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Abstract: This paper provides the solution of optimal filtering problems for the
broad class of continuous linear systems with discrete and continuous measurements
with time-varying sampling intervals and time-varying measurement delays caused
by communication network, human in the loop and a priori unknown triggering of
data acquisition. Using the duality principle, the dual control problem with delays in
actuation is then solved. The solution of filtering and control problems is obtained
using the integral model of measurements in the form of Ito-Volterra integrals with

discontinuous measures.
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1. INTRODUCTION AND MOTIVATION

The importance of the posed problem is most easily
demonstrated by the example of the networked con-
trol systems. The decentralized and distributed control
networks are becoming the reality in a variety of ap-
plication areas. The practical interest in systems with
communication network as part of the information path
for data acquisition and control is driven by the need
for integration and coordination of multiple spatially
remote processes. It has been recognized for a long
time that network in the loop presents some unusual
challenges. For example, the nondeterministic nature of
network traffic leads to time-varying delays in delivery
of streaming measurements (treated in this paper as
continuous ! ). Discrete (or packet) measurements are
also delayed by a priori unknown and varying time.
Furthermore, the loss of the data during network deliv-
ery will effectively result in the time-varying sampling
rate even if the sampling at the remote site is uniform

1 In reality, streaming measurements may represent discrete mea-
surements sambled at a relativelv hieh rate.

and deterministic. From the control perspective, based
on delayed information, the remote controller calculates
commands (setpoints), which, because of the network
properties, will be delayed in their arrival to the local
controllers. Therefore, from the remote controller "per-
spective," this looks as delayed actuation of generated
commands, and these delays are random and a priori un-
known. Further examples of systems with time-varying
and a priori unknown delays in discrete and continuous
measurements and controls include systems with human
in the loop making sampling and control decisions, and
systems in which measurement and control are triggered
by exogenous events.

Despite an extensive research effort, the optimal filtering
and control problem for continuous linear systems with
discrete and continuous delayed measurements and its
dual optimal control problem remain unsolved in its
most general formulation. The existing methods of con-
trolling and estimating continuous systems based on de-
layed discrete and continuous measurements, though of-
ten ingenious, are heuristic in nature, and do not provide
a uniform theoretical framework for the general problem



with an arbitrary number of time-varying sampling rates
and time-varying delays in both discrete and continuous
measurements. The fundamental reason for theoretical
difficulties lies in the fact that discrete measurements
in continuous systems imply that the optimal filter is
driven by discontinuous inputs, which requires that basic
questions of what is understood as a solution and how
to find it must be addressed. It is not surprising that
the state estimates with discontinuous measurements
are themselves discontinuous. In fact, a discontinuous
“update” of the state estimation is a routine practice
to handle discrete and infrequent measurements based
on heuristic algorithms. The commonly utilized strat-
egy, used without rigorous justification or proof of op-
timality, is to discretize a continuous system in some
convenient way so that the discrete Kalman filter is
directly applicable. Such an approach fails in the case of
time-varying and unknown sampling rates and delays.
Similar observations are true for the control problem
with continuous and impulsive (discrete) controls with
and without delayed actuation.

Our approach to the solution of the filtering and control
problems with delayed discrete and continuous mea-
surements and time-varying sampling rates is based on
the integral Volterra description of deterministic linear
systems and the integral Ito-Volterra description of sto-
chastic linear systems, and the mathematical theory of
optimal control of systems with discontinuities. This
approach is referred to as an integral approach, which
is applicable to systems with discontinuities in mea-
surements, controls and states, — increasingly important
theoretical and practical problems — and systems with
time-varying and a priori unknown delays.

The paper has the following organization. The Ito-
Volterra description is introduced, first, for continuous
systems, followed by the systems with discontinuities.
The optimal filtering results are then presented for these
systems and their generalization on the case of systems
with time-varying and a priori unknown time delays.
After introducing the duality principle, the solution of
the dual control problem with delays in actuation is
given.

