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Abstract: The problem of Finite Settling Time Stabilisation (FSTS) for multivariable, 
discrete-time systems is discussed in this paper. The approach is algebraic and the 
problem reduces to the solution of a polynomial Diophantine equation; many of the 
solvability conditions are expressed as standard linear algebra tests. A Kučera-Youla-
Bonjiorno type parametrisation of the family of the FSTS controllers is obtained and 
necessary and sufficient conditions for strong FSTS are derived. Finally, solvability 
conditions for FST tracking and disturbance rejection are given and l1 and l∞  FSTS 
controllers are obtained using linear programming optimisation. Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
The Finite Settling Time Problem (FSTP) and more 
specifically the deadbeat regulation is unique in 
discrete-time systems (Bergen and Ragazzini, 1954; 
Kalman, 1960). Most of the state or output deadbeat 
regulators are of constant state feedback type. The 
main aim is to shift all the poles (or almost all in the 
case of output feedback) of the closed loop system to 
the origin. As the solution of the pole placement 
problem in the multivariable case is not uniquely 
determined a variety of deadbeat controllers has been 
proposed based on techniques varying from 
procedures on selecting independent vectors from a 
certain vector space to the solution of discrete Riccati 
equations (Kučera, 1971; Lewis, 1982; O’Reilly, 
1981). Kučera has pioneered the use of polynomial 
algebra methods for the study of time-optimal control 

in discrete-time systems (Kučera, 1973, 1980a, 
Kučera and Šebek, 1984). Many other researchers 
followed this approach (Eichstaedt, 1982; Wolovich, 
1983) with Zhao and Kimura (1988, 1989) looking at 
the problem of robustness for multivariable deadbeat 
tracking. 
 
The present work does not directly deal with 
deadbeat control but with the rather more general 
problem of Finite Settling Time Stabilisation.  That 
is, all internal and external variables (signals) of the 
closed loop system are required to settle to a new 
steady state after finite time from the application of a 
step change to any of each inputs and for every initial 
condition. The state/output deadbeat regulation and 
the problem of deadbeat tracking are then special 
cases of the FSTSP. 
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The standard unity feedback configuration is used for 
the design of FSTS controllers and the powerful 
polynomial approach is used for the solution of 
FSTSP. The whole problem is reduced to the solution 
of a polynomial Diophantine matrix equation that 
guarantees not only internal stability but also internal 
(state) FST. The family of all FSTS controllers is 
parametrically expressed and testable necessary and 
sufficient conditions for strong stabilisation, FST 
tracking and disturbance rejection for a class of 
signals are derived. Finally, l1 and l∞  compensators 
(i.e. FSTS controllers which minimise the l1 or l∞  
norm of the error signal) are obtained using linear 
programming. 
 
Throughout the paper, d z= −1   is the delay operator, 
R C( )  is the field of real (complex) numbers, R [ ]d  
is the ring of polynomials and R ( )d  the field of 
rational functions in d. D  denotes the closed unit 
disc, M M[ ], ( )d d  are the sets of polynomial and 
rational matrices respectively and U[ ]d  is the set of 
unimodular polynomial matrices, all of appropriate 
dimensions. 
 
 
2. DEFINITION – PARAMETRISATION OF FSTS 

CONTROLLERS 
 
Consider the unity feedback configuration of Fig. 1 
where P and C are the pulse transfer function 
matrices of the discrete-time plant and controller 
respectively, u u1 2,   are the externally applied inputs 
and y y1 2,   are the outputs of the system. It is 
assumed that the plant has l inputs and m outputs, 
P C M, ( ) ∈ d , they are causal and S SP C,  are the 
state space descriptions of the plant and controller 
respectively. 
 

 
The finite settling time response of the closed loop 
system is defined as follows. 
 
Definition 1. The discrete-time feedback system of 
Fig. 1 is said to exhibit: 
 

i) An External ─ Finite Settling Time (E-FST) 
response, or to be Externally-FST Stable (E-
FSTS) if for any step change in its inputs u u1 2,   
all signals y y1 2,   settle to a new steady state value 
in finite number of steps. 

ii) An Internal ─ Finite Settling Time (I-FST) 
response, or to be Internally-FST Stable (I-FSTS) 

if for every initial state vector and any step input 
all states settle to a new steady state in finite time. 

□  
 
Note that in the above definition the values of the 
finite settling time and of the steady state are left free. 
The deadbeat response corresponds to the case of 
perfect tracking of step inputs in minimum number of 
steps and thus, it is a special case of the FST 
response.  
 
