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Abstract: This paper presents a nonlinear control scheme for position control of a flexible beam system
using Shape Memory Alloy (SMA) actuators. Due to their interesting properties such as force gener-
ation capacity, possibility of miniaturization, and power consumption, these devices have been gaining
increased popularity in the past few years. However, SMA actuators possess undesirable characteristics
such as nonlinearities, hysteresis, extreme temperature dependencies, and slow response that make them
difficult to use in precision applications. By taking into account the nonlinear and thermal characteristics,
a control scheme is developed in order to regulate the force exerted by an SMA actuator attached to a
flexible beam. The control scheme is based on input-output linearization of the nonlinear system. The
control goal is to regulate the force exerted by the SMA actuator to a desired value. The internal dy-
namics of the system is derived and it is shown that these dynamics can be stabilized by proper choice of
controller gain matrices. Simulation results are presented based on the data for a setup that is currently
under construction in our laboratory.

Keywords: Output feedback, position control, nonlinear systems, flexible arm, actuators, vibration
dampers.

1. INTRODUCTION

Smart material systems offer great possibilities in
terms of providing novel and economical solutions
to engineering problems. The technological advan-
tages of these materials over traditional ones are due
to their unique microstructure and molecular proper-
ties. Smart materials such as piezo-electric transduc-
ers (PZT), shape memory alloys (SMA), magneto-
and electro-rheological fluids (MRF and ERF), and
fiber-optic sensors have been used in such diverse ar-
eas areas as automotive vehicles, robots, orthodon-
tic treatment, biotechnology, civil engineering struc-
tures, space structures, sports equipment, etc. (see
e.g., (Janocha 1999), (Otsuka and Wayman 1998)).

In this regard, shape memory alloys possess an in-
teresting property by which the metal remembers its
original shape and reverts to it at a characteristic
transformation temperature. Although this property
was first observed in 1932 for gold-cadmium alloys, it
was not until 1962 that such properties were discov-
ered for nickel-titanium alloys (Srinivasan and Mc-
Farland 2001). The last decade of the twentieth cen-
tury witnessed a dramatic growth in the applications
of SMA materials made from nickel-titanium (NiTi)
alloys. Hashimoto et al. (1985) used SMA wires
to provide lightweight actuation for walking robots.
Grant and Hayward (1997) proposed a novel shape
memory alloy actuator with improved accuracy and
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speed. Madhil and Wang (1988) studied the hystere-
sis and nonlinear characteristics of an SMA actuator
for a position control system which was used to prove
its L2-stability. The SMA actuators have been used
for vibration control of flexible beams, see e.g., (Baz,
Imam and McCoy 1990), (Choi, Park and Fukuda
1988), (Choi and Cheong 1996).

However, these works have not taken into account
the nonlinear effects of SMA actuators and the ef-
fect of temperature on performance of the vibration
control scheme. In this paper we follow a different
scheme for achieving precise position control. The
approach is to regulate the force exerted by the SMA
actuator on a flexible cantilevered beam to reach a
value that corresponds to a desired position of the
beam. It is shown that small errors can be achieved
by proper choice of feedback gains while the internal
dynamics remain stable. Simulation results are given
for a setup that is currently under development in our
laboratory.

2. SYSTEM MODELING AND CONTROL

There are several applications where one may be con-
cerned with controlling the end-point position of a
flexible beam. The motivation for the present work
is stemmed from an application as depicted in Fig-
ure . An embedded module consisting of a small
microprocessor system is utilized to continuously ad-
just the diameter of an orifice such that a desired
damping coefficient is achieved. A good candidate
for adjusting the orifice is by means of two SMA wire
actuators. When no current is passing through the
SMA strings, the orifice is open with maximum di-
ameter. By passing an electric current through one
of the SMA strings the beam can be bent to change
the orifice diameter. Only one of the two SMA wires
is actuated at any time depending on the desired di-
rection of motion. This is to speed up the response of
the system since the heating time constant is larger
than the cooling time constant. The goal is to place
the tip position at a desired location in the presence of
disturbance forces resulting from air flowing through
the orifice and acting at the end-point of the flexi-
ble beam. Taking into account the non-linearity and
the temperature dependence of the SMA wire, the
dynamics of the system is given by

Mδ̈ +Kδ = bn(T ) (1)

Ṫ + βT = αu (2)

where δ is the n× 1 vector of flexible modes, M and
K are the n × n mass and stiffness matrices of the
flexible beam, respectively, obtained using the La-
grangian formulation (see e.g., (Meirovitch 1975) ), b
is the input-effect vector, n(T ) is the temperature de-
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Figure 1: Smart damper using an SMA actuator.

