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Abstract: This paper presents a general infrared vision system to be used in robotic
applications in natural outdoor environments. In these applications the robustness of the
vision system and the automatic settings of the infrared cameras are very important issues.
A piecewise linear model of the infrared camera has been identified. This model is used for
the design and development of a fuzzy control method by applying visual feedback
techniques. The vision system also includes a new fuzzy-multiresolution threshold
computation method, which considers knowledge on the application and information on the
illumination conditions to select an appropriate threshold for the segmentation of the object
of interest. The paper describes the application of the proposed system for surveillance and
includes some experiments.

Keywords: infrared detectors, robotics vision, computer controlled systems, computer
vision, fuzzy control.

1. INTRODUCTION

Infrared imagery is an appropriate technology for a
large number of outdoor robotic applications such as
robots for the maintenance of electrical lines (Peñín,
��
 ���, 1999), surveillance, and fire fighting. The
development of uncooled infrared cameras has
contributed to decrease their costs significantly,
permitting its extension to a considerable number of
applications, (Unewisse,
 ��
 ���, 1995). Furthermore,
new advances in their miniaturization (Raytheon,
2001) permits an explosion of new applications
including those using unmanned aerial vehicles.

However, infrared images show high sensitivity to
illumination conditions, and particularly to solar
illumination, (Hudson, 1969), (Arrue, ��
 ���, 2000).
This high sensitivity makes difficult their application
in autonomous robots.

Several strategies have been developed in computer
vision to deal with changes in illumination (Horn,
1986). Some of them aim to design algorithms robust
to changes in illumination conditions, (Gonzalez and
Woods, 1993). Other approaches consist in adapting
the camera settings in order to control the visibility
conditions of the images. The application of infrared
vision systems in autonomous field robotics requires
the adaptation of the settings of the infrared camera

in order to control the visibility conditions of the
images.

This paper presents a general infrared vision system
to be used in natural outdoor environments. In order
to achieve robust behavior, the system makes use of
several tools. The system includes functions to adapt
the settings of an infrared camera in order to control
the visibility conditions of the images. The
identification of infrared cameras reveals piecewise
linear expressions, which are used to design and
develop control schemes using visual feedback
techniques.

The presented vision system employs a threshold-
based method for the segmentation of objects from
the background. However, threshold selection
exhibits critical sensitivity to illumination conditions
and particularly in outdoor scenarios with
unpredictable changes in the illumination conditions
(Gonzalez and Woods, 1993). Then, the proposed
vision system includes a fuzzy-multiresolution
threshold selection method, which considers
knowledge on the application and information on
illumination conditions to select automatically an
adequate threshold value for the segmentation of the
object of interest. This new method shows high
robustness to illumination changes, being appropriate
for outdoor applications.
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The vision system has been implemented in several
infrared detection and tracking systems for
applications in natural outdoor environments.

The paper is organized as follows: Section 2 presents
the general structure of the system. Section 3 and 4
present the modeling and fuzzy control of an infrared
camera. In Section 5 the robust threshold selection
algorithm is briefly described. In Section 6 the
proposed computer vision system is particularized to
object tracking. Finally, Section 7 describes the
conclusions and future work.

2. THE INFRARED VISION SYSTEM

Infrared cameras provide images in which each pixel
expresses a punctual measurement of radiation or
temperature. Most infrared cameras have two basic
settings: Gain and Pedestal (Hudson, 1969). Gain can
be defined as the amplitude constant that multiplies
the radiation value captured by the infrared sensors.
Pedestal can be defined as the radiation in the
infrared sensor that is transformed in black level
intensity in the image. For instance, the camera
Mitsubishi IRM300, which has been used for the
experiments shown in this paper, has 5 discrete Gain
values and a continuous range of Pedestal.

Fig. 1 depicts the general scheme of the proposed
infrared computer vision system for outdoor
applications. The settings of the infrared camera are
adapted to control visibility parameters such as
image bright and contrast. The inputs of the
controller are the actual values of the visibility
conditions, which are estimated by sensorial
functions, and the reference values, which are
provided from the knowledge database. The
objective of the controller is to minimize the errors
between the reference values and the values
estimated from the images, so that the images have
known stabilised illumination conditions according
with the information provided by the knowledge
database.

Fig. 1. General scheme of the proposed infrared
computer vision system.

