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Abstract: This paper concerns a problem of robust stabilization of a class of discrete-time

systems with norm-bounded parameter uncertainty and unknown constant delay. A new

delay-dependent stabilization condition using a memoryless controller is formulated in terms

of matrix inequalities. An algorithm involving convex optimization is proposed to design a

controller guaranteeing a suboptimal maximal delay such that the system can be stabilized

for all admissible uncertainties. Numerical examples are given to illustrate the proposed

results.
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1. INTRODUCTION

During the last decades, considerable attention has

been devoted to the problem of stability analysis and

controller design for time-delay systems. Especially, in

accordance with the advance of robust control theory,

a number of robust stabilization methods have been

proposed for uncertain time-delay systems.

The existing robust stabilization results for time-

delay systems can be classified into two types: delay-

independent stabilization (Phoojaruenchanachai and

Furuta, 1992)-(Kim et al., 1996) and delay-dependent

stabilization (Niculescu et al., 1994)-(Fu et al., 1998).

The delay-independent stabilization provides a con-

troller which can stabilize a system irrespective of

the size of the delay. On the other hand, the delay-

dependent stabilization is concerned with the size of

the delay and usually provides an upper bound of the

delay such that the closed-loop system is stable for

any delay less than the upper bound. While the delay-

independent stabilization has been extensively studied

by many researchers for the last decades, the study for
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the delay-dependent stabilization is relatively new and

still under progress (Niculescu et al., 1998). In general,

the delay-dependent stabilization is considered less

conservative than the delay-independent case.

Since most physical systems evolve in continuous-

time, it is natural that theories for stability analy-

sis and controller synthesis are mainly developed for

continuous-time. However, it is is more reasonable

that one should use a discrete-time approach for that

purpose because the controller is usually implemented

digitally. Despite this significance mentioned, less at-

tention has been paid to discrete-time systems with

delays (Kapila and Haddad, 1998)-(Mahmoud, 2000).

It is mainly due to the fact that the delay-difference

equations with known delays can be converted into

a higher-order delayless system by augmentation ap-

proach. However, for systems with large known delay

amounts, this scheme will lead to large-dimensional

systems. Furthermore, for systems with unknown de-

lay the augmentation scheme is not applicable.

In this paper, a new delay-dependent robust stabi-

lization condition using a memoryless controller is

presented for uncertain discrete state-delayed systems.

An algorithm involving convex optimization is pro-

posed to design a controller guaranteeing a suboptimal
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maximal delay such that the system can be stabilized

for all admissible uncertainties. Since the existing sta-

bilization methods for discrete-time delay systems are

mostly delay-independent ones, the results developed

in this paper will be as much meaningful.

The organization of the paper is as follows. In Section

2, the problem to be solved is formulated and prelim-

inary results are given. In Section 3, nominal state-

delayed systems without uncertainties are considered

first and stability analysis and stabilization results are

presented. Then, Section 4 deals with uncertain time-

delay systems and the results of the previous section

are extended to robust stability and stabilization con-

ditions. In Section 5, numerical examples are given to

illustrate the proposed results and finally Section 6

makes conclusions.

2. PROBLEM STATEMENT AND

PRELIMINARIES

Consider the following uncertain discrete-time state-

delayed systems

x(k + 1) = [A + D∆(k)E]x(k)

+[A1 + D∆(k)E1]x(k − h)

+[B + D∆Eb]u(k)

x(k) = φ(k), − h ≤ k ≤ 0

(1)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the

control, h is a positive integer representing the amount

of delay, φ(·) is the initial condition, A, A1, B, D,

D1, E, E1, and Eb are real constant matrices with

appropriate dimensions. ∆(k) ∈ Rα×β is a time-

varying uncertainty of the form

∆(k) = diag{∆1(k), · · · , ∆r(k)} (2)

where

∆T
i (k)∆i(k) ≤ I, i = 1, · · · , r. (3)

We are interested in designing a memoryless state-

feedback controller

u(k) = Kx(k) (4)

where K ∈ Rm×n is a constant gain matrix. Our aim

is to develop a delay-dependent robust stabilization

method which provides a controller gain K as well as

an upper bound h̄ of the delay such that the closed-

loop system is stable for any h satisfying 0 ≤ h ≤ h̄

and for all admissible uncertainties.