2. ITO-VOLTERRA DESCRIPTION OF
OBSERVATION PROCESS

Let (2, F, P) be a complete probability space with an
increasing right-continuous family of o-algebras Fy,t >
0, and let (W7 (t), Fy,t > 0) and (Wa(t), Ft,t > 0) be
independent Wiener processes. The partially observed
Fi-measurable random process (z(t),y(t)) is described
using a differential equation for the dynamic system
state and an Ito-Volterra equation for the observation
process:

dx(t) = (ao(t) + a(t)z(t))dt + b(t)dWy(t) (1)

t ¢

y(t) = /AO(Ls)+A(t7s)x(s)ds+/B(t,s)dW2(s) (2)

n

where z(t) € R™ is the state vector, and y(t) € R™
is a vector of measurements? integrated over the time
interval [0, t]. The vector-valued function ag(s) describes
the effect of system inputs (controls and disturbances).
Matrix functions a(s) and b(s) and vector-function ag(s)
are smooth functions of s. Functions Ag(t,s), A(t,s),
and B(t,s) are continuous in ¢ and s. Both ¢ and
s are independent (time) variables, and can be used,
among other things, to assign a variable number of
time-varying delays in both states and measurements to
adequately describe the particular application at hand.
It is also assumed that A(t,s) is a nonzero matrix
and B(t,s)BT(t,s) is a positive definite matrix. All
coefficients in (1)—(2) are deterministic functions of
appropriate dimensions.

The estimation problem is to find the estimate of the
system state x(t) based on the observation process
Y (t) = {y(s),0 < s < t}, which minimizes the Euclidean
2-norm

J = E|(a(t) = (1)) (a(t) — (1))]

at each time moment ¢. In other words, our objective is
to find the conditional expectation

m(t) = &(t) = E(«(t) | F).
As usual, the matrix function
P(t) = E[(z(t) — m(t))(x(t) —m())" | F']
is the estimate variance.

Our formulation is, in fact, the Kalman filtering problem
for the integral Ito-Volterra observation process. The
standard state space formulation is recovered by making
all functional parameters in (2) dependent on s only.

Next, the integral model is introduced for systems with
discontinuities in measurements.

3. OPTIMAL FILTERING FOR SYSTEMS WITH
BOUNDED DISCONTINUITIES

Consider a nondecreasing vector-valued function of
bounded variation: g(t) = (g1(t),...,gm(t)) € R™. In
essence, ¢(t) is an arbitrary function, and it is only re-
quired that it remains bounded on each finite subinterval
of its definition, and g(t1) < g(t2) if t; < t2. Continuity
of g(t) is not required. In fact, any bounded variation
function (including vector-valued case) can be written
as

N
9(t) = {gi(t) + Y Agrix(t —ti), k=1...m} (3)

=1

2 In integral formulation, y(t) is a vector of integrated measure-
ments. The vector of the differential measurements, dy(t), is the
vector of the actual physical measurements (see (Astrom, 1970)
for discussion, in particular pp. 82 85). Note, however, that this
interpretation may change during, as is the case with equation (8),
where u(t) is treated as the vector of actual measurements.



where g¢f(t) is a continuous nondecreasing function and
the second term describes bounded jumps in k-th com-
ponents of g(t) at times t;, and where  is the Heaviside
unit step function and Agy; is the size of the jump.

The discontinuous measure g can be used to describe
discontinuities in states and measurements. The Ito-
Volterra model with discontinuous measure in the ob-
servation equation generated by a bounded variation
function has the following form:

t
/A()kts
0

/Bk (. 5)dWar (gk(5)) |

(Ax(t, s)a(s))dgr(s)

k=1...m 4)

where the notation is analogous to the one used in (2),
k identifies k-th component of the measurement vector,
and gy, is the k-th component of g, equation (3).

The measurement model given by equation (4) is in
the Stieltjes integral form. Obviously, if ¢(t) = t,
the description of the system is reduced to the initial
model (1)—(2). If g¢ = 0, the observation model given
by equation (4) describes the case of a continuous
system with discrete measurements. The general case
of equation (3) describes the dynamic system with
an arbitrary combination of discrete and continuous
measurements.

The general result for the optimal filtering of integral
systems with measurement discontinuities is given by
the following theorem.