Let H P C( , )  denote the transfer function matrix of 
the closed loop feedback system from the input 
u u u1 2= ′ ′ ′[ , ]  to the error vector e e e1 2= ′ ′ ′ ′[ , ] . If the 
feedback system is well formed it can be shown that 
 

 H P C
I PC P I CP

C I PC I CP

1 1

1 1
( , )

( ) ( )
( ) ( )

=
+ − +
+ +

L
NM

O
QP

− −

− −
 (1) 

 
The following statements give the conditions for and 
some properties of the FST response (Karcanias and 
Milonidis, 1992). 
 
Proposition 1. The feedback system of Fig. 1 exhibits 
an external FST response iff H P C M( , ) [ ]∈ d , i.e. the 
closed loop system is a FIR (Finite Impulse 
Response) system. □ 
 
Remark 1. If S SP C,  are stabilisable and detectable, 
the fact that H P C( , )  is polynomial implies that the 
feedback system is internally stable as all the 
controllable and observable eigenvalues are shifted to 
the origin of the z-plane (Kučera, 1979; Vidyasagar, 
1985).  □ 
 
Proposition 2. If S SP C,  are both controllable and 
observable, then the closed loop system exhibits a 
total (external as well as internal) FST response, iff 
H P C( , )  is a polynomial matrix in d. □ 
 
The following theorem can be derived form 
Propositions 1 and 2 using the standard results for the 
analysis of the feedback configuration (Kučera, 1979; 
Vidyasagar, 1985; Milonidis 1994). 
 
Theorem 1. Let P ND D N1 1= =− −~ ~,  C N DC C

1= =−  

= −~ ~D NC
1

C  be R [ ]d − coprime MFDs of the plant and 
controller pulse transfer functions. The solution to the 
FST problem exists iff 
 

 ~ ~ [ ]DD NN UC C+ ∈ d  or ~ ~ [ ]D D N N UC C+ ∈ d  (2) 
 

Moreover, the family of all FSTS controllers is given 
by 
 

W ( ) { : , ,
[ ] }

P N D N X DR D Y NR
R M Y NR 0
C C

1
C C= = + = −

∈ − ≠

−   
 d

 (3) 

or 
 

y2y1 e2e1 C P
u1

u2

Fig. 1. The unity feedback configuration.



     

W ( ) {~ ~ : ~ ~ ~ ~, ~ ~ ~ ~,
~ [ ] ~ ~ ~ }

P D N N X RD D Y RN

R M Y RN 0
C

1
C C C= = + = −

∈ − ≠

−   

 d
 (4) 

 

where R R, ~  are arbitrary and X Y X Y, , ~ , ~    are 
appropriate R [ ]d  matrices satisfying the following 
Bezout identity 
 

  
~ ~
~ ~
Y X
N D

D X
N Y

I
−

L
NM

O
QP

−L
NM

O
QP =  (5) 

    □ 
 
The pair ( , )P C  such that C P∈W ( )  is called FST-
stable. However, not all C P∈W ( )  are physically 
realisable, i.e. causal. The conditions for causality are 
given by Corollary 1. Before Corollary 1 is stated the 
following two lemmas are given necessary for its 
proof. 
 
Lemma 1 (Milonidis, 1994). Let ( , )P C be FST-
stable. Then ( , ), ( , ), ( ~ , ~), ( ~ , ~)X D Y N X D Y N    are pairs 
of R [ ]d − coprime matrices. □ 
 
Lemma 2 (Kučera, 1980b). Let P N D 1( ) ( ) ( )d d d= −  
= −~ ( )~( )D N1 d d  be R [ ]d − coprime MFDs of any 
discrete-time system. Then P( )d  corresponds to a 
causal system iff det( ( ))D 0 0≠  or det(~( ))D 0 0≠ . □ 
 
The parametrisation of the subfamily of causal FSTS 
controllers is given next. 
 