The images are processed by several blocks.
Typically, the objects of interest have different
radiation properties from the background and exhibit
different intensity levels in infrared images. In many
of these cases, simple threshold application is enough
to perform correct segmentation. However, threshold
selection normally is highly dependent on the
application and is very sensitive to illumination

conditions. The proposed threshold selection method
employs heuristic knowledge of the application to
compute an appropriate threshold value to segment
the desired objects. Section 5 is devoted to the
description of this method.

Algorithms insensitive to illumination conditions
have a wide set of applications. They can be applied
in completely autonomous systems as well as in
cooperative hybrid operator-computer systems, in
which the operator can change system settings and
parameters without affecting the automatic image-
processing algorithms. Notice that both strategies are
complementary and can be applied simultaneously to
increase robustness. Furthermore, it is also possible
to make use of their synergies by establishing co-
operative procedures to cope with certain
illumination conditions and situations. These
properties make the presented vision system
appropriate for autonomous and tele-operated field
robotic systems.

The database contains knowledge of the application,
which is employed to set the desired reference values
for image visibility control and to select adequate
segmentation threshold values.

The following general steps depicted in Fig. 1 are:
threshold-based segmentation, detection and tracking
functions. The description of these blocks is not the
object of this paper.

3. VISIBILITY MODELING OF AN INFRARED
CAMERA
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Consider that the model of an infrared camera can be
decomposed in a static component and a dynamic
one. The identification of the static component,
which can be considered as a first step towards the
identification of the complete model, consists in
finding out the expressions that relate the changes in
the camera settings with the changes in the image
pixels intensity values.

Most infrared cameras aim to provide estimations of
the radiation intensity and, thus, normally use linear
functions in the image formation process. Thus, static
identification can be achieved applying simple
identifications techniques based on Least Squares
criterion.

Let Im1(x, y) and Im2(x, y) be two infrared images of
the same scene but taken with different settings, i.e.
Gain=G1 and Pedestal=P1 for Im1(x, y) and
Gain=G2 and Pedestal=P2 for Im2(x, y). A large set
of experiments has been carried out revealing the
following expressions (Martinez-de Dios, 2001):
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For the infrared camera Mitsubishi IRM-300, used
for the experiments presented in this paper, the
following expressions were experimentally
identified:
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where 12 666 −=∆  and 12 555 −=∆ .

The experiments revealed that changes in the settings
modify all image pixels in the same way. Besides,
the system has time-invariant behavior. It can also be
noticed that no change in the settings, i.e. 0=∆6
and 0=∆5 , originate no change in the images, i.e.

12 ImIm = . The experiments carried out

demonstrated that the camera behaves like a 0-order
system. The only dynamics is a dead time of
negligible duration for the practical aspects
considered in this paper.
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Traditionally, illumination conditions in gray-level
images have been parameterized in terms of ���
8�
and �	������ values, i.e.:
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where 9x4 is the size of the image and 
���

�  and

����  stand for the maximum and minimum non-null

intensity values of the image histogram.

It is easy to demonstrate that the relations between
���
8� and �	������ values of Im1(x,y) and Im2(x,y)
have the following expressions:

12  )( �6�� ∆=                        )8(
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Notice that Eq. (8) only depends on 6∆  while Eq.
(9) depends both on 6∆  and 5∆ . With these
expressions it is not difficult to design a control
system with the structure shown in Fig. 2.

Fig. 2. Scheme of infrared camera control.

4. FUZZY CONTROL OF AN INFRARED
CAMERA

The camera controller aims to compute the values of
Gain and Pedestal in order to simultaneously
minimize the errors between the references of
�	������ and ���
8� and the values provided by the
image sensors.
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From Eq (8) it is not difficult to obtain the following
control law:
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where Cref is the reference contrast value and Csensor is
the contrast estimation. In case Cref=Csensor, no change
in Gain should be applied, i.e. 6∆ =0.

In the Mitsubishi camera, Gain is a discrete
parameter with 5 values. Thus, contrast control
consists in selecting the value of 6∆  that minimizes
the error between Cref and Csensor, being not possible
to cancel the error in the general case. The activation
signals are restricted to }1 ,0 ,1{−=∆6  due to the

high sensitivity of the image to 6∆ , which can be
observed in Eq. (1). Besides, the contrast control
incorporates filtering functions to avoid noisy
estimations of Csensor.

