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Abstract: This paper reviews a grey-box (GB) modelling method that uses genetic 
algorithms (GA). The GA-GB modelling framework is used for finding NOx emission 
from coal-fired power generation boilers using operator controlled variables. The main 
contribution of this paper is the inclusion of a distributed elitist scheme within the GA. 
This enables a local gradient-based optimisation routine to be incorporated within the GA. 
The new hybrid GA-GB modelling procedure is shown to be able to produce NOx models 
having similar performance to those of the original method but requires less computational 
effort. Copyright  2002 IFAC 
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1. INTRODUCTION 
 
Coal-fired power plants are one of the main sources of 
NOx emission. NOx contributes significantly to 
photochemical smog, acidification, ground-level 

ozone (O3), eutrophication of water and soils, and has 
serious implications for public health. For these 
reasons cleaner coal technologies and the reduction of 

NOx emissions is a matter of public interest and 
worldwide legislation.  

In order to optimise a power plant’s operational 
conditions, a number of advanced control techniques 

have been proposed. An ETSU report (1997) 
describes five advanced boiler control methods that 

claim to reduce NOx emission. Each could be 

considered as consisting of two stages. In the first 
stage some form of plant modelling captures the 
relationship between the plants operational inputs and 

the NOx output. In the second stage some form of 
constrained optimisation is used to manipulate the 
inputs of the model in order to minimise the NOx 

output. These values are then presented to the operator 
(open-loop mode) or in some cases used to 
automatically adjust the inputs (closed-loop mode). It 

is claimed that the various techniques will produce 
NOx reductions between 15% and 25%.  

It is obvious that in such a NOx reduction system a 

good model is vital. Specifically, the model for on-line 
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purposes must be simple enough to be updated and 

optimised on-line, and yet complex enough to predict 
NOx production precisely. Currently artificial neural 
networks (ANN) (Li and Thompson, 2000), grey box 

(Li and Thompson, 2001), linear and non-linear 
identification (Li and Thompson, 1996) techniques 
may be used.  

Li and Thompson (2001) have developed a 
fundamental grey-box (GB) modelling technique for 
NOx emission modelling which, when test on an 
operational power plant, was found to be superior to 

ANN, linear or non-linear modelling methods. 
Essentially, the GB method (see section 3) uses the 
NOx formation equations to identify fundamental 

terms and their relationship to the plants operational 
inputs. These terms, individually or when multiplied 
together, may be combined to produce a model 

structure. This involves various searches to determine 
which terms should be used in the model and to 
determine any coefficients and parameters.  

Recently, Peng, et al. (2001) produced a formal 
modelling framework for the GB method by 
incorporating a genetic algorithm (GA) search. This 
paper considers an improvement in this GA search 

that reduces the computational load during the 
modelling process while produces models with 
equivalent predictive capability. 
 
 

2. GENETIC ALGORITHMS 
 
GA’s are recognised for producing globally optimal 
solutions to complex search problems (multi-modal, 
non-linear, high dimensional, discontinuous). Also, 

they are robust and work with raw objectives 
(Glodberg, 1989).  However, the computational time 
required can be excessive and, due to discrete random 

sampling over the solution space, a GA will normally 
only approximately determine the location of the 
global optimum even in a continuous optimisation 

problem.  

These characteristics when applied to the GB 
modelling method tend to identify a near optimal 
solution whilst permitting flexibility in the use of an 

integrated performance index.  

Despite research on genetic structure, solution 
encoding, advanced genetic operators, and finely 

tuned genetic parameters it seems unlikely that 
genetic manipulation alone will simultaneously 

improved solution accuracy and speed. Hence the 

interest in combining GA’s with other search methods.  

Li and Aggarwal (2000) combined a relaxed GA with 
a local gradient technique. The best GA solution 

obtained after a small number of generations is handed 
over to a gradient method that performs local 
refinement. And an elitist scheme  (ES) is employed in 

the relaxed GA to speed up the global search. 
However the best GA solution from a small number of 
generations is not necessarily located in the 

neighbourhood of the global optimum, and two 
chromosomes which are very close to each other 
might locate within the neighbourhood of a same local 

optimum.  