In obtaining the main results of this paper, the follow-

ing upper bound for the inner product of two vectors

plays an important role:

−2aTN b ≤ inf
X,Y,Z

"
X Y −N

Y T −N Z

#
(5)

where "
X Y

Y T Z

#
and I denotes an identity matrix with an appropriate

dimension. Extending this idea, we have the following

lemma.

Lemma 1. Assume that a(·) ∈ Rna , b(·) ∈ Rnb ,

and N (·) ∈ Rna×nb are defined on the interval Ω.

Then, for any matrices X ∈ Rna×na , Y ∈ Rna×nb

and Z ∈ Rnb×nb , the following holds:

−2
X

j

aT (j)N b(k)

≤
X

j

"
a(j)

b(j)

#T "
X Y −N

Y T −N T Z

#"
a(j)

b(j)

# (6)

where "
X Y

Y T Z

#
≥ 0. (7)

Lemma 2. Let D, E, and ∆ be real matrices of

appropriate dimensions with ∆ = diag{∆1, · · · , ∆r},
∆T

i ∆i ≤ Ini , i = 1, · · · , r. Then, for any real matrix

Λ = diag{λ1I, · · · , λrI} > 0, the following inequalities

will be true.

D∆E + ET ∆T DT ≤ DΛDT + ET Λ−1E, (8)

D∆E + ET ∆T DT ≤ DΛ−1DT + ET ΛE. (9)

Proof: From the fact (Λ
1
2 DT − Λ−

1
2 ∆E)T (Λ

1
2 DT −

Λ−
1
2 ∆E) ≥ 0, it follows that

D∆E + ET ∆T DT ≤ DΛDT + ET ∆T Λ−1∆E.

For ∆ and Λ, we have the relation

∆T Λ−1∆ = diag{λ−1
1 ∆T

1 ∆1, · · · , λ−1
r ∆T

r ∆r}
≤ diag{λ−1

1 In1 , · · · , λ−1
r Inr} = Λ−1.

Hence, ET ∆T Λ−1∆E ≤ ET Λ−1E. From this, (8) fol-

lows. The proof of (9) starts from the fact (Λ−
1
2 DT −

Λ
1
2 ∆E)T (Λ−

1
2 DT −Λ

1
2 ∆E) ≥ 0. The remaining pro-

cedure is quite clear, hence omitted. This completes

the proof. .

3. STABILITY AND STABILIZATION FOR

NOMINAL SYSTEMS

Let us consider a nominal state-delayed system

x(k + 1) = Ax(k) + A1x(k − h) + Bu(k),

x(k) = φ(k), k ∈ [−h, 0].
(10)

We start with stability analysis of the unforced system

(10) with u(k) = 0. The following theorem presents

a delay-dependent stability condition, which is the

starting point of our further developments.

Theorem 1. If there exist P , Q, X, Y and Z such

that 26664
(1, 1) −Y AT P (1, 4)

−Y T −Q AT
1 P h̄AT

1 Z

PA PA1 −P 0

(1, 4)T h̄ZA1 0 −h̄Z

37775 < 0, (11)

"
X Y

Y T Z

#
≥ 0 (12)

where



(1, 1),−P + h̄X + Y + Y T + Q,

(1, 4), h̄(A− I)T Z,

then the unforced system (10) with u(k) = 0 is

asymptotically stable for any time-delay h satisfying

0 ≤ h ≤ h̄.

Proof. Choose a Lyapunov functional as follows:

V (k) , V1(k) + V2(k) + V3(k) (13)

where

V1(k), x(k)T Px(k)

V2(k),
−1X

β=−h

kX
j=k+β+1

[x(j)− x(j − 1)]Z

×[x(j)− x(j − 1)]

V3(k),
k−1X

j=k−h

x(j)T Qx(j)

Since it holds that

x(k − h) = x(k)−
kX

j=k−h+1

[x(j)− x(j − 1)]

the unforced system (10) can be written as

x(k + 1) = (A + A1)x(k)

−A1

kX
j=k−h+1

[x(j)− x(j − 1)]

and thus increment of V1 satisfies the relation

∆V1(k) = V1(k + 1)− V1(k)

= x(k)T (A + A1)
T P (A + A1)x(k)

−2x(k)T (A + A1)
T

×PA1

kX
j=k−h+1

[x(j)− x(j − 1)]