Contrast control is performed by the fuzzy controller
depicted in Fig. 3. The inputs of the controller are:
v1=Cref/Csensor)n, i.e. contrast ratio for current image
(image �), v2=Cref/Csensor)n-1, i.e. contrast ratio for
image �-1, and v3=G1, which represents the current
value of Gain. Fig. 4 shows the membership
functions of v1 and v2 (Fig. 4a) and v3 (Fig. 4b).

Fig. 3. Scheme of contrast control.

The fuzzy system has a total of 45 fuzzy rules. Two
of them can be observed in the following
expressions:

IF (v1 IS ��!)AND(v2 IS ��!)AND(v3 IS "#)
THEN ( 6∆  IS ��!���$�)                                    )11(

IF (v1 IS ���)AND(v2 IS ���)AND(v3 IS "#)
THEN ( 6∆  IS ������$�)                                     )12(

For Eq. (11), v1 and v2 are ��!, Cref <0,75 Csensor for
image n and n-1, and v3 is "#. Thus, in order to
reduce the value of Csensor and minimize the error the
output should be 6∆ = -1. In Eq. (12) case v1 and v2

are ���, Cref >1,5 Csensor for image n and n-1, and v3 is
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"#. Thus, in order to increase the value of Csensor the
output should be 6∆ =1.

a)

b)
Fig. 4. Membership functions of input variables v1

and v2 (a) and v3 (b).
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From Eq (7) it is easy to obtain the following control
law:
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where :��� and :������ stand for the bright reference
value and estimation of bright.

Bright control needs three inputs: :���, :������ and
6∆ , which is computed by the contrast control

block. Thus, errors in contrast control induce high
sensitivity errors in bright control. Fig. 5 shows the
diagram of the bright-contrast simultaneous control.

Fig. 5. Scheme of bright-contrast control.

In order to illustrate the capabilities of the control
system, Fig. 6 shows the result of an experiment
consisting in controlling simultaneously the bright
and contrast of the infrared camera in order to fit the
control references. Figure 6a and 6b show the
references and the outputs obtained for bright and
contrast control, respectively. They show that the
error in bright control is negligible while the error in
contrast control is not. The reason is that the contrast
control is designed to minimize the error, without
being able to cancel it in the general case. Figure 7
shows three images taken from this experiment
(shown in Fig. 6) at different time instants: �=10,
�=30 and �=60. These images show the same scene

with gain and pedestal values adapted to fit the
references. Fig. 7a shows an image with the camera
configured to have low bright and low contrast
values (�=10). The image in Fig. 7b (�=30) shows
low bright and high contrast. For Fig. 7c the camera
is configured to have high bright and low contrast
(�=60).

Fig. 6. Result of an experiment of bright-contrast
simultaneous control of an infrared camera.

a)

b)

c)
Fig. 7. Three images taken from the experiment

shown in Fig. 6 at different time instants: �=10
(a), �=30 (b) and �=60 (c).

5. ROBUST THRESHOLD SELECTION METHOD

The described threshold selection method considers
the knowledge on the application and on illumination
conditions to select an adequate threshold value for
the segmentation of the objects of interest.









































































�� �

			�������������������

			���������������������                                �� �

			�����

�����������������	
�����
�

��������	
�����	�����

�
��
���

�
��

���


�
����

�
��

���




The described method assumes that the intensity
values of the pixels of the objects of interest are
within a certain region in the histogram, which will
be called 8���	
���
 ��
�	�
 	3
 ��������. This
hypothesis is normally assumed in most of automatic
threshold selection methods (Parker, 1997).

Fig. 8 shows the scheme of the described algorithm.
The method aims to identify the histogram of interest
using descriptions of the histogram at several levels
of resolution. The method starts making an
estimation of the 8���	
���
��
�	�
 	3
 �������� using
the wavelet approximation decomposition of the
histogram at the coarser level of resolution, level 9.
This estimation is refined at the immediate finer level
of resolution (level 9-1) providing a new estimation.
Then, this new estimation is refined at the following
finer level. This process is repeated successively
until the analysis is applied to the finest level of
resolution (level 0). Then, once the histogram region
has been estimated, the threshold selection is carried
out performing simple considerations based on
knowledge on the application.

Fig. 8. General scheme of the proposed threshold
selection method.

