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Abstract:
This paper presents a control design approach for nonlinear distributed process
systems. The approach is developed on the framework of a thermodynamic formalism
that exploits convexity of exergy-like functions and dissipation to derive passivity con-
ditions for process systems. In our case, however, the convex function candidate is part
of the controller design problem and will be selected as that which reduces/minimizes
non-dissipative effects. On this framework, control implementation issues such as finite
number of inputs, outputs and input saturation, will be discussed. In this regard,
criteria for appropriate sensor/actuator placement and stability preservation under
constrained inputs are given.
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1. INTRODUCTION

In this paper we consider the problem of stabi-
lization of nonlinear distributed process systems
through finite control actions subject to satura-
tion. These systems play a central role in chem-
ical and material processing industries as many
of their operations involve convection diffusion
and reaction phenomena. Interesting examples in-
clude, to name a few, catalytic reactors, chemical
vapor deposition units, crystallization or thermal
processing. The control of distributed process sys-
tems has received considerable attention from the
control community over the last years. The recent
review by (Christofides, 2001) witnesses these ef-
forts and main developments.

A widely accepted approach to controlling dis-
tributed process systems relies on a state-space-

like representation of the original infinite di-
mensional system through projection of the par-
tial differential equations on appropriate ba-
sis function sets. Finite differences, finite ele-
ments and spectral decomposition schemes are
the most common examples. This structure is
then employed to address different control re-
lated aspects such as observer and controller de-
sign or actuators/sensors placement -see for in-
stance (Christofides and Daoutidis, 1997) and
(Antoniades and Chrsitofides, 2000).

A different, although complementary, approach is
the one recently proposed by (Alonso and Yd-
stie, 2001) to develop passive stabilizing controls
for distributed process systems. This approach
sets its roots on the second law of thermody-
namics and passivity, as it is understood in sys-
tems theory (Sepulchre et al., 1997). The second
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law in the exergy form gives convexity which in
turns provides a general answer to the question
of finding Lyapunov function candidates to as-
sess system’s evolution. Passivity concepts link
inputs to outputs while preserving the infinite
dimensional structure of the system. These two
concepts served as the basis to state general guide-
lines to design stabilizing high gain decentralized
controllers (Alonso et al., 2000).

This thermodynamic formalism will be the un-
derlying framework on which we will address the
design of nonlinear stabilizing controllers. Issues
related with control implementation will also be
considered. In particular, attention will be paid
to the selection of appropriate sensor/actuator
placements and stability preservation under in-
put constraints (Lin and Sontag, 1991). There is
however a main added ingredient: in the approach
we present, the convex function candidate is not
a priori selected but constructed as part of the
control design problem. In fact, this function will
be chosen as that which reduces/minimizes non-
dissipative effects. It will also impose the class
of nonlinear dependence between the field and
the actuators and consequently will determine the
structure of the control law.

The paper is organized as follows: In Section 2
we provide a brief description of the class of
systems under consideration. The main results
on stabilization of nonlinear distributed process
systems in the presence of input constraints are
contained in Section 3. Finally, in Section 4,
the different control synthesis aspects will be
illustrated on a case study that involves diffusion
and reaction.

2. DISTRIBUTED PROCESS SYSTEMS:
DESCRIPTION AND PROPERTIES

The class of systems we are considering in this
paper is described by sets of partial differential
equations (PDEs) of the form:

ut = −v∇u + k∆u + f(u) + p (1)

where u(x, t) and p(x, t) are vector functions with
elements defined in time and space on a compact
domain V with smooth boundary B. u is known
as the field and relates to densities of component
mole numbers and energy (Alonso et al., 2000).
p includes as elements functions that can be
manipulated through feedback control. v is a
stationary velocity field that directs convective
transfer and k a diffusion coefficient. The effect
of chemical reactions on the conservation laws
for mole numbers and energy is included in the
nonlinear term f(u). Eqn (1) can be interpreted as

an infinite dimensional system on a Hilbert space
equipped with inner product and norm:

< g, h >V=
∫

V

ghdx , ‖g‖22 =< g, g >V

we complete system’s description with boundary
conditions of the form:

a0u + a1
du

dn
= b0 (2)

with n being a unit vector normal to the surface
B and pointing outwards, while a0, a1 and b0 are
appropriate functions that account for first order,
second order or mixed boundary conditions. The
dissipative nature of systems of the form (1) allows
the representation of the solution u in terms of an
infinite series expansion (Alonso and Ydstie, 2001)
of the form:

u =
∞∑

j=1

cj(t)ϕj(x) (3)

where ϕj are orthonormal functions (eigenfunc-
tions) satisfying the eigenvalue problem:

∆ϕj = −λjϕj (4)

with boundary conditions (2). The eigenspectrum
σ(∆) = {λj}∞j=1 consists of an ordered set of
positive numbers such that λi < λj for i < j.
This property allows the definition of a small
positive parameter ε < 1 which partitions the
dynamic evolution of the c coefficients in (3), into
a slow and a fast time scales t and τ = t/ε,
respectively. The explicit form of the dynamics
can be obtained by Galerkin projection -see for
instance (Christofides and Daoutidis, 1997)- of the
original equation (1) on the set of eigenfunctions
{ϕj} so that:

.
cs = Ascs + ws(cs, cf ) + πs (5)

dcf

dτ
= εAfcf + ε(wf (cs, cf ) + πf ) (6)

where cT = (cT
s , cT

f ) and the elements of the vector
functions w = (wT

s , wT
f )T and π = (πT

s , πT
f )T are

of the form:

ωj = < ϕj , f(u) >V
πj = < ϕj , p >V

In the limit when ε → 0, fast modes relax so that
dcf

dτ → 0 . If in addition cf → 0, the solution
u(x, t) can be approximated by a finite number
of slow modes cs ∈ Rns in (5) so that u → us

with us =
∑ns

j=1 cj(t)ϕj(x). We will refer to us as



the slow solution. This notion will be employed
later on to design stabilizing finite dimensional
controllers.

3. ROBUST STABILIZING CONTROL OF
DISTRIBUTED PROCESS SYSTEMS

This section contains the main theoretical ingre-
dients required to design robust stabilizing non-
linear controllers for convection-diffusion-reaction
systems. First we address the stabilization prob-
lem in the more general -distributed- form and
then discuss implementation aspects related with
finite numbers of inputs, outputs and control sat-
urations.

Lemma 1. Let b(u) be a convex function in u,
A = dub and u,A ∈ H1,2(V,Rn) (Alonso and
Ydstie, 2001) so that:

u =
∞∑

j=1

cj(t)ϕj(x)

A =
∞∑

j=1

aj(t)ϕj(x)
(7)

with ϕj satisfying (4). Then the following inequal-
ities hold

1. < A, A >V≥ δ2 < u, u >V

2. < A, ∆u >V≤ −δλ1 < u, u >V

with δ being the smallest eigenvalue of the b-
Hessian over all possible u and λ1 the principal
eigenvalue of the Laplacian operator ∆.

Proof:

The first part of the statement is a direct con-
sequence of convexity of b. Since b is convex,
there exists a one-to-one map between A and u
such that A = Q(u)u with Q(u) being a positive
definite matrix of the form Q(u) =

∫ 1

0
H(αu)dα,

and H the Hessian of b. Then, for any arbitrary
vector y we have that yT Qy ≥ δyT y > 0 and
therefore < A, A >V≥ δ2 < u, u >V . To prove
statement 2 we note that:

< A, u >V≥ δ < u, u >V (8)

Using (7) and the fact that the eigenfunctions
{ϕj}∞j=1 are orthonormal and satisfy (4) we also
have that:

< u, u >V=
∞∑

j=1

c2
j

< A, u >V=
∞∑

j=1

ajcj

which combined with inequality (8) leads to∑∞
j=1(ajcj − δc2

j ) ≥ 0. In order for this inequality
to hold for any u ∈ H1,2(V, Rn), ajcj ≥ δc2

j for
every j and the statement is verified through the
following set of implications:

−< A, ∆u >V=
∞∑

j=1

λjajcj ≥ δ

∞∑

j=1

λjc
2
j

−< A, ∆u >V≥ δλ1

∞∑

j=1

c2
j

< A, ∆u >V≤ −δλ1 < u, u >V

Proposition 1. Consider the system (1), and a

reference u∗ with stationary boundary conditions
(2) satisfying:

−v∇u∗ + k∆u∗ + f(u∗) + p∗ = 0 (9)

Let u = u − u∗ and assume that there exists a

convex positive definite function b(u) such that
b(0) = 0 and

β ≥A
T

[f(u)− f(u∗)]

A
T
A

> 0 (10)

with A = dub and β a positive constant. Then,
under the control law p − p∗ = −ωA with ω ≥ β
the reference u∗ will be globally asymptotically
stable

Proof:

Combining (1) with (9) we obtain an equivalent
system in deviation form:

ut = −v∇u + k∆u + f(u)− f(u∗) + p (11)

Computing the time derivative of b along (11)
and integrating the resulting expression over the
domain V leads to:

Bt = < dub, ut >V≤ k < A, ∆u >V
+ < A, [f(u)− f(u∗)] >V + < A, p >V (12)

where the following relation for the convective
contribution was employed (Alonso et al., 2000):

< vA,∇u >V=
∫

B

bvndB ≥ 0

Using Lemma 1 and (10), inequality (12) becomes:

Bt ≤ −kδλ1 < u, u >V +β < A, A >V
+ < A, p >V

(13)



Substituting the expression for the control law in
(13) we obtain

Bt ≤ −µ < u, u >V (14)

with µ = kδλ1 + (ω − β)δ2 > 0. The result
then follows through standard Lyapunov stabil-
ity arguments (see for instance (Khalil, 1996)).

Note that asymptotic stabilization can be ensured
locally with gains ω lower than β. This can be
shown from convexity of b, by noting that for
any solution bounded as ‖u‖2 ≤ γ, there exists
a positive number such that < A, A >V≤ η(γ) <
u, u >V . Thus

Bt ≤ −(kδλ1 + ωδ2 − βη) < u, u >V

and uniform asymptotic stability can be con-
cluded for ω > (βη2 − kδλ1)/δ2.

3.1 Implementation Aspects: Inputs, Outputs and
Constraints

The stabilizing control law presented in Propo-
sition 1 requires complete measurement of the
field or at least its efficient reconstruction from
observation schemes. In addition, actions must be
distributed along the domain. In this section, we
relax these conditions in order to comply with
practical implementation restrictions, namely fi-
nite number of sensors and actuators as well as
input constraints. In what follows, we will as-
sume that measurements and actuators are only
available at a finite, and usually reduced, number
of locations. The effect of control saturations on
the stability of the closed loop system will be
considered as well.

Let us consider system (1) with appropriate
boundary conditions and a set of eigenfunctions
{φj}∞j=1. This set will be interpreted as the n-
discrete version of the set {ϕj}∞j=1 along the spa-
tial coordinates x in (7), so that φj ∈ Rn and
φT

j φk = δjk for every j and k, with δjk being
the Kronecker delta. Lets also define the operator
Pm ∈ Rm×n as that which projects any φj on m
(locations) of the n discrete coordinates, so that if
Φs = {φj}ns

j=1 is the set of eigenfunctions associ-
ated with the ns slow modes and us =

∑ns

j=1 φjcsj

we have:

Pmus = BT
s cs with BT

s = PmΦs

< us, us >V= cT
s BsB

T
s cs

The following result states conditions under which
stabilization is enforced through finite control
subject to saturation.