pendent nonlinear force generated by the SMA wire,
T is the wire temperature, and α, β are positive con-
stants. Equation (2) is obtained from the heat trans-
fer dynamics of a single wire expressed as (Madhil
and Wang 1988)

ρcV
dT

dt
= Ri2(t)− hA(T − Ta) (3)

where ρ (kg/m3) is the mass density of wire material,
c (Jkg−1◦C−1) is the specific heat, V (m3) is the
volume of wire, i (A) is the electric current, R (Ω) is
the wire resistance, h (Wm−2◦C−1) is the convection
heat transfer coefficient, A (m2) is the surface area of
the wire, and Ta is the ambient temperature. Note
that the input u in (2) can take positive and negative
values that correspond to the inputs applied to the
two wires in Figure .
Considering the dynamics in (1)–(2), let us define the
output as

yo = Ψδ (4)

where Ψ is a constant matrix that relates modal vari-
ables to the output of interest yo, which can be the
displacement of the tip position of the beam or a lo-
cation close to the tip. Taking the time derivative of
yo twice and using (1) we have

ÿo = ΨM−1(bno(T )−Kδ) (5)

where no(T ) is the desired n(T ) corresponding to yo.
Let us further take no(T ) according to

no(T ) = (ΨM−1b)−1(v + ΨM−1Kδ) (6)



where v is a new input. Substituting the above equa-
tion in (5) yields

ÿo = v (7)

Denoting the reference position by yr and the error
by e = yr − yo, let us choose v as

v = −Kdẏo +Kpe (8)

whereKd andKp are feedback gains and it is assumed
that ẏo is known by measurement or estimation. The
resulting closed-loop system will then be given by

ë+Kdė+Kpe = 0 (9)

Now substituting (8) in (6) yields

no(T ) =
1

ΨM−1b
(Kpe+Kdė

+ ΨM−1bKδ) (10)

A main goal of the controller is to make n(T ) ap-
proach no(T ). Thus let us define the output to be
controlled as

y = n(T )− no(T ) = n(T )− 1
ΨM−1b

× (Kpe+Kdė+ ΨM−1bKδ) (11)

Following the input-output linearization method
(Slotine and Li 1991), only one time derivative of y is
required so that the input u appears in the equations,
which after some algebraic manipulations yields

ẏ =
∂n

∂T
(−βT + αu) +Kdn(T )

− KdΨM−1K

ΨM−1b
δ +

KpΨ−ΨM−1K

ΨM−1b
δ̇

(12)

The above equation describes part of the dynamics of
the system that is related to the input-output behav-
ior. The other part of the dynamics, often referred
to as internal dynamics (Slotine and Li 1991), can be
obtained by solving for n(T ) in (11), i.e.,

n(T ) = y +
1

ΨM−1b
(Kpe+Kdė

+ ΨM−1bKδ) (13)

and substituting (13) in (1), which yields the internal
dynamics given by

δ̈ = −M−1((I − bΨM−1

ΨM−1b
)K

+ Kp
bΨ

ΨM−1b
)δ −Kd

M−1bΨ
ΨM−1b

δ̇

+ M−1b
(
y +Kp

yr
ΨM−1b

)
. (14)

It can be concluded from (14) that the internal dy-
namics can be stabilized by a proper choice of feed-
back gains Kp and Kd, provided that the internal

dynamics are controllable. This is usually the case as
can be verified for a model with a single mode (scalar
δ) which is the most important mode to control.
Now let us write (14) in the form

∆̇ = A∆∆ + b∆(y +
Kpyr

ΨM−1b
) (15)

where

A∆ =

[
0 I

A21 −Kd
M−1bΨ
ΨM−1b

]

∆ = [δT δ̇T ], b∆ =

[
0

M−1b

]
(16)

with

A21 = −M−1((I − bΨM−1

ΨM−1b
)K

+ Kp
bΨ

ΨM−1b
). (17)

Furthermore, (12) can be written as

ẏ = h1u+ h2 + h3 (18)

where

h1 = α
∂n

∂T

h2 = Kdn(T )− KdΨM−1K

ΨM−1b
δ

+
KpΨ−ΨM−1K

ΨM−1b
δ̇

h3 = −β ∂n
∂T

T. (19)

Of the above terms, h1 is of known sign and approx-
imate value, h2 is completely known, and the sign of
h3 is known but its value is not available since its
is assumed that the wire temperature T is not mea-
sured. Let us choose the control law as

u = ĥ−1
1 (−kys(ksy)− h2) (20)

where ĥ1 is an estimate of h1, and s(·) is a smooth
nonlinear saturating function (e.g., tanh(·)) that ap-
proximates a sign(·) function. This control law is
obtained by following a sliding control approach as
follows (Slotine and Li 1991) . Let σ = y and con-
sider a switching surface σ = 0. The sliding condition
can be ensured if σσ̇ ≤ −kσ |σ| for some positive con-
stant kσ. Using the control law given by (20), with
s(·) replaced by sign(·), we have

