal feedback
control scheme that achieves such a balance.
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The cost function in this case must include both the
energy cost and a cost associated with overall level
of comfort. Such a function must penalize at the
same time excessive energy consumption and large
deviations from user selected conditions that ensure
prescribed levels of comfort. One of the key features
of the resulting cost function is a non-quadratic term
associated with the overall energy cost, specifically
that the cost of fan operation is cubic in the air flow
rate (House et. al. (1991)). Furthermore, the overall
HVAC system is it self nonlinear.

The bulk of the previous work in this area has focused
on the use of the Linear Quadratic Regulator (LQR)
(Barnett and Cameron (1985)). For example, (Za-
heeruddin and Patel (1993)) devise a LQR controller,
that assumes a linearized model of the HVAC system,
and drops the non-quadratic term associated with fan
operation. To accommodate potential variations in,
and imprecise knowledge of such system parameters
as external temperature and thermal load, (Roth et.
al. (1994)) formulate an adaptive optimal controller,
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Fig. 1. The HVAC System

again within the LQR framework. An exact optimal
controller is provided by (House et. al. (1991)), which
is, however non-causal and not amenable to on-line
implementation. In this paper we work with the non-
quadratic cost function, and solve the non-causality
problem by a working with a joint linearization of the
state and adjoint equations. Despite the adopted lin-
earization, the overall controller obtained is nonlinear.

2. THE SYSTEM

The HVAC system is depicted in Figure 1, and de-
scribed by �

��������� �
	 �����
�� �������
	 ��������� �� ����� (1)

������� �"!�
# ������� � ����� ����� � � � ����� �"�
# �����$�%�'& � ����� (2)�(� � �()*!�
	 ������� � ����� ��� � � � # ����� ���+	 �����$�,�-& ) (3)

where
�
� ����� and

�
# ����� are, respectively, the air tem-
peratures prior to and immediately following the heat
exchanger,

� 	 ����� is the temperature of the thermal
zone,

� �
is the temperature of the outside air, � is the

air density, � � is the constant pressure specific heat of
air, � � is the effective volume of the heat exchanger,� ) is the effective thermal space volume, � � is the
flow rate at which the external air enters the system,& � ����� is the heat input to the heat exchanger, � ����� is
the volumetric airflow rate and & ) is the thermal load.

In the sequel, the external air flow rate will be kept at
its minimum allowable value

� � � � �/.103254

Table 1. Physical Parameters

Parameter Value6 1.19 kg/m 78+9
1005 J/kg- C:%;
25.5 m 7:%<
255 m 7=5> 4.86 ? 10 @ 7 $/min- C

>= 7 5.39 ? 10 @ �BA $/min- W
>=DC 5.20 ? 10 @5E $-min/m F= E 1.22 ? 10 @ F $-min

>
/m GHJILK

0.05 m 7JM sec

The overall goal is to devise a feedback law that
uses the temperatures

� # ����� and
�
	 ����� to modulate

the two quantities & � ����� and � ����� so as to minimize
a performance index that balnaces comfort level with
the cost needed to attain it. Specifically over a period
of operation that extends over the time interval � 2ON �QPR�
the total cost is

S,T�U � TBUV WYX[Z # � � 	 ����� �\�^] � # � Z 	 & #� �����
� Z+_ � � ����� � � ] � # � Z�` � 	 �����$a b�� (4)

where the
Zdc

’s are cost weighting factors,
� ]

and � ]
reflect the respective values of

��	 ����� and � ����� corre-
sponding to the maximum level of comfort. Further,�+# ����� and

� 	 ����� constitute the system states and & � �����
and � ����� the control inputs. Accordingly, one defines
the state vectore �������f� e � ����� e # �����$�hg(�i� �+# ����� � 	 �������jg (5)

and the input vectork �����d�i� k ������� k # �����$� g �i� & � ����� � �����$� 4 g (6)

The physical parameters in the foregoing are given in
Table 1. The minimization must be performed subject
to the additional constraint that

� �����ml � �/. 4
The first and the third terms in the cost function of (4)
are comfort costs due to temperature mismatch and the
level of draft, respectively, while the second and the
fourth are energy costs deriving from heat exchange
and fan operation, respectively. The optimization of
this cost function thus affects a trade off between
comfort level and the resulting operating cost of the
HVAC system.

It is noteworthy that the cost function to be min-
imized here is non-quadratic. By way of compari-
son one can cite the Optimal Control law embedded



in the Adaptive Optimal Control algorithm of (Bar-
nett and Cameron (1985)). Appealing as it does to
Linear Quadratic Regulator (LQR) theory, (Barnett
and Cameron (1985)) drops the non-quadratic termZ ` � 	 ����� in (4) and derives a linear controller obtained
on the basis of a linearized version of the model equa-
tions (1), (2) and (3).