Theorem 1. The optimal in Kalman sense estimate
m(t) of the states of system (1) based on discontinuous
integral measurements (4) satisfies the filter equation

t ¢
m(t) = [(ao(s) + als)m()ds + / P(s-)
0 0
x [T+ AZL(t,s)(B(t, .8)) LA,
XAT(t 8)( ( 78)BT( ))
x[dy(s) — (Ao(t, s) + A(t, s)m(s—))]dg(s),  (5)
where Ag(s) is a jump of g(s) at s, and the standard
notation for the value of the function at discontinuity is

used, and the variance P(t) satisfies the integral Riccati-
like equation

s=)Ag(s)]

i

P(t) = /[a(S)P(S) +P(s)a’ () + b(s)b" (s)lds  (6)

0
/P )T+ AL (t,5)(B(t,s)BL (¢, 5)) " A(t, s) P(s—)
xAg(s)]flAT(ts)(B(t,s)BT(t,s))_lA(t,s)P(s—)dg(s)

where multiplication by m-dimensional measure dg(s) is
understood in a componentwise sense.

If the bounded variation function g(s) has continuous
and discontinuous components, then the corresponding
observation process y(t) = {yx(t)} also has continuous
and discontinuous components, and can be written as

yi(t) =y (t) + yi(t).

Physically, the continuous component of y corresponds
to the integral of continuous measurements with dis-
continuous (discrete) measurements superimposed over
them. The discontinuity in y leads to discontinuity in
estimate m(t) and the variance function P(t). At the
point of discontinuity t; when a new discrete measure-
ment becomes available in k-th measurement channel,
the optimal value of m(t) and P(t) can be directly cal-
culated from (5)—(6), where, with reference to equation
(3), Ag(t;) = {Agr:}, and typically Agg; = 1.

If only discrete measurements are present, then between
the time of ¢ = ¢; of the last available measurement in
any of the measurement channels and the next measure-
ment, the estimate of the state is given by the following
integral equation:

i(0) = m(t) = m(ti) + [ (aole) + aeym(s))ds.
ti+
and the variance of the estimation process is found from
P(t) = P(t;+)+ / la(s)P(s)+P(s)a’ (s)+b(s)bT (s)]ds.
tit

The state estimate and variance at the time of arrival of
the new discrete measurement are equal

m(t;+) = m(t;—) + Am(t;),
P(t;+) = P(t;—) + AP(t;),
where the jumps are explicitly given as
Am(t;) = K(t:) {dy(t:) — [Ao(t:) + A(t:)
AP(t;) = —K(t;)A(t;) P(t;—),

where the shorthand notation A(t;) = A(t;, t;), Ao(t;) =
Ao(ti, ti) and B(tl) = B(ti, ti) was used, and

m(ti—)l},

K(t;) = P(ti—)(I + AT(t;) [B(t:) BT (t:)]

The second limiting case (only continuous measurements
are present) is obtained by setting ¢g(t) = ¢. The re-
sulting filter for the system in the differential form are
obtained from equations (5)—(6), and is equivalent to
the traditional Kalman filter. However, if the observa-
tion process is described in the integral form (2), the
optimal filter for continuous systems with continuous
measurements is not reducible to the Kalman filter, and
is given by Theorem 1.

-1

In summary, the general case of the Ito-Volterra system
differential measure dg(s) allows us to formally describe
a dynamic system with any combination of continuous
and discrete measurements with time-varving sampling



intervals. The application of Theorem 1 then provides
the solution of the optimal filtering problem for this
broadest class of continuous systems with continuous
and discrete measurements.

4. FILTERING FOR SYSTEMS WITH TIME
DELAYS

Let us consider how time delays in discrete and contin-
uous measurements can be handled within the frame-
work of the integral approach, which appears to be sub-
stantively different from infinite-dimensional (Diekmann
et al., 1995; Kolmanovskii and Shaikhet, 1996), alge-
braic (Marshall et al., 1992) and functional differential
systems approach (Kolmanovskii and Myshkis, 1992;
Hale and Lunel, 1991; Gorecki et al., 1989) to systems
with time delay. In addition to giving an alternative
approach, which is important in itself, the advantages
of the integral formulation is in its consistent theoreti-
cal foundation, and its ability to address systems with
discontinuities of different origin, as discussed earlier.