Proposition 2. Consider system (1) and the
reference u∗ as in Proposition 1. Let m be a
number of sensors and actuators placed on the
domain V at locations such that:

yT BsB
T
s y ≥αyT y > 0 (15)

for arbitrary ns-dimensional y vectors. Also, let
Am(um) ∈ Rm be a vector of measurements ob-
tained at the m-locations. Then for every

∥∥A
∥∥2

2
≤

γ2, there exists a control law pm = −ωmAm with
−ψ ≤ (pm)j ≤ ψ for every j actuator location
with

ωm >
β

α
(16)

ψ ≥ γ
√

βωm (17)

such that the reference u∗ is asymptotically stable.

Proof:

From convexity of b, we have that < u, u >V≥
η−1(γ) < A, A >V for some positive number η
dependent of u so that (13) becomes:

Bt ≤ −kδλ1η
−1 < A, A >V

+β < A,A >V + < A, pm >V
(18)

On the other hand, the time scale separation prop-
erty discussed in Section 2 ensures the existence
of a small positive ε such that u → us for large τ .
Therefore, in the t-time scale, the following holds:

−< A, pm >V→ ωmaT
s BsB

T
s as∥∥A

∥∥2

2
= < A,A >V→ aT

s as

Let us re-write the control law in the t-scale (Sec-
tion 2) as pj → −ωmbT

j as, where bT
j represents the

j-row of BT
s , and construct a saturation function

v = ( v1 · · · vm )T with elements:

vj =




−ωmbT

j as if −χ < bT
j as < χ

ψ if bT
j as ≤ −χ

−ψ if bT
j as ≥ χ

∣∣∣∣∣∣
(19)

and χ = ψ/ωm. Two cases will be considered:

• −χ < bT
j as < χ for every j = 1, ..., m.

In this case inequality (18) becomes:

Bt ≤ −kδλ1η
−1aT

s as − (ωmα− β)aT
s as

where use of lower bound (15) has been made.
Consequently, for ωm > β/α, we have that Bt ≤
−µ

∥∥A
∥∥2

2
with µ = kδλ1η

−1 + (ωmα− β) > 0 and
asymptotic stability follows as in Proposition 1.

• Either bT
k as ≤ −χ or bT

k as ≥ χ for k
actuators with 1 ≤ k ≤ m.



From the definition (19), (bT
j as)vj ≤ 0 for j =

1, ...m. In particular, each of the k actuators under
saturation satisfies that (bT

k as)vk ≤ −ψχ. Thus:

m∑

j=1

(bT
j as)vj ≤

∑

j=k

(bT
j as)vj ≤ − ψ2

ωm

Since < A, pm >V→
∑m

j=1(b
T
j as)vj , the con-

trol term in (18) is bounded as < A, pm >V≤
−ψ2/ωm. Combining this bound with (17) and
(18) we obtain:

< A, pm >V≤ − ψ2

ωm
≤ −γ2β

< A, pm >V≤ −β
∥∥A

∥∥2

2

Bt ≤ −kδλ1η
−1

∥∥A
∥∥2

2

and the result follows.

Note that condition (15) implicitly restricts the
number of possible locations for sensors and ac-
tuators to those that satisfy that inequality. In
fact, this inequality could be used as a criterion
to select placements so to maximize the minimum
eigenvalue α. It must be also pointed out that the
application of conditions (16) and (17) for control
design will depend on the pre-defined control ob-
jectives. Among others, two relevant scenarios can
be foreseen:

• Given a set of admissible perturbations
(bounded by γ) and allowed actions (ψ) find
the minimum number of sensor/actuators
and their location so to ensure stability.

• Given a number of sensors/actuators and
allowed actions find the set of perturbations
for which stability can be preserved.

