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Abstract: The goal of this paper is to transform classical absolute stability criteria
into nonlinear design procedures which employ efficient numerical tools, such as LMI’s.
The paper starts with an analysis of an earlier circle criterion design, and shows that
its feasibility is limited by conditions on the unstable part of the zero dynamics and
on the relative degree. Then, an extended circle criterion design is developed which
eliminates the relative degree obstacle. The restrictions on the zero dynamics are
relaxed by using the Popov multiplier, which also reduces controller complexity. The
results are illustrated on several physically motivated design examples.
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1. INTRODUCTION

Nonlinear control has made major advances in the
last decade. As surveyed by Kokotović and Arcak
[2001], there is already a significant number of
constructive, that is, design-oriented results. An
obstacle to wider applicability of these designs
is their analytical complexity and the lack of
computational tools to aid the designer.

Special system structures present opportunities
to avoid controller complexity and reduce com-
putations. This is the case with the structures
consisting of a linear block in feedback with a non-
linearity, introduced in classical absolute stability
studies. Absolute stability is guaranteed if the
linear block has a certain input-output property,
consistent with the type of feedback nonlinearity.
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Most important input-output properties of linear
blocks, such as small-gain and passivity, can now
be analyzed by efficient numerical tools for solving
linear matrix inequalities (LMI’s); Boyd et al.
[1994].

Feedback passivation, that is achieving passivity
by feedback, has been pursued in numerous stud-
ies as a “direct” approach, in which the passivity
property is achieved with respect to the control in-
put. However, for a wider use of absolute stability
results, passivity is to be achieved with respect
to the output and the input of the nonlinearity,
neither of which, in general, coincides with the
control input. Preliminary results on such “indi-
rect passivation” designs have been reported by
Janković et al. [1999], and Bernussou et al. [1999],
who employed the circle criterion for feedback
control. Their designs make use of the sector prop-
erty zϕ(z) ≥ 0 of the feedback nonlinearity ϕ(·),
and render the feedforward linear block strictly
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positive real (SPR), thus achieving global asymp-
totic stability (GAS) from the circle criterion.

In this paper we identify structural obstacles to
the feasibility of the circle criterion design, and
develop new design procedures which circumvent
these obstacles. We first give an analytical test for
the feasibility of the circle criterion design, based
on the recent indirect passivation conditions de-
rived by Arcak and Kokotović [2001]. This test re-
veals that feasibility is determined by the relative
degree of the linear block, and the unstable part
of its zero dynamics. Next, the relative degree ob-
stacle is removed with an extended design which
employs derivatives of the nonlinearity in the feed-
back control law. The zero dynamics restrictions
are relaxed by a Popov multiplier design, which
also reduces the complexity of the circle criterion
design when both designs are applicable. This is
illustrated on a jet engine surge subsystem exam-
ple.

We review the basic circle criterion design in Sec-
tion 2, and analyze its feasibility in Section 3. An
extended design, presented in Section 4, removes
the relative degree obstacle of the basic circle
criterion design. The Popov multiplier design is
presented in Section 5. The proofs are omitted
due to space limitations.

2. BASIC CIRCLE CRITERION DESIGN

We start with an introductory example of a single
degree-of-freedom active magnetic bearing model
due to Tsiotras and Velenis [2000],

ẋ1 = x2

ẋ2 = εx3 + x3|x3| (1)

ẋ3 = u ,

where x1 is the rotor position, x2 is the velocity,
x3 is the magnetic flux, and the parameter ε > 0
represents the bias flux. Let us try to stabilize the
system at x = 0 using a linear feedback and a
copy of the nonlinearity; that is,

u = k1x1 + k2x2 + k3x3 − βx3|x3| . (2)

The resulting closed-loop system in Figure 1 is
the feedback interconnection of a linear block and
the nonlinearity ϕ(x3) = x3|x3|. The feasibility of
the circle criterion design (2) depends on whether
the parameters k1, k2, k3 and β can be found
to render the linear block SPR. If so, the sector
property x3ϕ(x3) ≥ 0 ensures GAS of the equi-
librium x = 0 from the circle criterion. A further
question is whether such a design is possible with
β = 0, that is, without a nonlinear term in the
control law. This would eliminate the need for
knowledge about the nonlinearity, other than its

sector property. As we shall see, one of our results
implies that the circle criterion design for system
(1) is not feasible with β = 0, which means that
the nonlinear term βx3|x3| is crucial.