An immediate observation is that when both continuous
and discrete time-delayed measurements are present,
one has a problem with discontinuous observations
considered above without time delays. Now define a
bounded variation function

N
5) = ZAQiX(S — [t —di®))), (7)

where s is an independent time variable, and t is treated
as a parameter; d;(t) is the i-th time delay at time t.
After substitution of (7) into the integral measurement
model with discontinuous measure, the equation (4)
takes the form

)+ Z At

ZAOttf
+ZB

where y is interpreted as a vector of differential con-
tinuous measurement, taking into account that for the
white Gaussian noise dWs(t), dWa(t — d;(t)) = dWa(t),
and assuming that Ag; = 1. Equation (8) is the model
of the measurement system, describing continuous mea-
surements y(t) as a linear function of states delayed by
different and time-varying delays d;(¢). It is in the form
that allows the direct application of Theorem 1, giving
the expression for the optimal filter with an arbitrary
combination of delayed continuous measurements.

Ja(t —di(t))

t))dWa(t), (8)

The model (8) can also be used to describe the discrete
measurement system with time-varying delays. If ¢ = t;
is set, where t;’s are discrete time instants when discrete
measurements become available (a priori knowledge of
the arrival time and the corresponding time delay of
a discrete measurement is not required) and vector
y is treated as an integral of discrete measurements,
then (8) describes the case of a continuous system with
delaved discrete measurements. Delavs and sampling

rates in different channels can be different and time
varying. Theorem 1 is again directly applicable, yielding
an optimal filter for the continuous system with delayed
discrete measurements.

The case of an arbitrary combination of delayed contin-
uous and discrete measurements is obtained when differ-
ent components of vector y describe continuous differen-
tial measurements, and discrete integral measurements.
Theorem 1 is still applicable giving an optimal filter for
this most general case.

5. DUAL CONTROL PROBLEM

Using the duality principle for integral systems (Basin
and Valadez Guzman, 2000), the optimal state estima-
tion problem for system with discrete and continuous
measurements, equations (1) and (4), is dual to the
optimal control problem of finding control u, which
minimize the quadratic cost function

J =5 () v ()]

T
1
+§/ ul'(t,s)BY (s

to

(s)B(s)u(t, s)dg(s)

—5—% /1‘ (5)bT (s)b(s)z(s)ds],
to
subject to the following Ito-Volterra system with states
z and disturbances ag:

—&—/AT(t,s)u(t,s)dg(s)7
to
and where P(tg) = ¥ > 0. Following from the solution

of the dual filtering problem, the optimal control is given
by
u*(t,s) = (BY(t,s)B(t,s)) LAL(t,s) P(s)2(s), (9)
with P(s) satisfies the integral Riccati equation
T

P(t) = P(tg) — /[a(s)P(s) + P(s)a® (s) + b (s)b(s)]ds
) 0
+/[P(S)AT(tsS)(BT(S)B(S))AA(@S)P(S)]dQ(S%

(10)
with the terminal condition P(T) = U~!, The jumps in
z and P at the points of discontinuity of g(t) have the
following explicit form:

Az(t) = AT(t)(B"B)TA(t) P(t-)Ag(t),  (11)

AP(t) = =Pt + AT (BT (BN L



< A(t)P(t-)Ag(t) P AT(6)(BT (6)B(t) ™

A(t)P(t=)Ag(t). (12)

The assumptions that should be made about the partic-
ular form of the discontinuous function g correspond to
different practical cases. If both continuous and discon-
tinuous control commands are present, then point of dis-
continuity of g will specify the instances when discontin-
uous controls are applied. The assumption of the known
g would then correspond to the case when the time of
application of discontinuous controls is externally speci-
fied. If g is not known but can be manipulated, then the
selection of points of discontinuity can be considered as
part of the controller design, i.e. min, 4 J, and it appears
that min, 4 J = ming J(u*(g)), where u* is determined
in this section. Finally, if points of discontinuity of g are
a priori unknown and determined by exogenous events,
then some estimates of the instances of discontinuity are
required to apply the developed results.

6. DELAYED ACTUATION

Introduction of time-varying delays in actuation can be
accomplished similarly to the way time-varying delays
have been introduced into the measurements. The devel-
oped theory is directly applicable if actuation is delayed
in an arbitrary and time-varying fashion, as long as the
time delays are actually known. If delays are not known,
as in the case of the networked control system, then mea-
surement delays — a priori unknown, but available once
the time-labelled measurement arrives — can be used as
an estimation of the actuation delays. The performance
degradation and stability bounds for uncertain actua-
tion delays can be analyzed using minimax methods.