3. THE CONTROLLER

3.1 A reformulation

Our objective is to consider an infinite horizon con-
troller, i.e. one which minimizes

SOT�U
as � P���� . For

such an optimization problem to be well posed, there
must exist a control input and state values for which
the system equations (1), (2) and (3) are at steady state
and, the integrand of the cost function to be minimized
is zero. Otherwise the cost function would be infinite
over the infinite horizon of its operation and conse-
quently the optimization problem would not have a
solution. It is readily verified that the integrand in (4)
cannot in general be zero. To circumvent this difficulty
one may pose the alternative problem of minimizing:

S���� � �V W X[Z # � �+	 ����� ��� ] � # � Z 	 & #� �����
� Z _ � � ����� � � ] � # � Z ` � 	 ����� � S � a�b�� (7)

where
S �

is a constant representing the minimum
steady state value that the integrand in (4) can assume;
i.e. S � �
	��� X Z # � � 	 ����� ����] � # � Z 	 & #� ������ Z+_ � � ����� � � ] � # � Z�` � 	 ������a (8)

subject to!� # ����� � 25N !�
	 �����d� 25N
and � ����� l � �J. 4 (9)

Indeed, while technically one can have a lower value
of the integrand in (7) by setting

��	 �����m� � ]
, & � ����� �2

and

� ��������	���� � � �/. N � Z _ ��� Z #_ ��� Z _ Z ` � ]� Z ` � N
at these values the derivative of

� 	 ����� will not be
zero. Consequently, these values themselves cannot be
sustained.

The problem of minimizing (8) subject to (9) is readily
solvable and the constant determined. Further, as

S �

is a constant, the control law that minimizes (7) also
minimizes (4). Henceforth

S ���
will be referred as the

excess cost.

3.2 A noncausal controller

Proceeding in a standard fashion, (Barnett and Cameron
(1985)) and using the notations (5) and (6), we work
with the cost function

S � ��� P �(� �V W�� � e N k N ���Lb�� � �V WYX[Z # � e # ����� �"�^] � # � Z 	 k #
� �����

� Z+_ � k # ����� � � ] � # Z�` k 	# ����� � S�� a
b�� (10)

formulate the two dimensional costate vector � ����� = � � � ����� N � # ������� g
and the Hamiltonian,� � � � e N k N ���+� � g ����� � � e N k N ����� Z # � e # ����� �\� 	"! ] � P � #� Z 	 k #

� ������� Z+_ � k # ����� � � ] � #� Z�` k 	# ����� � S�� � � ������� !e �h������� � # ����� !e # ����� (11)

and obtain the control law we use� !� � ����� !� # ������� � �$# �# e N � � � ��� 2
(12)

and %'&%'(�) � 2
, * �,+ N.- . First observe that with / ������ , (1), (2) and (3) can be rewritten as

!e � �����+� +� � � k # �����
� e # ����� � e � ����� �
� � � � � � � e # ����� �
� k � �����/10 (13)

and !e # �����J������� k # ������ ) � e ������� � e # ����� �
� & )/ � ) 4 (14)

Moreover (12) becomes

!� � ������� k # �����32 � � ������ � � � # ������ )54 (15)

and

!� # �����(� � - Z # � e # ����� ����] �
� k # �����32 � # ������ ) � � � ������ � 4� � � � � ������(� 4
(16)

Then



# �# k � � - Z 	 k � �����+� � �������/ � � � 2
and# �# k # � - Z _ � k # ����� � � ] �5� � � ������ � � e # ����� � e � �������

� � Z ` k ## ������� � # ������ ) � e � ����� � e # ������� � 2
Thus, k � ������� � � �������- Z 	 / � � 4 (17)

Further, define� � e N � ��� � e # ����� � e � ����� � 2 � �������� � � � # ������ ) 4 N
(18)

and �k ������� � Z _ �5� Z #_ � � Z ` � - Z _ � ] ��� � e N � ���� Z�` 4
(19)

Thenk # ������� � � �/.��k ����� complex or
�k ������� � �/.�k ����� else

4
(20)

Observe, the determination of k � ����� and k # ����� requires
the knowledge of both � ����� and e ����� . As the former
is the solution of a differential equation for which
a boundary, as opposed to an initial condition, is
provided, the above control law is unimplementable
online and in fact may not even have a closed form
solution.

3.3 An approximation

To remove the noncausality, we introduce an approx-
imation. One can show, that there exist, � � N e � such
that with � � � �

and e � e � the integrand in (7), the!� c ����� and !e c ����� are all zero under (17) and (20). Now
linearize (13) - (16), under (17) and (20). Defining,� � ������� � ����� � � �

and
� e ������� e ����� � e � , as we will

show presently, the linearized equations are�	 !� e �����
!� � �����


� � �	� ���
� � � � g


���	 � e ������ � �����

�

(21)

where
� ����� g is positive definite symmetric and� ��� g � is positive semidefinite symmetric. Then

(Barnett and Cameron (1985)), provided � � N � � is

completely controllable, and � � N � � is completely ob-
servable, the solution to (21) can be written as� � ��������� � e �����
where � is the unique positive definite symmetric
solution to the Riccati equation� g����� � � � � � � � � 2O4

(22)

Once
�

,
�

and � are obtained, (22) is easily solved.
The control law we propose then is (17), (20) and� ���������3� e ����� � e � ��� � � 4

(23)

Further, under these conditions the linearized equa-
tions are also exponentially stable. Observe, despite
the linearization in the design process, one has a non-
linear controller.