ẋ1= x2

ẋ2= εx3 − w

ẋ3= k1x1+k2x2+k3x3+βw

x3w

−

ϕ(x3)

Fig. 1. The closed-loop system (1) with the circle
criterion design (2).

We now formulate the circle criterion design for
the system

ẋ=Ax−Gϕ(z) +Bu (3)

z =Hx ,

where x ∈ IRn, u ∈ IRm, z ∈ IRp, and the
nonlinearity ϕ(·) : IRp → IRp satisfies the sector
property zTϕ(z) ≥ 0, and is continuous, so that
ϕ(0) = 0. We employ the control law

u = Kx− βϕ(z) (4)

which, with β 6= 0, requires either the knowledge
of the nonlinearity, or the availability of the signal

w := −ϕ(z). (5)

In view of the Positive Real Lemma, the problem
of rendering the closed-loop system

ẋ = (A+BK)x+ (G+Bβ)w (6)

SPR from the input w to the output z = Hx is
equivalent to the existence of matrices P = P T >

0 and Q = QT > 0 such that

(A+BK)TP + P (A+BK) +Q ≤ 0 (7)

P (G+Bβ) = HT . (8)

This SPR property guarantees GAS of the equi-
librium x = 0, because the Lyapunov function
V (x) = xTPx satisfies

V̇ = −xTQx− 2zTϕ(z) , (9)

where the right-hand side is negative definite
because of the sector property zTϕ(z) ≥ 0.

Although (7)-(8) is not an LMI, multiplying (7)
from both sides, and (8) from the left, by X :=
P−1 results in



X(A+BK)T + (A+BK)X + Q̃ ≤ 0 (10)

(G+Bβ) = XHT , (11)

which is an LMI in X = XT > 0, Q̃ = Q̃T :=
XTQX > 0, XKT and β. This means that we
can use the efficient numerical tools available for
LMI’s to determine whether the design is feasible
and, if so, to compute K and β in the control law
(4).

3. FEASIBILITY CONDITIONS

To characterize the classes of systems to which the
circle criterion design is applicable, our task is to
determine when there exist K, β, X = XT > 0
and Q̃ = Q̃T satisfying (10)-(11). The case where
β is constrained to be zero is of separate interest
because, then, the control law (4) is linear, and the
exact knowledge of the nonlinearity ϕ(z) is not
required for its implementation. The feasibility
conditions are given for systems with a single
nonlinearity and a single control input; that is,
u, z ∈ IR. For multivariable nonlinearities, analo-
gous results can be obtained with more cumber-
some calculations.

When the linear part of (3) is controllable and
observable, that is, when the triple (H,A,B)
is minimal, a state and feedback transformation
results in the normal form

ξ̇i =Ai
0ξi + Ei

0y1 +Gi
0w, i = 1, 2, 3, (12)

ẏ1 = y2 + g1w

ẏ2 = y3 + g2w

... (13)

ẏr = u+ grw

z = y1 , (14)

where r denotes the relative degree from the input
u to the output z, and the spectra of Ai

0 in the
zero dynamics subsystem (12) are

σ(A1
0) ⊂ |C+, σ(A2

0) ⊂ |C0, σ(A3
0) ⊂ |C−. (15)

The following lemma, proved in Arcak and Koko-
tović [2001], shows that the obstacles to feasibility
are primarily due to the unstable part of the zero
dynamics:

Lemma 1. (β = 0) Consider the system (12)-(14),
and the matrices U = UT , V = V T defined by

A1
0U + UA1

0
T
= (E1

0 −G
1
0)(E

1
0 −G

1
0)

T (16)

A1
0V + V A1

0
T
= (E1

0 +G1
0)(E

1
0 +G1

0)
T. (17)

A state feedback control law u = Kx that renders
the closed-loop system SPR from w to z = y1

exists if and only if

g1 > 0, g2 < 0, U − V >
2

g1
G1

0G
1
0
T
, (18)

and, for every eigenvector p of A2
0

T
,

p∗(E2
0 −G

2
0)(E

2
0 −G

2
0)

T p > (19)

p∗(E2
0 +G2

0)(E
2
0 +G2

0)
T p .