The optimal discontinuous control equations (9)-(12)
enable us to consider control functions with multiple
variable delays for state space dynamic systems (1). The
corresponding state equation is given by

dz(t) = (ag (s) + a(s)z(s))dt+ (13)
ZH (t, ti)u(t;))dt,  2(to) = 2o.

Here u(t;) € R” is delayed control applied at a time ¢;
but affecting the system state at another moment ¢. The
sum Z H(t,t;)u(t;) means that the system state at ¢ is

regulated by a combination of delayed controls applied
at times ty,%s,t3,..., thus allowing fusion of control
actions. The matrices H(t,t;) € R"*P are gain matrices
between the delayed control u(t;) and the system state
z(t).

The quadratic cost function J to be minimized for every
moment ¢t between tg and T is defined as follows

[Z(T) — 20| W

T

~H2(T) — 0 (14)

+ Ju(s)dg(s)

l\:JI»—l

to

where zg is a given vector, ¥, R, @) are positive (nonneg-
ative) definite symmetric matrices, T > tg is a certain
time moment.

The key point to obtain the optimal regulator in this
case is to assume the control distribution function g(s)
being a linear combination of the Heaviside functions
Zx(s — t;) with unit jumps at the time moments t;

When the delayed controls u(t;) affecting the system
state z(t) are applied (see (13)). In doing so, the term
including delayed control can be represented as integral
with discontinuous measure

ST Ht )u(ts) = / H(t s)u(2)d(> x(s — 1))

where x(s—t;) is Heaviside function (unit jump) applied
at a point t;. Integrating now the equation (13) with ¢
and expressing the delayed control term in the new form
yields

2(t) = 2(to) + / (ao(s) + afs)z(s))ds+

J [

to to

Z x(s —t;))dt.

Changing 1ntegrat10n order in the delayed control term
and denoting h(t, s) ft (t, s)dt implies

t
z( —zt0+/

i

/ h(t, s)u(s)d(>  x(t —t;))

to

)z(s))ds+

This yields the following result based on the formulas
(9)-(12).

The optimal control law for the system state (13) that
minimizes the criterion (14) for every moment ¢ should
be given by

u* = R (t,s)ht (t, ) P(s)2(s), (15)
where P(t) satisfies the integral equation

i

P(t) = /[*GT(S)P(S) — P(s)a(s) + Q(s)lds  (16)

to

- Z (ti—) L+ (W7 (t,t:) (R(t, ;) " h(t, ) P(t;—)]) !

t;<t

xhL (t (Rt N h(t. t)VP(t:—).



with the terminal condition P(7) = ¥~!. The corre-
sponding optimal trajectory satisfies the equation
¢

o) = #(t0) + [ (o) +alz(e)dss ()

to

> ATt t) RN ) h(t, ) P(ti—)2(t—).

t; <t

Let us note that the function f(¢,s), the optimal tra-
jectory z(t), and the optimal control law u* should be
obtained as continuous functions, if the initial prob-
lem statement is in the form (13). Also note that the
equations (16) and (17) must be solved anew beginning
from the initial time tg until the current moment ¢, for
every t where one would like to know a value of the
optimal trajectory z(t). It is well explainable: a differ-
ential equation with multiple variable delays is actually
an infinite-dimensional system of differential equations,
so the optimal control solution should have the same
property, i.e., be obtained as a solution of an integral
equation corresponding to every current moment t.

7. CONCLUSIONS

The combination of the Ito-Volterra formalism and the
results on the necessary conditions for optimality of con-
trol systems with impulsive discontinuities (Orlov and
Basin, 1995; Miller, 1996) allowed us to solve a broad
range of optimal filtering problems for the continuous
linear systems with discrete and continuous measure-
ments, including the case of time-delayed measurements.
The optimal control problem with continuous and dis-
continuous controls is dual to the corresponding filter-
ing problems. An important difference between filtering
and control problems is that optimal estimates can be
obtained without prior knowledge of the measurement
delays, while the control problem requires the knowl-
edge of the actuation delays to guarantee stability and
optimality.
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