+ [x(k)− x(k − h)]T AT
1 PA1

× [x(k)− x(k − h)]− x(k)T Px(k)

Defining a(·), b(·), and N in (6) as a(j) , x(k),

b(j) , x(j)− x(j − 1) and N , (A + A1)
T PA1 for all

j ∈ [k − h + 1, k] and applying Lemma 1 will supply

(12) and

∆V1(k)≤ x(k)T [AT PA− P + h̄X + Y + Y T ]x(k)

+2x(k)T [−Y + AT PA1]x(k − h)

+x(k − h)T AT
1 PA1x(k − h)

+

kX
j=k−h+1

[x(j)− x(j − 1)]T Z[x(j)− x(j − 1)]

Since ∆V2(k) and ∆V3(k) yield the relation

∆V2(k) = h[(A− I)x(k) + A1x(k − h)]T Z

×[(A− I)x(k) + A1x(k − h)]

−
kX

j=k−h+1

[x(j)− x(j − 1)]T Z[x(j)− x(j − 1)]

∆V3(k) = x(k)T Qx(k)− x(k − h)T Qx(k − h)

we have

∆V (k) = ∆V1(k) + ∆V2(k) + ∆V3(k)

≤
"

x(k)

x(k − h)

#T "
(1, 1) (1, 2)

(1, 2)T (2, 2)

#"
x(k)

x(k − h)

#
where

(1, 1),AT PA− P + h̄X + Y + Y T

+h̄(A− I)T Z(A− I) + Q

(1, 2),−Y + h̄(A− I)T ZA1 + AT PA1

(2, 2),AT
1 PA1 + h̄AT

1 ZA1 −Q

Then, using the Lyapunov-Krasovskii stability theo-

rem (Hale and Lunel, 1993) and Schur complement

(Boyd et al., 1994), we can conclude that the unforced

system (10) is asymptotically stable if (11) and (12)

hold. This completes the proof.

The proposed stability conditions (11) and (12) are

linear matrix inequality (LMI) conditions. Hence, it

is easy to compute the maximum upper bound of the

allowable delay h̄ using efficient convex optimization

algorithms (Boyd et al., 1994).

In the following theorem, we extend Theorem 1 to

design a stabilizing memoryless controller (4) for the

system (10).

Theorem 2. If there exist L, M , N , R, W , and V

such that26664
(1, 1) −N (3, 1)T (4, 1)T

−NT −W LAT
1 h̄LAT

1

(3, 1) A1L −L 0

(4, 1) h̄A1L 0 −h̄R

37775 < 0, (14)

"
M N

NT LR−1L

#
≥ 0 (15)

where

(1, 1) , −L + h̄M + N + NT + W,

(3, 1) , (AL + BV ),

(4, 1) , h̄[(A− I)L + BV ],

then the system (10) with the control u(k) = V L−1x(k)

is asymptotically stable for any time-delay h satisfying

0 ≤ h ≤ h̄.

Proof. In view of the closed-loop system of (10) with

the control (4), we replace A in (11) with A + BK.

Now, pre- and postmultiply diag{P−1, P−1, P−1, Z−1}
and diag{P−1, P−1} to (11) and (12), respectively

and apply the change of variables such that L , P−1,



M , P−1XP−1, N , P−1Y P−1, R , Z−1, W ,
P−1QP−1, and V , KP−1, then we obtain (14) and

(15). This completes the proof.

It is noted that the resulting conditions for synthesis

problem in Theorem 2 are no more LMI conditions

because of the term LR−1L in (15). As a result,

unfortunately, we cannot find in general the global

maximum h̄ using convex optimization algorithms in

this case.

An easy way to obtain a suboptimal maximal delay

instead is simply setting R = L in (14) and (15),

which results in LMI conditions. However, if one can

afford more computational efforts, better results can

be obtained using an iterative algorithm presented

next.

First, we define a new variable S such that LR−1L ≥
S and replace the condition (15) with"

M N

NT S

#
≥ 0, LR−1L ≥ S. (16)

Since LR−1L ≥ S is equivalent to L−1RL−1 ≤ S−1,

the condition (16) is equal to"
M N

NT S

#
≥ 0,

"
S−1 L−1

L−1 R−1

#
≥ 0,

by Schur complement (Boyd et al., 1994). Then, by

introducing new variables T , J , and G, the original

condition (15) can be represented as"
M N

NT S

#
≥ 0,

"
T J

J G

#
≥ 0, ,

T = S−1, J = L−1, G = R−1.