To overcome these problems, a new distributed elitist 
scheme (DES) is proposed. In the original ES the best 
chromosomes are preserved at each generation. In the 

DES selection is based on the best chromosomes and 
their relative location. That is, each chromosome 
should preserve a threshold distance from its 

neighbour. Further, the elitist set is guided using a 
local gradient-based optimisation routine during the 
evolution of GA. In this way the best characteristics of 

the gradient-based techniques (efficiency, fitness) and 
the GA’s (ability of identifying global optimum, 
robustness) are combined efficiently. 
 
 

3. GA-GB NOX EMISSION MODELLING  
 
The GB method is based on a set of candidate terms 
(Thompson and Li, 2001), derived from known NOx 
formation mechanisms. For each of the nT terms the 

relationship between NOx production and the 
coal-fired power station’s operational conditions are 
established. Let these terms be denoted by:  
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where iϕ ’s are linear or non-linear functions of the 
boilers operational inputs, 

unuuu ,,, 21 L , (and would 
include such things as the mass flow of coal (mf), mass 

flow of primary air (mpa), mass flow of secondary air 
(msa), burner tilt position (θ ), etc.). The i’th term iϕ  is 
a function of the inputs (u) and parameters (c).  

Examples of such terms are; (mf)
c1, exp(c2/mf), (mpa)

c3, 
(mf)

c4(mpa)
c5, etc.,  

Using a selection vector S and a parameter vector C, 
potential models are constructed by picking terms 

from a selection set containing time sequences of 



measured NOx values and the candidate terms defined 

in (1). The selection vector T
msss ],,[ 21 L=S , 

mins si ,,2,1],1,0[ L=−∈ , is a vector of integer 
numbers indicating the position of the m items chosen 

from the original selection set and 
T

ncccc ],,[ 21 L=C is a vector of real numbers 
containing the parameters associated with the selected 

terms. The model obtained from S and C takes the 
NARX (Nonlinear AutoRegressive with eXogeneous) 
form:  
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where ny is the number of selected terms in the NOx 
output, kyi’s are time lags, )(tiω  is the i'th selected 
candidate term. The m regressive coefficients, 

mii ,,2,1,0, L=θ , are determined by least-squares 
optimisation over a set of training data.  

To assess a constructed model, an overall model 
performance index was proposed in (Peng et al., 2001) 

as follows: 
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are performance indices of training, validation and 
long-term prediction, respectively, wT, wV and wL are 

corresponding weighting factors, ŷ and Lŷ are 
respectively the one-step-ahead and long-term 
prediction of output y: 
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where TΩ denotes the set of training data with NT 

samples, ViΩ  the i’th validation data set, and nv is the 
number of validation sets. Vi niN ,,2,1, L= are the 
number of samples in the i’th validation set.  

miwi ,,1,0, L=  are user chosen weights indicating 

the importance attached to the corresponding data set 

of TΩ  or ViΩ 's. 

The modelling problem is then turned into a 
minimisation problem: 
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That is find a selection vector S and a corresponding 
parameter vector C in the solution space, which 
minimise the modelling performance index.  

When using GA’s to solve this type of mixed 
optimisation problem (9), parameters S and C may be 
represented using chromosomes (Peng et al., 2001). 
That is in each chromosome, the first m integer genes 

corresponding to S and the rest are float-point genes 
encoding all the term-contained parameters in all the 
candidate terms (1). When applying genetic operation 

on the integer genes, the same integer gene value is 
not permitted in an individual chromosome. 

To evaluate a chromosome, which corresponds to a 
potential practical model, a selection vector S is 

constructed with its m integer genes, and a parameter 
vector C is formed with its floating-point genes. The 
chromosome can then be evaluated with objective 

function (3). 