2

We next give the feasibility conditions for the case
β 6= 0:

Lemma 2. (β 6= 0) When r = 1, a control law
u = Kx + βw that renders (12)-(14) SPR from
w to z = y1 exists if and only if U > V , and

(19) holds for every eigenvector of A2
0

T
. When

r = 2, g1 > 0 and U −V > 2
g1

G1
0G

1
0
T
are required

in addition. When r ≥ 3, all the conditions of
Lemma 1 are required. 2

An important implication of Lemma 2 is that,
when the relative degree is r = 1 or r = 2,
the nonlinear term βϕ(z) in the control law (4)
renders the feasibility conditions less restrictive.
However, when r ≥ 3, the conditions of Lemma 1
and Lemma 2 are the same; that is, if the design
is feasible, it is also feasible with the linear control
law u = Kx.

Example 1. The magnetic bearing system (1) has
r = 1, and with the new variables y1 := x3, and
ξ2 := (x1, x2)

T , it appears in the form (12)-(14),
where

A2
0 =

[

0 1
0 0

]

, E2
0 =

[

0
ε

]

, G2
0 :=

[

0
−1

]

(20)

and w := −x3|x3|. The basic circle criterion design
(2) is feasible with β 6= 0 because the eigenvector

of A2T

0 is p = [0 1]T , which satisfies (19) for every
ε > 0. A solution to the LMI (10)-(11) for ε = 1
yields the control law

u = −0.6777x1−2.1724x2−1.3706x3−2.8833x3|x3|

which achieves GAS of the equilibrium x = 0.
However, the linear design with β = 0 is not
feasible because g1 = 0. 2

Example 2. The surge subsystem of an axial com-
pressor model has been used to illustrate several
nonlinear designs, including a modified (“lean”)
version of backstepping; Krstić et al. [1995]. Here
we present a basic circle criterion design for the
same surge model:

φ̇=−ψ −
3

2
φ2 −

1

2
φ3 (21)

ψ̇ = u , (22)



where φ and ψ are the deviations of the mass flow
and the pressure rise from their set points, and the
control input u is the flow through the throttle
with a preliminary linear feedback. Because the
quadratic term in the nonlinearity 3

2φ
2 + 1

2φ
3

violates the sector property, we add and subtract
the linear term 9

8φ in (21), and obtain

φ̇=−ψ +
9

8
φ− ϕ(φ) (23)

ψ̇ = u , (24)

where

ϕ(φ) :=
9

8
φ+

3

2
φ2 +

1

2
φ3 (25)

satisfies the sector condition φϕ(φ) ≥ 0.

This model has relative degree r = 2, and with
y1 := φ and y2 := −ψ + 9

8φ, its normal form is
(12)-(14) with no zero dynamics. The basic circle
criterion design

u = k1φ+ k2ψ − βϕ(φ) (26)

is feasible with β 6= 0 because g1 > 0. However,
the linear control law with β = 0 is not feasible
because g2 > 0. To gain further insight into the
feasibility conditions, we represent (23),(24),(26)
as the feedback interconnection of the transfer
function

G(s) =
s− k2 − β

s2 − (k2 +
9
8 )s+ (k1 +

9
8k2)

(27)

and the sector nonlinearity ϕ(·). A second order
transfer function is SPR if and only if its poles are
stable, and its zero is located in the interval (σ, 0),
where σ represents the sum of the poles. For the
transfer function (27), we have σ = k2 + 9

8 and,
hence, its zero k2 + β must satisfy

k2 +
9

8
< k2 + β < 0 . (28)

This means that the circle criterion design is not
feasible with β = 0. However, with β > 9

8 , any
choice of k1, k2 satisfying k2 + β < 0 and k1 +
9
8k2 > 0, renders G(s) SPR and, thus, ensures
GAS of the equilibrium (φ, ψ) = 0. 2

4. EXTENDED CIRCLE CRITERION DESIGN

In this section we extend the applicability of
the basic circle criterion design to systems which
violate the conditions g1 > 0 and g2 < 0 of Lemma
2. We first consider the relative degree two case,
that is, the system

ξ̇ =A0ξ + E0y1 −G0ϕ(y1)

ẏ1 = y2 − g1ϕ(y1) (29)

ẏ2 = u− g2ϕ(y1) .