Now, using a cone complementarity problem (El

Ghaoui et al., 1997), we suggest the following nonlin-

ear minimization problem involving LMI conditions

instead of the original non-convex feasibility problem

of Theorem 2:

Minimizetr(ST + LJ + RG)

subject to(14),"
M N

NT S

#
≥ 0,

"
T J

J G

#
≥ 0,"

S I

I T

#
≥ 0,

"
L I

I J

#
≥ 0,

"
R I

I G

#
≥ 0.

(17)

If the solution of the above minimization problem

is 3n, that is, tr(ST + LJ + RG) = 3n, we can

say from Theorem 2 that the system (10) with the

control u(k) = V L−1x(k) is asymptotically stable.

Although it is still impossible to always find the global

optimal solution, the proposed nonlinear minimization

problem is easier to solve than the original non-convex

feasibility problem. Actually, utilizing the lineariza-

tion method (El Ghaoui et al., 1997), we can easily

find a suboptimal maximal delay using an iterative

algorithm presented in the following. Note that the

condition (15) is used as a stopping criterion in the

algorithm since it is numerically very difficult in prac-

tice to obtain the optimal solution such that tr(ST +

LJ + RG) is exactly equal to 3n.

Algorithm 1.

(1) Choose a sufficiently small initial integer h̄ > 0

such that there exists a feasible solution to the

LMI conditions in (17). Set h̄so = h̄.

(2) Find a feasible set

(J0, G0,L0, M0, N0,R0, S0,T0, V0,W0) satisfying (14)

and (17). Set k = 0.

(3) Solve the following LMI problem for the variables

(J, G, L, M, N, R, S, T, V, W ):

Minimize tr(SkT + TkS + LkJ + JkL

+ RkG + GkR)

subject to (14) and (17).

Set Jk+1 = J, Gk+1 = G, Lk+1 = L, Rk+1 =

R, Sk+1 = S and Tk+1 = T .

(4) If the condition (15) is satisfied, then set h̄so =

h̄ and return to Step 2 after increasing h̄ to

some extent. If the condition (15) is not satisfied

within a specified number of iterations, say kmax,

then exit. Otherwise, set k = k+1 and go to Step

3.

The above algorithm gives a suboptimal maximal de-

lay h̄so such that the system (10) can be stabilized

with the controller (4). Later, in Section 5, we shall

illustrate via numerical examples that the above algo-

rithm can provide quite satisfactory results.

4. ROBUST STABILITY AND STABILIZATION

FOR UNCERTAIN SYSTEMS

The following theorem provides robust stability anal-

ysis of the unforced system (1) with u(k) = 0.

Theorem 3. If there exist matrices P > 0, Q, X, Y,

Z and Λ = diag{λ1I, · · · , λrI} such that2666664
P11 P12 AT P P14 0

P T
12 −Q + ET

1 ΛE1 AT
1 P h̄AT

1 Z 0

PA PA1 −P 0 PD

P T
14 h̄ZA1 0 −h̄Z h̄ZD

0 0 DT P h̄DT Z −Λ

3777775 < 0 (18)

"
X Y

Y T Z

#
≥ 0 (19)

where

P11 ,−P + h̄X + Y + Y T + Q + ET ΛE,

P12 ,−Y + ET ΛE1,

P14 , h̄(A− I)T Z,

then the unforced system (1) with u(k) = 0 is asymp-

totically stable for any time-delay h satisfying 0 ≤ h ≤
h̄ and all admissible uncertainties.



Proof. Define the left side of (11) to be L. For uncer-

tain system (1) with u(k) = 0, replace A, A1, and B

by A+D∆E, A1+D∆E1, and B+D∆Eb, respectively

in condition (11). Then (11) is changed into

L+ D̄∆Ē + ĒT ∆T D̄T < 0, (20)

where

D̄ , [0 0 (PD)T h̄(ZD)T ]T ,

Ē , [E E1 0 0].
(21)

From (9) in Lemma 2,

D̄∆Ē + ĒT ∆T D̄T ≤ D̄Λ−1D̄T + ĒT ΛĒ

and we can say that (20) holds if the following inequal-

ity is satisfied:

L+ D̄Λ−1D̄T + ĒT ΛĒ < 0, (22)

where Λ = diag{λ1I, · · · , λrI} > 0. After some ma-

nipulation using Shcur complement, inequality condi-

tion (22) is changed to (18). This completes the proof.