The method used to identify the optimal model is: 
 

a) Initialisation of the population.   
Randomly create an initial population with N 
chromosomes. 

b) Evaluation.  
Evaluate each chromosome of the population by 
the overall model performance function (3). 

c) Ranking and selection.         
The model performance index is mapped into 
the chromosome fitness by a ranking function. 
Selection is the process of determining the 

number of times a particular chromosome is 
chosen for reproduction. The selected 
chromosomes are put into a mating pool. 

d) Crossover and mutation.  

Both crossover and mutation are performed in 

the mating pool. Crossover is the basic GA 

operator for producing new chromosomes. Like 

its counterpart in nature, crossover produces 

new individuals that have genetic material 

obtained from both parents’. A uniform 

crossover scheme is proposed for integer genes. 



For floating-point genes the offspring are 

produced from intermediate recombination: 
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where Go1 and Go2 are the offspring genes 
obtained from the parents genes Gp1 and Gp2, α is 
a scaling factor uniformly generated for each at 

random over a given interval [Lc, Uc]. 

Mutation is randomly applied but with a low 
probability (mutation rate Pm). For integer genes, 
a random integer number is generated uniformly 

over interval ]1,0[ −sn to replace the mutated 
gene. For floating-point genes, a random number 
generated uniformly over interval [-rmR, rmR] is 

added to the gene, with R being the variation 
range of the corresponding gene and rm being a 
given mutation step ratio.  

e) Replacement. 
After crossover and mutation the mating pool 
replaces the current population. A new 

generation is then generated. In this paper, to 
accelerate and improve the search of the base 
GA procedure it is combined with an elitist 

scheme. That is the best Ne chromosome(s) is 
not replaced by the offspring. In this case the 
size of the mating pool is set to N-Ne, where N is 

the population size, Ne is a specified number of 
elitists. 

f) Termination of the GA.  

If a termination criterion is satisfied, the 
evolution process is exited. Otherwise, the 
evolutionary process is continued from step (b). 

A common practice is to terminate the GA after 
a specified number of generations.  

 
 

4. IMPLIMENTATION 
 
4.1 Design of the DES 
 
A conventional elitist scheme is designed to preserve 

the fittest chromosomes at each generation (Man et al., 
1999). In this way, the evolution process will not 
disrupt potential high-performance building blocks, 

with the potential to form a better string. However, if 
the Ne elitists are similar (close to each other in the 
solution space), the building blocks contained in the 

elitists may be repeated and reduce the effectiveness 

of the scheme.  
 
To overcome this problem a threshold distance, σs 
between the Ne elitists is introduced as follows: 
 

a) Sort the population according to the fitness of 
the chromosomes and let the initial elitist set be 

empty.  

b) If the size of the elitist set equals Ne, stop the 
elitist selection process. Else continue. 

c) From the original population choose the next 
best chromosome not yet considered and test 
that its distance from each chromosome already 

in the elitist set is not less than σs. If this is the 
case add the chromosome to the elitist set and 
loop to step b). Otherwise, repeat step c). 

 
By careful selection of the threshold distance σs, a 

diverse population is maintained and more 
high-performance building blocks are likely to be 
preserved.  
 
When the elitist set is identified, each of the elitist 

chromosomes is optimised by a local gradient-based 
optimisation routine. 
 
 
4.2 Implementation of gradient-based optimisation 
 
The distributed elitists, say {p1, p2,…, pq}, identified 
from the population at each generation can be 
considered as a set of q peaks.  Further, the q peaks can 

be considered as being located in the neighbourhoods 
of several local optima in the multimodal solution 
space. Therefore, a local gradient-based optimisation 

procedure can be employed to search for the true local 
optima. 

The local optimisation employed in this paper is 
performed as follows: 

qikfkk iiii ,,2,1)),(()()1( L=∇−=+ ppp ηλ  (10) 

where, k denotes the iteration variable and pi(0) is one 

of the elitists obtained from the GA search, η  is a 
damping factor dependant on the characteristics of the 
objective function, step size λi's are chosen to 

minimise the norm of the corresponding local 
gradient ))(( kf ip∇ at each iteration.  

It should be noted that the objective function (3) is a 
mixed one with both integer- and real- variables. 