The Region Selection Fuzzy System is responsible
for the selection of the histogram region at each level
of resolution. This fuzzy system divides the region
analyzed at each level in sub-regions, each of which
corresponds to certain objects in the image. Then a
fuzzy decision block, called Fuzzy Supervision
Function, decides which sub-region corresponds to
the object of interest. This decision block
incorporates knowledge on the application and
information on illumination conditions.

The threshold selection can be easily particularized
to specific applications in contrast to most of the
threshold selection methods, which are based on
statistical criteria (Parker, 1997). The incorporation
of knowledge can be achieved in three different
ways. The first one consists in using statistical
characterization of the objects of interest. However,
this information is not available in many cases. The
system can also employ rules provided by expert
human operators. Finally, a neuro-fuzzy learning-
based method has been also developed to incorporate
automatically application knowledge in the
algorithm, (Martinez-de Dios, 2001).

It can be demonstrated that the algorithm exhibits
high robustness to the changes in the illumination
conditions considered in the Fuzzy Supervision

System (Martinez-de Dios, 2001). This robustness
property has been tested in the wide test of
experiments that have been carried out.

6. APPLICATION: TRACKING OF OBJECTS

The proposed infrared vision system is the basis for
several applications in outdoor scenarios. The
application described in this paper deals with
surveillance at the surroundings of buildings.

The system is composed by an infrared camera
mounted on an azimuth-elevation pan&tilt. The
system aims to detect suspicious activities and, once
detected, keep the objects of interest in the image
with constant local illumination conditions.

The architecture of the system can be divided in two
components: detection and tracking. The objective of
the first component is to detect moving high intensity
objects. Thus, the segmentation method employed is
based on motion detection and thresholding. The last
one is carried out by the method described in Section
5. Notice that motion segmentation avoids the
detection of static high-intensity objects such as
traffic lights. For detection, the references for the
control of visibility conditions are kept constant in
such a way that infrared images have the same
visibility conditions despite solar illumination.

Object tracking involves controlling the infrared
camera settings and controlling the pointing of the
cameras. The pointing is not described in this paper.
In order to maintain invariant local visibility
conditions, predictive schemes are employed in the
control structures to cancel irregularities in local
illumination before they originate errors in visibility
control. The tracking component of the system also
includes functions to avoid partial or temporal
occludings of object of interest.

The described system has been installed on the roof
of the building of the School of Engineering of
Seville, Spain. The computer is based on a Pentium
III, 700 Mhz. The control period is 300 ms.

Fig. 10 shows four non-consecutive images taken
from a detection and tracking experiment. The
location of the object of interest, which is a car in this
experiment, is marked with two rectangles in the
images. The inner rectangle indicates the position of
the segmented object, while the outer represents the
predicted position for the next image in the sequence.
The object of interest is detected in the image shown
in Fig. 10a. In Fig. 10b, 10c and 10d the object is
tracked along its trajectory. Notice that the settings
have been adapted to keep the local visibility
conditions around the object of interest constant
along the tracking. Notice that the pan&tilt pointing
for the images shown in Fig. 10a and Fig. 10b are
different from Fig. 10c and 10d in order to keep the
object of interest within the image. Notice that the
results of the tracking and camera control are
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successful despite the object suffers temporal
occlusion (see Fig. 10b).

a)

b)

c)

d)
Fig. 10. Images from a detection and tracking

experiment.

7. CONCLUSIONS

Infrared imagery is an appropriate technology for a
large number of outdoor robotic applications.
However, infrared images have considerable
sensitivity to illumination conditions, limiting in
many cases the use of autonomous robotic systems.

This paper presents a general infrared vision system
for outdoor applications. Two main approaches have
been considered to solve this mentioned sensitivity to
illumination conditions. The first one consists in
adapting automatically the camera settings in order
to control the visibility of the images. The
identification of infrared cameras obtains a piecewise

linear model. This model is employed to develop
control schemes using visual feedback techniques.

The proposed vision system also includes a fuzzy-
multiresolution threshold selection method that
considers knowledge on the application and
information on illumination conditions to select
automatically an adequate threshold value. The
adaptation of the method to specific applications can
be done easily. The proposed method shows
considerable robustness to illumination changes.

This vision system has been implemented in several
infrared applications for outdoors, one of which is
described in the paper including some examples.

Future work will include the integration in field
robotics systems for applications such as surveillance
and forest-fore fighting.
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