4. EXAMPLE: A NONLINEAR

DIFFUSION-REACTION PROCESS

The results presented so far are employed in this
section to set up a stabilizing control synthesis
scheme for nonlinear distributed process systems.
The example we select involves a one dimensional
diffusion process where a zero order, exothermic
reaction A → B is taking place (Antoniades and
Chrsitofides, 2000). Reactant A is assumed to be
available, for all times, everywhere on the domain.
The heat produced by reaction is released through
a cooling medium (at temperature Tc) in contact
with the domain along its length (L = 1). Such a
system, although structurally simple, can display
instability phenomena as a consequence of the
trade-off between heat dissipation, due to diffu-
sion and transfer to the cooling medium, and heat
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Fig. 1. Runaway behaviour under constrained
control for a perturbation γ = 1.2, ω = 25
and actuator bound ψ = 12

produced by reaction. In this way, the objective
is to stabilize the temperature distribution T at a
certain stationary reference (T ∗, T ∗c ) by measuring
and acting at a small number of locations on the
domain, with actuators subject to saturation. For
convenience, we define the following dimensionless
temperature u for the field:

u =
T − T ∗

T ∗

with reference u∗ = 0. In these variable, the
energy balance becomes:

ut = ε
∂2u

∂x2
− βU (u− p) + θ

[
exp

(
νu

1 + u

)
− 1

]

with initial and boundary conditions u(0, x) = u0,
u(t, 0) = u(t, 1) = 0. p(Tc; T ∗c ) is the control
function related to the temperature of the cooling
medium. The following parameter values will be
employed in the simulation experiments: ε = π−2,
βT = 50, βU = 2, ν = 4 and θ = βT e−ν . Note that
the field u is defined over the interval ]−1,∞)
since T in the exponential (Arrhenius type) term
must be absolute temperature.

The first step for the control synthesis involves
the construction of a convex function satisfying
conditions of Proposition 1. In particular, b must
be such that (10) holds for every u. This inequality
suggests the construction of b candidates with
nonlinear terms matching -through A- the non-
linearity of the process so to minimize the upper
bound β. In our case, we choose b to be of the
form:

b(u) =
1
2
u2 − 1− σu + exp(σu) (20)

where σ is a positive design parameter. This
function satisfies Lemma 1 with:
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Fig. 2. Evolution of the field under stabilizing
constrained control for γ = 1.2, ω = 25 and
actuator bound ψ = 15
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Fig. 3. Stabilizing control action defined as∫ 1

0
pm(x, t)dx. γ = 1.2, ω = 25 and actuator

bound ψ = 15

δ = min
u∈]−1,∞)

[
1 + σ

(−1 + exp(σu)
u

)]

The control law then becomes p = −ωA, with:

A =
db

du
= u + σ [−1 + exp(σu)]

It is pointed out that this approach can be easily
connected with the thermodynamic theory devel-
oped by (Alonso and Ydstie, 2001). In that for-
malism b would correspond to a convex extension
and A to the space dual to the field u. In this way,
control design can be interpreted as nonlinearly
transforming the field so to reduce (minimize)
non-dissipative effects.

In a second step, we make use of Proposition 2
to comply with implementation aspects. As an
example, we consider the stabilization problem
under a given set of bounded perturbations with

a given input-output arrangement. Let γ = 1.2 be
the upper bound for all admissible perturbations∥∥A

∥∥2

2
≤ γ2 with σ = 0.25 in (20) and β = 6 (10).

The input/output set up consists of 10 equally
spaced sensors and actuators placed at lengths
(0.34 − 0.37) and (0.66 − 0.71). For this arrange-
ment the lower bound in (15) is α = 0.1172. With
this information, we select a gain (ωm = 25) which
according to Proposition 1 should be enough to
ensure stabilization in the absence of saturation
effects. However, bounded control actions will in-
duce instability as it can be seen from Figure 1.
Nevertheless, stability can be recovered by ex-
tending the region of available actions to limits
satisfying (17). In our case stability is ensured for
bounds ψ ≥ 15. This situation is illustrated in
Figure 2 (evolution of the field). Figure 3 repre-
sents the evolution of the control action described
as

∫ 1

0
pm(x, t)dx.

5. CONCLUSIONS

A stabilizing controller design approach for dis-
tributed process systems has been developed by
exploiting and extending concepts from convex
forms and dissipation. The resulting nonlinear
control schemes are derived so to reduce/minimize
non-dissipative effects and can be implemented
through finite (and usually small) number of sen-
sors and actuators subject to input constraints.
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