Corollary 1. Suppose ( , )P C is FST-stable and 
n dp ∈R [ ] is the least invariant factor of either N or 
~N . Then C is causal for 

 

1. every R R M, ~ [ ] ∈ d if np ( )0 0=  

2. almost every R R M, ~ [ ] ∈ d if np ( )0 0≠  
 

If Wc ( )P denotes the family of causal FSTS 
controllers then 
 

1. W Wc ( ) ( )P P=  if np ( )0 0=  

2. W Wc ( ) { : ( ) ( ) ( ) ( ) }P C C P Y N R= ∈ − ≠  and 0 0 0 0
  or 

 W Wc ( ) { : ( ) ~( ) ~ ( )~( ) }P C C P Y R N= ∈ − ≠  and 0 0 0 0  

  if np ( )0 0≠  
 

Proof: The case of the right-coprime factorisation of 
C is considered in the proof. The proof for the left-
coprime factorisation case is similar to the right  one. 
According to Lemma 2, C is causal iff  
  D Y N RC ( ) ( ) ( ) ( )0 0 0 0 0= − ≠  
Following Lemma 1 Y, N are left-coprime and so 
  Y NR− = −y n rp  

where y = Y , np  is the least invariant factor of N 
and r d∈R [ ]  (Vidyasagar, 1985). Therefore, 

  D Y N RC ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0= − = −y n rp  
Hence 
1. if np ( )0 0= , then y( )0 0≠  (Lemma 1). So 

  D R MC ( ) ( ) [ ]0 0= ∀ ∈y d   

2. if np ( )0 0≠ , then DC ( )0 0≠  implies that 
y n rp( ) ( ) ( )0 0 0≠ . So, for every R M∈ [ ]d  such 

that the corresponding r( )0  is not equal to 
y np( ) / ( )0 0 , the FSTS controller C is causal. □ 

 
It is clear from the proof of Corollary 1 that causality 
of the FSTS controllers is a generic property and if 
the plant possesses a delay, in which case np ( )0 0= , 
all the W ( )P  family is causal. Given that causality 
implies well posedness of the feedback configuration, 
then well posedness is also generic. 
 
 

3. STRONG FSTS 
 
The problem of strong FSTS is defined as the 
stabilisation of plant P in FST sense by a stable 
compensator. Testable necessary and sufficient 
conditions for strong FSTS are derived in this 
section; it turns out that the plant must have the same 
parity interlacing property (Vidyasagar, 1985) as in 
the case of strong stabilisation where the domains of 
stability of the closed loop system and the controller  
coincide. To prove that we need the notions of the 
Banach algebra As  and the blocking zeros of a pulse 
transfer function. 
 
Definition 2 (Vidyasagar, 1985; Simmons, 1966). As  
is the set of complex functions f d( )  over the real 
field which are continuous in the closed unit disc D  
and analytic in the interior of D . □ 
 
If addition and multiplication between any two 
elements of As  is defined pointwise and  
  f f d

d
=

∈
sup ( )

D
  

then, As  is a commutative Banach algebra with 
identity over the real field. Also, note that every 
polynomial with real coefficients is in As  and 
f ∈ As  is a unit of As , iff f d d( ) ≠ ∀ ∈0  D . 

 
Definition 3. The blocking zeros of the plant  transfer 
function P( )d  are all zi ∈C  such that P( )zi = 0 . 
Therefore, the blocking zeros of P( )d are the zeros of 
the least invariant factor n dp ( ) of either N or ~N . □ 
 
The conditions for strong FSTS are given by the next 
theorem. 
 
Theorem 2. The plant P is strongly stabilisable in 
FST sense iff | ( )|D d  has the same sign at all real 
blocking zerosσ i of P inside the closed unit disc D . 



     

Proof: An outline of the proof is given here. The 
detailed proof can be found in Milonidis (1994) and 
follows similar lines with that given in Vidyasagar 
(1985). The blocking zeros zi  of P( )d are the zeros 
of the least invariant factor n dp ( )  of N( )d . Then, 
for every X Y M, [ ]∈ d  such that 
 
  ~ ~ (~ ~ )( ) ~( ) ( )DY NX I DY NX I D Y I+ = ⇒ + = =z z zi i i  i.e.   
  so 
  | ~( )|| ( )| | ~( )| ( )D Y Dz z z y zi i i i= =1 1  or   (6) 

where y d d( ) ( )= Y . Therefore, y zi( )  and | ~( )|D zi  
have the same sign at the blocking zeros of P. Also 
for every C P∈W ( ) , D Y NRC = − . Hence 
  D Y NRC ( ) ( ) ( ) ( )d y d r d n dp= − = −  (7) 

For C to be stable DC ( ) ( )0 = f d  has to be a 
polynomial unit of As . We distinguish the following 
two cases. 
1. n d dp ( ) ≠ ∀ ∈0  D . Then, n dp ( ) is a unit of As . 