σσ̇ = −kyh1ĥ
−1
1 y(sign(y)

− ((1− h1ĥ
−1
1 )h2 + h3)

kyh1ĥ
−1
1

) (21)

It can be concluded from (21) that for a bounded
region C ⊂ R2n+1 in the state-space of (∆, T ), the
sliding condition can be ensured by selecting ky large
enough. This is due to the boundedness of h1, h2, and
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Figure 2: SMA actuator.

h3, and the effect of ky in the denominator in (21).
Depending on the sign of y, the term in parenthesis
can be made positive or negative by selecting ky large
enough.
The control law in (20) is a modification of the slid-
ing control law to reduce undesirable effects such as
control chattering. In order to show the stability of
the whole system let us choose a Lyapunov function
candidate given by

V =
1
2
y2 + ε2∆∆TP∆∆ (22)

where ε2∆ is a small scaling constant. The scaling
constant is introduced as a result of the stability re-
quirement that y converges to a small value near zero
while ∆ remains bounded. A proof of the closed-
loop system stability can be established based on the
Lyapunov function candidate (22) and the system dy-
namics given by (12), (14). The reader is referred to
(Moallem et al. 1998), (Moallem et al. 2000) for a
similar analysis.

3. KINEMATIC RELATIONSHIPS

The input effect vector b in (1) depends on the place
where the SMA wires are attached. In order to obtain
this vector refer to Figure , which is comprised of
a cantilevered flexible beam attached to SMA wires
one of which is shown in figure. Let fs be the force
exerted by the SMA string which is placed at xa along
the link. It is assumed that this force is measurable
using a sensor mounted on the flexible link or at the
other end of the string. Then neglecting the curvature
of the beam, the tangential and normal components
of fs, denoted by fsT and fsN , are obtained as

fsT = fscos(γ), fsN = fssin(γ). (23)

The angle γ can be obtained from

γ = tan−1

(
d− yacos(θ/2)

xacos(θ)

)
+ θ (24)

with ya is given by

ya =
n∑
i=1

φi(xa)δi (25)

where φi(xa) is mode i’s shape function. Using the
method of virtual work and the Lagrangian formula-
tion (see e.g. (Meirovitch 1975)) one can obtain the
input effect vector b with element its element i given
by

bi = fssin(γ)φi(xa) (26)

Assuming that θ is small enough and d� ya we have

bi =
d√

d2 + x2
a

φi(xa) (27)

4. NUMERICAL SIMULATIONS

The control scheme developed in the previous section
was simulated for the system shown in Figure with
the following numerical values:

L = 0.4m, xa = 0.3m, d = 0.4m,

Kd = 8, Kp = 16, ky = 10,

ks = 100000, β = 0.5, α = 0.6,

Ta = 25◦C,

M = diag([0.1832, 0.1639]),

K = diag([79.3, 4029.5]). (28)

The model was obtained using the method of assumed
modes (Meirovitch 1975)) for a steel plate of dimen-
sions 0.5mm × 0.2m × 0.4m that is attached to two
SMA wires made of NiTi. Figure shows simulation
results when the nonlinear function n(T ) in (1) is cho-
sen as n(T ) = 20 tanh(0.1(T−Ta)). The nonlinear in-
put in (20) was chosen as u = 5(−10 tanh(100000y)−
h2), i.e., ĥ−1

1 = 5, ky = 10, ks = 100000. From (19),
it follows that h1 = 1 for Ta = 25◦C, which differs
from ĥ1 by a factor of five. The results indicate that
good regulation of tip deflection can be achieved de-
spite these uncertainties.

5. CONCLUSION

In this paper a nonlinear control scheme was devel-
oped for position control of a flexible beam actuated
by Shape Memory Alloy wires. SMA actuators ex-
hibit highly nonlinear effects with characteristics that
are highly temperature dependent. Since actuator
temperature is not readily measurable, it is treated as
a disturbance term that has to be compensated by the
control scheme. By following an approach similar to
sliding-mode control, a control scheme was developed
to regulate the force exerted by the actuator on the
flexible beam. The flexible beam has a rather deter-
ministic model. Hence the reference force is obtained
to achieve a desirable position of the beam end-point.
The control scheme does not suffer from the chatter-
ing phenomena associated with sliding-mode control
while providing a small regulation error that may be
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Figure 3: Simulation results: (a) Modal variables
(m), (b) Tip deflection and reference position (m),
(c) Force exerted by SMA actuator (N), (d) Error
between desired and actual forces exerted by SMA,.
i.e., output y (N).

acceptable in practical applications. The experimen-
tal phase of this project is currently under way in our
research laboratory.
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