Because the basic circle criterion design of Section
2 is not feasible when g1 < 0, we let g̃1 > 0, and
define

ỹ2 := y2 − (g1 − g̃1)ϕ(y1) , (30)

which results in the new equations

ξ̇ =A0ξ + E0y1 −G0ϕ(y1)

ẏ1 = ỹ2 − g̃1ϕ(y1) (31)

˙̃y2 = u− g2ϕ(y1)− (g1 − g̃1)ϕ̇ ,

where ϕ̇ is available as a function of y1 and y2:

ϕ̇ =
∂ϕ

∂y1
(y2 − g1ϕ(y1)). (32)

With the feedback transformation

u = ũ− (g̃1 − g1)ϕ̇(y1, y2) , (33)

system (31) becomes

ξ̇ =A0ξ + E0y1 −G0ϕ(y1)

ẏ1 = ỹ2 − g̃1ϕ(y1) (34)

˙̃y2 = ũ− g2ϕ(y1)

where g̃1 > 0. Thus, the new variable ỹ2 and
the feedback transformation (33) eliminated the
restriction g1 > 0 from Lemma 2. With the design
ũ = Kx̃ − β̃ϕ(y1), where x̃ = [ξT y1 ỹ2]

T , and K

and β are obtained from the LMI (10)-(11) for
(34), the final form of our control law is

u = Kx− βϕ(y1)− (g̃1 − g1)ϕ̇(y1, y2) , (35)

where x = [ξT y1 y2]
T ; that is, the nonlinear term

in ỹ2 is incorporated in βϕ(y1).

When the relative degree is three or more, a re-
peated application of the procedure above elim-
inates both g1 > 0 and g2 < 0 from Lemma 2.
Indeed, with the change of variables (30) and

ỹi = yi − (g1 − g̃1)ϕ
(i−2)(y1, · · · , yi−1) (36)

−(g2 − g̃2)ϕ
(i−3)(y1, · · · , yi−2) , i = 3, · · · , r,

where ϕ(k) denotes the k-th time derivative
of ϕ(y1), which is available as a function of
y1, · · · , yk+1; and, with the preliminary feedback

u= ũ+ (g1 − g̃1)ϕ
(r−1)(y1, · · · , yr) (37)

+(g2 − g̃2)ϕ
(r−2)(y1, · · · , yr−1) ,

system (12)-(14) becomes



ξ̇ =A0ξ + E0y1 −G0ϕ(y1) (38)

ẏ1 = ỹ2 − g̃1ϕ(y1)

˙̃y2 = ỹ3 − g̃2ϕ(y1)

˙̃y3 = ỹ4 − g3ϕ(y1) (39)

...

˙̃yr = ũ− grϕ(y1) .

Choosing g̃1 and g̃2 to satisfy (18), and applying
the state and input transformations (36)-(37), we
obtain a control law of the form

u=Kx− βϕ(y1)− β1ϕ̇(y1, y2)− · · · (40)

−βr−1ϕ
(r−1)(y1, · · · , yr) .

The following theorem summarizes our deriva-
tions:

Theorem 1. (Feasibility of the extended circle cri-
terion design) Consider the system (3), repre-
sented as in (12)-(14), where w = −ϕ(z), r is
the relative degree from the control input u to
the output z; and let U and V be defined by (16)
and (17), respectively. A control law of the form
(40) renders the closed-loop system SPR from the
input w to the output z if and only if U > V ,

and (19) holds for every eigenvector of A2
0
T
. If, in

addition, (18) holds, then the linear control law
u = Kx is also feasible. 2

It is of interest to interpret the conditions in the
above theorem as structural causes for feasibil-
ity or infeasibility of the extended circle crite-
rion design. The relative degree r determines the
form of the control law and the restrictions under
which the linear control law is also feasible. As
can be expected, for a higher relative degree, the
complexity of the control law is also higher. An-
other important observation is that the obstacles
to feasibility are primarily due to the system’s
unstable zeros (eigenvalues of A1

0), because the
corresponding matrices U and V defined by (16)
and (17) are required to satisfy U > V . The
zeros on the imaginary axis (eigenvalues of A2

0)
are also an obstacle due to the requirement that
every eigenvector of A2

0 must satisfy (19). When
(12)-(14) is minimum phase, that is when A0 is
Hurwitz, the control law (40) is always feasible.

5. THE POPOV MULTIPLIER DESIGN

The SPR requirement imposed by the circle crite-
rion on the linear block G(s) has been relaxed by
various “multipliers” due to Popov [1960], Zames
and Falb [1968], and other authors, who exploit
additional properties of the sector nonlinearity
ϕ(·) to establish passivity of the feedback path

in Figure 2 from input u2 to output y2. Thus, the
SPR requirement is imposed on the feedforward
path G(s)M(s), rather than on G(s).

−

G(s) M(s)

M−1(s)ϕ(·)
y2 u2

u1 y1

Fig. 2. Feedback interconnection of G(s) and non-
linearity ϕ(·). The multiplier M(s) is intro-
duced to relax the SPR restriction on G(s).