Therefore, there is a q d( ) ∈ As  such that 
y qn hp− =  is a polynomial unit of As . Then it 

can be found r d f d d( ), ( ) [ ]∈R   and f d( ) ≠ 0  
∀ ∈d D  such that y d r d n d f dp( ) ( ) ( ) ( )− =  
(Karcanias and Milonidis, 1992). 

2. n dp ( )  has zeros in D . Then, according to Eqn. 7 
f d( )  interpolates y d( )  and its derivatives at the 

blocking zeros of P inside the unit disc D . 
Therefore, y d( )  has to have the same sign at the 
real blocking zeros of P inside D . The conclusion 
of the proof of Theorem 2 follows from Eqn. 6 
(Karcanias and Milonidis, 1992). □ 

 
Theorem 2 can be restated as the following corollary 
that expresses the so-called parity interlacing 
property. 
 
Corollary 2. There always exists a stable FSTS 
controller iff the number of poles of P inside any 
interval of successive real blocking zeros of P inside 
the unit disc D  is even.  □ 
 
 

4. COMPUTATION OF W ( )P  AS A SOLUTION 
TO A LINEAR ALGEBRA PROBLEM 

 
According to Theorem 1 the computation of the 
family W ( )P  of all FSTS compensators requires 
only the computation of a particular solution of the 
Diophantine equation (2). Such a particular solution 
can be obtained solving a linear algebra problem over 
the field of real numbers as the following theorem 
shows. 
 
Theorem 3. Let P ND 1= ∈− ×R m l ( )d  with D N,b g  
right R [ ]d -coprime and ′ ′

′N D  column reduced; 

ν i i l = 1, ,K  are the right minimal indices of P( )d , 
ν ν= max{ }i , µ i i m = 1, ,K are the left minimal 

indices of P( )d , µ µ= max{ }i . Then if C D NC
1

C= −~ ~  

and n is the maximum column degree of ~ ~D NC C , 
~ , ~D NC C  meet 

 

  ~ ~D D N N IC C+ = ≥ −  for  n ν 1 (8) 
 

Proof: D N D NC C, , ~ , ~   can be written as  
 

  

D D D D

N N N N

D D D D

N N N N

0 1

0 1

C C0 C1 Cn

C C0 C1 Cn

= + + +

= + + +

= + + +

= + + +

d d

d d

d d

d d

n

n

L

L

L

L

µ
µ

µ
µ

~ ~ ~ ~

~ ~ ~ ~

 

 

Then Eqn. 8 can be rewritten as 
 

~ ~ ~ ~D N D N

D D
N N 0

D D
N N

0 D D
N N

C0 C0 Cn Cn

0

0

0

0

0

0

L

L

L

L

L

O

L

L

1 2444444 3444444

µ

µ

µ

µ

µ

µ

L

N

MMMMMMMMM

O

Q

PPPPPPPPP

+Sn 1

  = I 0 0 0l l l l        L  (9) 
 
Using the rank properties of the toeplitz matrix Sn+1  
(Bitmead et al., 1978), it can be easily proved that 
Eqn. 9 has always a solution if n ≥ −ν 1 (Chen, 
1984).   □ 
 
 

5. FST TRACKING AND DISTURBANCE 
REJECTION 

 
The problem of tracking is one of the important 
problems in control system design where the output 
of a system has to follow a particular set of inputs. In 
the case of FSTS it is required that the output y2  
tracks the input u1  in finite time, i.e. the error signal 
e1  is a polynomial vector. In this case most of the 
controllers for deadbeat tracking can be considered as 
time-optimum FST tracking controllers. The 
conditions for FST tracking are given next. 
 
Theorem 4. Let ( , )P C  an FST-stable pair with 
P ND D N1 1= = ∈− − ×~ ~ ( )R m l d  and u D N1 u

1
u= −~ ~  where 

(~ , ~ )D Nu u  left coprime MFDs. Then y2  tracks u1  in 
FST sense, iff either of the following two equivalent 
conditions are satisfied: 
 

1. ~Du  is a right divisor of D DC

~  
2. There exist Q R M, [ ]∈ d  such that 



     

 QD NRD YDu

~ ~ ~+ = , where Y is a particular  

 solution to ~ ~DY NX I+ = . 
 

Proof: From Eqn. 1 e I PC u1
1

1= + −( )  and due to 
Theorem 1 
  e D DD N1 C u

1
u= −~ ~ ~  

 

1. For FST tracking e1  must be polynomial; hence 

D DD NC u
1

u
mx1~ ~ ~ [ ]− ∈R d  and because ~ , ~D Nu u  are 

coprime D DD MC u
1~ ~ [ ]− ∈ d  (Vidyasagar, 1985). 