To find e � and � �

one must set the right hand sides of
(13)- (16) to zero subject to# �# e c � # �# k c � 2 N * � + N.-,4
This reduces to � ��� Z #_ ��� Z+_�Z�` � ] N (24)

� �
���������	

2 - Z # � � � � � � 2
� � ! �"! � � � 2 + � /
� ! � � ! 2 2
2 2 + � / � � - Z 	


$########�
% � ���������	

- Z #/�^]
� � �j���& ) � /2


$########� N

e � � X �
�
� # a'& and � � � �*	 X + � ) � � � a(& (25)

where
� c

is the * -th element of
�

and

� ! � k �# ������� 	�� � � � �/. N � Z _ �
�

� Z�` )
is the steady-state value of the volumetric airflow
rate. Again, for all meaningful values of the system
parameters � Z _ � �

� Z ` l � �/. 4
Whence one can write

� ! � � Z _ � �
� Z ` 4



By linearizing (13) - (16) around � e � & N � � & � & given by
(24)-(25), one finds that

� � �	 � � ! � � � � ! � �(� � � �"� �(�
� ! � � ) � �"! � �()


�
(26)

� �
�����	 +- Z 	 / # � #� � � e �� � e �# � #- � #� � � � e �� � e �# � #- � � �() �

� � e �� � e �# � #- � � � ) � � e �� � e �# � #- � #) / # �

 ####�

and � � - Z # � 2ON +/� & � 25N +/� .
Indeed, since � � � 25N�� - Z # � forms an observable
pair with

�
, and

�
is positive definite, the conditions

we had earlier stated are met. The overall optimal
controller is therefore as in (17) and (20), with � �����
computed by (23)-(25), and � , the unique positive
definite symmetric solution of (22), with

�
,
�

and �
as above.

need to be computed online.

4. ADAPTIVE CONTROL

In this section we provide a Recursive Least Squares
(RLS) based adaptive controller to cope with the fact
that some of the key system parameters, such as ex-
ternal temperature and thermal load vary over time,
and are difficult to accurately measure. To this end
consider (13) and (14). Definee ������� !� ����� � � � �����+� e ����� N (27)

� ��������� !� �������(� � � �%������'� k � � e # � e � � N + N � e # � k � � g N
and � # ������� !� ��������� � � ���������� k ��� e � � e # � N +/� g 4
Also define the system parameter vectors�

� ��� +� � N � �J�^� N � � N +/ 0 g
and �j# � � +� ) N � & )/ � ) 0 g 4

Observe, the HVAC system model can be written in
the form �� 	 e � ����� � � &� ����� � �

e # ����� � � &# ����� � # 4
(28)

Define, the vector
� g � � � g� � g# � and the matrix� g$��������� � � ����� g 22 � # ����� g 0 4

As, e ����� � � g ����� � the observation signals can be
generated without explicit differentiation. Then the
parameter vector

�
can be estimated by

�� ����� � �	 TV W�
 %��� T %��� � ����� � g ��������� 
� % �
�	 TV W�
 %��� T %��� � ����� e ��������� 
� 4

Here
Z

represents a forgetting factor. In practice of
course one implements this identifier with a well
known recursive algorithm, (Astrom and Wittenmark
(1989)).

4.1 Simulations

We now present a simulation result to validate both the
adaptive and non-adaptive algorithms. Figures 2 and
3 depict these results. Specifically, fig. 2 gives

S � � �����
in (29) as a function of � , while fig. 3 gives

S & ����� in
(30) as a function of � . The solid lines are the result
of the nonadaptive algorithm, when all parameters are
perfectly known. The dashed lines represent the case
where the parameters are uncertain, and the controller
of the previous section, uses the parameter estimates
provided by the identification algorithm.

S���� ����P%�(� T�UV W X Z # � �
	 ����� ��� ] � # � Z 	 & #� ����� � Z�` � 	 ������ Z _ � � ����� � � ] � # � S � a+b�� (29)

S & ����P%�+�
T�UV W X Z # � �
	 ����� �\� ] � # � Z 	 & #� �����

� Z _ � � ����� � � ] � # � Z ` � 	 �����$a b�� (30)
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Fig. 2. The Excess Cost vs. Time in hours.
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Fig. 3. The Total Cost vs. Time in hours.

As expected
S � � ����� quickly converges to a constant

value, reflecting the fact that the control law forces the
system to converge to the trajectory correponding to a
zero value of the integrand in (29). The fact that the
total cost rises linearly after this period reflects the
fact that the integrand in (30) converges to the non-
zero value of

S �
. The additional costs in the adaptive

case can be traced to the learning time involved in the
identification process.

5. CONCLUSION

We have presented an optimal control law for HVAC
systems that minimizes a non-quadratic cost function.
Though obtained by a linearizing approximation of
the state and adjoint equations, the law itself is non-
linear. Both adaptive and nonadptive versions of the
algorithm are examined by simulations.
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