We now proceed with a Popov multiplier design,
when M(s) = 1 + ηs. In the closed-loop system
(3)-(4), we denote

G(s) = H(sI −A−BK)−1(G+Bβ) , (41)

and, as a state-space realization of (1 + ηs)G(s),
we use

A = A+BK B = G+Bβ (42)

C = H[I + η(A+BK)] D = ηH(G+Bβ).

From the Positive Real Lemma the SPR property
of (1 + ηs)G(s) means

[

ATP + PA+Q PB − CT

BTP − C −D −DT

]

≤ 0 . (43)

Suppose that K, η and β satisfy this SPR condi-
tion for some P = P T > 0, Q = QT > 0, and that
ϕ(·) is a vector nonlinearity satisfying zTϕ(z) ≥ 0.
Then, GAS of x = 0 follows from the Lyapunov
function

V (x) = xTPx+ 2

z
∫

0

ϕT (σ)dσ (44)

whose derivative for the closed-loop system is
negative definite:

V̇ ≤ −xTQx−
2

η
zTϕ(z) . (45)

A difficulty in a design based on (43) is due
to the presence of the additional parameter η.
The attempt to convert (43) into an LMI using
X := P−1, Q̃ = XQX, yields

[

XAT +AX + Q̃ B −XCT

BT − CX −D −DT

]

≤ 0 (46)

which is not an LMI jointly inK, β and η, because
it is bilinear due to the products ηX and ηβ.



Rather than solving (46) using a bilinear matrix
inequality, suggested by Safonov et al. [1994], a
more direct application of the results in this paper
is to treat (46) as a one-parameter family of
LMI’s. Starting with η = 0, which is infeasible,
a one-parameter search for increasing values of η
allows us to relax the zero dynamics conditions of
Theorem 1:

Theorem 2. (Feasibility of the Popov multiplier
design) Consider the system (3), represented as
in (12)-(14), where w = −ϕ(z), and the relative
degree from the control input u to the output z is
r ≥ 2. Let

Ēi
0 = (I + ηAi

0)
−1Ei

0, i = 1, 2, (47)

and let U and V be defined by (16)-(17), with E1
0

replaced with Ē1
0 . A control law of the form (40)

is feasible for the Popov multiplier design if and
only if there exists η > 0 such that U > V and

(19) holds for every eigenvector of A2
0
T
, with E2

0

replaced with Ē2
0 . If, in addition, g1 > 0, then the

linear control law u = Kx is also feasible. 2

When η = 0, (47) implies Ēi
0 = Ei

0; that is,
we recover the zero dynamics conditions (19) and
U > V of Theorem 1. These conditions are relaxed
in the Popov multiplier design, because they only
need to hold for some η ≥ 0 in (47), rather than for
η = 0 as required in the extended circle criterion
design. Theorem 2 restricts the relative degree
by r ≥ 2 because, if r = 1, then y1 in Figure
2 contains a throughput term from u1, and the
Popov multiplier design is not applicable.

The following example shows that, even when
a circle criterion design is feasible, the Popov
multiplier design may lead to a simpler control
law:

Example 3. Consider the axial compressor surge
subsystem in Example 2, where a linear control
law was not feasible for a circle criterion design.
It is feasible for a Popov multiplier design because
g1 > 0 as in Theorem 2. Indeed, with the choice
of linear feedback gains

k1 = 1 +

(

9

8
+

1

η

)2

k2 = −
2

η
−

9

8
, (48)

it is easy to verify that

(1 + ηs)G(s) =
(1 + ηs)(s− k2)

s2 − (k2 +
9
8 )s+ (k1 +

9
8k2)

is SPR for all η > 0, and, hence, the linear control
law

u = k1φ+ k2ψ

achieves GAS of (21)-(22). 2

6. CONCLUSION

We have studied feasibility of the basic circle
criterion design, and revealed structural obstacles
arising from the relative degree and the unstable
part of the zero dynamics. The relative degree ob-
stacle has been removed with an extended scheme
which employs derivatives of the nonlinearity in
the feedback control law. The Popov multiplier
has relaxed the conditions on the zero dynam-
ics. To further improve the design, a promising
research direction is to employ other multipliers,
such as the one due to Zames and Falb [1968].
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Kokotović, P.V. and M. Arcak (2001). Construc-
tive nonlinear control: a historical perspective.
Automatica 37(5), 637–662.
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