Therefore D DD Q MC u
1~ ~ [ ]− = ∈ d , or 

 

   D D QDC u

~ ~=  (10) 
 

2. From Theorem 1 D Y NRC = −  where Y is a 

particular solution to ~ ~DY NX I+ = . Then Eqn. 10 
becomes QD Y NR Du

~ ( )~= − , or 
 

  QD NRD YDu

~ ~ ~+ =  (11) 
    □ 
 
The solutions R to Eqn. 11 give the parametrisation 
of all compensators for tracking in FST sense. The 
conditions given in Theorem 4 as well as those in the 
following Theorem 5, are testable as they are linear 
equations with respect to the elements of the 
polynomial matrices Q and R. 
 
Another problem usually encountered in control 
system design is that of disturbance rejection. If u2  
is the disturbance signal to be rejected in FST sense 
then, y2  has to reach a zero steady state after finite 
time, i.e. y2

mx1∈R [ ]d . The criteria for disturbance 
rejection in FST sense are given by the following 
theorem. The proof is similar to that of Theorem 4 
and is omitted. 
 
Theorem 5. Let ( , )P C  an FST-stable pair with 
P ND D N1 1= = ∈− − ×~ ~ ( )R m l d  and u D N2 u

1
u= −~ ~  where 

(~ , ~ )D Nu u  left coprime MFDs. Then u2  is rejected at 
the output y2  in FST sense, iff either of the following 
conditions hold true: 
 

3. ~Du  is a right divisor of NDC

~  
4. There exist Q R M, [ ]∈ d  such that 
 QD NRN NYu

~ ~ ~+ = , where ~Y  is a particular  

 solution to ~ ~YD XN I+ = . 
    □ 
 
 

5. l1 AND l∞  FSTS CONTROLLERS 
 
The linear nature of the FSTSP and its reduction to 
the solution to a Toeplitz type set of equations 
enables us to impose design constraints of the form of 
l l1 / ∞ − norm  minimisation and to treat the whole 
problem as a standard linear programming problem. 

The main result for the existence of l l1 / ∞  FSTS 
controllers is given by the following theorem 
(Milonidis and Karcanias, 1997). 
 
Theorem 6. Let ( , )P C  be an FST-stable pair, n the 

polynomial degree of ′ ′
′D NC C  and µ, ν the 

observability, controllability indices of P. Then, there 
always exists an FSTS controller which minimises 
the l1  or l∞  norm of the error signal e1  due to a step 
change to all inputs u1  iff n ≥ −ν 1; such an FST 
controller is given as the solution to a linear 
programming problem. □ 
 
Due to the nature of the linear programming, the 
l l1 / ∞  FSTS controller will give sub-optimum 
solutions to the time-optimum FSTS problem and 
‘good’ tracking properties as well. Control strategies 
like shaping of the error signal e1  or of the control 
signal e2  can also be implemented using linear 
programming techniques (Dahleh and Pearson, 1988; 
Milonidis and Karcanias, 1997). 
 
 

6. CONCLUSIONS 
 
The work presented in this paper is an extension of 
the single variable case treatment of the Total Finite 
Settling Time Stabilisation Problem (Karcanias and 
Milonidis, 1992) to the case of multivariable discrete 
time systems. An algebraic approach for the study of 
T-FSTS has been developed and it has led to a YJBK 
parametrisation of FSTS controllers. The subfamily 
of causal FSTS controllers has been parametrised in 
terms of a relatively simple condition and its 
computation is reduced to the solution of a set of 
Toeplitz type linear equations. The parity interlacing 
property on strong stabilisation has been shown to be 
also valid in the case of strong FSTS where the 
stability domains of controller and closed loop system 
are different. 
 
The advantage of the approach is that the family of 
FSTS controllers may be computed without resorting 
to the solution of a polynomial Diophantine matrix 
equation. The additional conditions for FSTS tracking 
and FSTS disturbance rejection as well as 
minimisation of the l l1 / ∞ − norm  of the error signal, 
may be imposed as additional constraints on the 
design parameters and the whole minimisation 
problem can be reduced to a standard linear 
programming problem. The parametrisation of the 
multivariable FSTS controllers according to 
McMillan degree and the design of robust two 
parameter FSTS compensators are a subject under 
investigation at the moment. 
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