Next, we extend Theorem 3 to design a robust stabi-

lizing memoryless controller (4) for the system (1) in

the following theorem.

Theorem 4. If there exist matrices L, M , N , R, V ,

W and Λ = diag{λ1I, · · · , λrI} such that2666664
Q11 −N Q13 Q14 Q15

−NT −W LAT
1 h̄LAT

1 LET
1

QT
13 A1L Q33 h̄DΛDT 0

QT
14 h̄A1L h̄DΛDT Q44 0

QT
15 E1L 0 0 −Λ

3777775 < 0 (23)

"
M N

NT LR−1L

#
≥ 0 (24)

where

Q11 ,−L + h̄M + N + NT + W,

Q13 , (AL + BV ),

Q14 , h̄[(A− I)L + BV ]T ,

Q15 , (EL + EbV )T ,

Q33 ,−L + DΛDT ,

Q44 ,−h̄R + h̄2DΛDT ,

then the system (1) with the control u(k) = V L−1x(k)

is asymptotically stable for any time-delay h satisfying

0 ≤ h ≤ h̄ and all admissible uncertainties.

Proof. Define the left side of (14) to be M. For

uncertain system (1), replace A, A1, and B by A +

D∆E, A1 + D∆E1, and B + D∆Eb, respectively in

condition (14). Then (14) is changed into

M+ D̄∆Ē + ĒT ∆D̄ < 0, (25)

where

D̄ , [ 0 0 DT h̄DT ]T ,

Ē , [ (EL + EbV ) E1L 0 0 ].

From (8) in Lemma 2,

D̄∆Ē + ĒT ∆D̄ ≤ D̄ΛD̄T + ĒT Λ−1Ē

and we can say that (14) holds if the following inequal-

ity is satisfied:

M+ D̄ΛD̄T + ĒT Λ−1Ē < 0, (26)

where Λ = diag{λ1I, · · · , λrI} > 0. After some ma-

nipulation using Shcur complement, inequality condi-

tion (26) is changed to (23). This completes the proof.

5. NUMERICAL EXAMPLES

First, we present a numerical example illustrating the

proposed stability criteria given in Theorem 1. Let

us consider a nominal state-delayed system (10) with

system matrices

A =

"
0.8 0

0 0.91

#
, A1 =

"
−0.1 0

−0.1 −0.1

#
.

Any delay-independent stability criterion fails to ver-

ify that the system is asymptotically stable. Applying

Theorem 1, we obtain h̄ = 41.

The next example deals with the robust stabilization

using Theorem 4. Let us consider a uncertain state-

delayed system (10) with system matrices

A =

"
1 0

0 1.01

#
, A1 =

"
−0.02 0.005

0 −0.01

#
, B =

"
0

0.01

#
,

D = 0.2× I E = E1 = I, Eb = 0,

Using Algorithm 1, we can obtain results as shown in

Table 1.

Table 1. Robust controller of Theorem 4

h Iterations Feedback gain

10 2 [−0.0573 − 5.3218]

20 2 [−0.1495 − 2.9303]

30 2 [−0.1442 − 2.2709]

40 8 [−0.1697 − 1.9990]

41 40 [−0.6311 − 2.3615]

Note that the number of iterations in the table denotes

after how many iterations the stopping criterion, i.e.

the condition (15), was activated. Figure 1 compares

the state trajectories of the open-loop unforced sys-

tems and the closed-loop systems controlled by the

proposed controller. It clearly shows that the system

is stabilized by the proposed controller.

6. CONCLUSIONS

This paper proposed a new robust stabilization

method for a class of discrete-time systems with norm-

bounded uncertainties and unknown constant state-

delay. An algorithm involving convex optimization
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Fig. 1. State trajectories x1 (solid line : closed-loop,

dotted line : open-loop )

was also proposed to construct a controller with a

suboptimal upper bound of the delay such that the

system can be stabilized for all admissible uncertain-

ties. It was shown by numerical examples that the pro-

posed delay-dependent stabilization method can even

capture the delay-independent stabilizability of the

system. It is considered that the proposed results will

be helpful in the analysis and synthesis for networked

control systems, which inevitably include a time-delay

induced by data transmission.
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