Therefore, when performing local optimisation, the 

integer-type variables, S, are fixed as constant. To 
simplify the notation, the objective with S fixed is 
re-denoted as f(x), where x denotes the corresponding 

parameter vector C. 

In the neighbourhood of each point pi, function f(x) 
can be expanded in Taylor series 
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where n denotes the dimension of x. The matrix A is 
called the Hessian matrix of the function at p, whose 
components are the second partial derivatives of the 

function.  

In the approximation of (11), the gradient will change 
as we move from p along some direction r, and can 
easily be calculated according to approximation (11) 
as  

rAb ⋅+=∇f . (13) 

In a steepest-descent optimisation algorithm, the 
solution is moved in the direction of local gradient 

with step size λ as formula (10), i.e. br ⋅= λ , where λ 
can be any one of λi's in (10). 
 
For a smoothly continuous function, the local 
minimum is characterised by zero first order 
derivatives, or say zero norm gradient. Naturally, we 

hope that the step size λ is chosen such that the local 
gradient is minimised by each move. Based on this 
principle, λ can be determined as following: 

][][minmin bAbbAb ⋅⋅+⋅⋅+=∇∇ λλ
λλ
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Thereby, λ is determined by letting the derivative of 
(14) in terms of λ be zero as following:  

AbAbAbb TTT−=λ . (15) 

Since the derivative information of the objective 

function cannot be obtained analytically the first and 
second order partial derivatives are calculated by use 
of the two-point finite numerical differential formulae: 
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where δ is a differential step, a small positive 
constant, ei's are n-dimensional vectors with the i'th 
components being unity and the others being zero.  

 
In the presented study, the non-diagonal elements of 
the Hessian matrix, the mixed second order partial 

derivatives, are set to be zero and (15) becomes 
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This simplified steepest-descent local optimisation 
algorithm requires 2n additional evaluations of the 

objective function to perform a one-step move.  
 
 

5. RESULTS 
 
Comparing its performance with that of the original 
algorithm tests the effectiveness of the proposed 

hybrid algorithm. Four sets of data are required to 
produce and test the NOx emission model. Both 
modelling programs use data sets 1 and 2 for training 

and cross validation respectively. Data sets 3 and 4 are 
unseen and used to test the models.  Details of the 
modelling procedure and data are described in (Peng, 

et al., 2001).  

The models produced by the original GA-GB software 
(referred to as GAB) and the hybrid GA-GB software 
(HGAB) are used to produce the one-step-ahead and 

long-term NOx emission prediction results shown in 
Fig. 1. The error in this figure is defined by: 
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where ŷ in the above equation is replaced by equation 

(7) for one-step-ahead and by (8) for long-term 
prediction. This figure shows that the predictive 
performance of both models is similar.  

Fig. 2 shows the computational efficiency of the new 
hybrid GA-GB software.  From (16), 2n function 
evaluations are required for each step in the local 
search. Consequently, the numbers of function 

evaluations for both the algorithms are calculated as 
follows: 
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Fig. 1. Comparison of prediction errors over data set 3 
and 4. 

 
FE(HGAB) = NG+2nqT = 7040 

FE(GAB) = NG = 30000 
 
The algorithm parameters in this experiment are tuned 

through test runs to produce the best results and fixed 
as follows: 
 

HGAB: N=40, G=50, q=2, T=60. 

GAB: N=200, G=150. 
 
where T is the number of local search iterations in the 

HGAB algorithm, G is the number of generations in 
the GA and N is the population size. 
 
 

6. CONCLUSIONS 
 
A modelling technique for finding NOx emission 

from coal-fired power generation boilers using grey 
box modelling methods and genetic algorithms has 
been reviewed. It has been shown that by including a 

distributed elitist scheme within the GA a local 
gradient-based optimisation routine may be 
incorporated within the GA. The new hybrid GA-GB 

modelling procedure is able to produce NOx models 
of similar predictive performance to those of the 
original method but require less computational effort. 
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Fig. 2. Comparison of computational load 
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