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Abstract:
An observer structure is presented which can be used to reconstruct the state and/or
parameters of a quantum system using recorded data together with a model Hamiltonian
which is assumed to have the same structure as the true Hamiltonian (except for the
unknown parameters). The parameters are estimated using a gradient algorithm. A numerical
simulation of a quantum spin system shows convergence of the algorithm in some, but not
all, cases.
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1. INTRODUCTION

Quantum control of atomic and molecular motion has
a long history, see, e.g., [7], [10] and the references
therein. Recent impetus has come from the hope of
building a quantum computer, originally heralded by
Feynman [5], and now grown into a very active area
of theoretical and experimental research, e.g., [12].
Quantum computers can perform tasks which are im-
possible for a classical computer. To make such a
device will require very precise and reliable control
of the quantum states.

Any real quantum system, no matter how well iso-
lated, unavoidably interacts with the environment.
This interaction makes evolution of a quantum sys-
tem non-unitary and destroys coherence of quantum
superpositions (entanglement), the key to quantum in-
formation and computation. This process, known as
decoherence, is widely regarded as the most important
and fundamental obstacle to the practical realization
of quantum information processing. Active control of
a quantum information processing machine, is a ne-
cessity for the effective management of decoherence
processes. In recent years remarkable theoretical and
experimental progress has been achieved in the area
of control over quantum phenomena. Fortunately, the
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technology to achieve tailored pulses with femtosec-
ond temporal resolution has developed significantly
during the last decade and continues to improve.

In principle, although the most suitable pulse shape
can be designed by means of optimal control theory,
there are difficulties due to (1) the lack of precise
knowledge of the system Hamiltonian, (2) inevitable
experimental uncertainties and errors, and (3) the need
to solve the associated design equations to adequate
accuracy. These problems are especially acute for
complex multi-particle physical systems, as likely to
arise in realistic quantum information processing ma-
chines. In this paper we address problem (1) above by
posing a model Hamiltonian of known structure with
unknown parameters to be estimated using measure-
ments from the actual system, i.e., quantum system
identification.

2. PROBLEM FORMULATION

From a systems view, quantum systems are bilinear:
specifically jointly bilinear in control and state and
parameters and state. Quantum systems are not alone
in this category; two other examples include kinematic
steering [13], and growth of thin films [14], [8], [6],
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In this paper we consider a quantum system modeled
under the following assumptions: �

� the system is finite dimensional and represented
in some basis by the Hamiltonian matrix,H�t� �� �
C
n�n where � � Rp are unknown parameters,

and where t denotes time dependence due to ex-
ternal fields.

� The Hamiltonian is assumed affine in � and is of
the form,

H�t� �� � H��t� �

pX
k��

�k Hk�t� (1)

where the time-dependent matrices fHk�t� � Cn�ng
are Hermitian and known affine functions of the
external fields f�i�t� � Rg, that is,

Hk�t� � Gk� �

qX
i��

�i�t� Gki� k � �� � � � � p(2)

� The system density matrix, ��t� � Cn�n, then
evolves according to,

ih� ���t� � �H�t� ��� ��t�� (3)

� The system hasm possible outcomes, f y� j� � 	� � � � �m g,
where the probability of measuring y� at time t
is given by,

p��t� � tr �M���t�� (4)

whre fM�g are Hermitian and satisfy the com-
pletion relation,

P
�M� � In; equivalently,P

� p��t� � 	� ���t�.
Before proceeding, first an important aside about how
data can be recorded without effecting the state. As
is well known, a postulate of quantum mechanics is
“to observe is to disturb.” To circumvent this dictum,
numerous identical experiments are repeated at each
of N uniformly spaced sample times in a specified
interval, � � t � tf , and then averaging the mea-
surement results to obtain the outcome probabilities
(4). For a sufficiently large number of eperiments the
set of sample averages approximates the continuous
recorded data,n

p��t�
���� � 	� � � � �m� � � t � tf

o
(5)

If in addition, the initial state of the system is random,
which is likely the case, then the density ��t� repre-
sents a statistical state, [2].

The problem addressed is to use the recorded data (5)
to estimate the unknown parameters � � Rp in the
model (1)-(4).

� The mathematical representation used here for a quantum system
is standard, e.g., [2]. One exception is our use of the notation H��t�
in (1) which is normally preserved for the potential. Here we use it
to represent that part of the Hamiltonian not dependent on unknown
parameters. Thus, known parts of the potential are included in
H��t�.

3. STATE ESTIMATION: KNOWN
HAMILTONIAN

In this section a state observer is constructed for
(3) under the assumption that � is known. Thus, set
H�t� � H�t� ��. Clearly the resulting system (3)-(4)
is linear-time-varying. Hence, it is possible to con-
struct a time-varying observer by utilizing standard
optimal (Kalman) filtering design methods, or using
fictitious noise variances as design variables. By anal-
ogy with this classical observer, consider the simpler
constant gain quantum state observer:

ih� �b� � �H�t�� b�� � i

mX
���

��e�M�

e� � p� � tr �M�b��
(6)

Because of the error feedback terms fe�M�g, the ob-
server state, b�, may not be a density matrix, although
it is Hermitian. Properties of the observer are enumer-
ated in the following.

Lemma 1. From any initial state b���� � Cn�n:

(1) b��t� is bounded for all t.
(2) e��t�� � as t�� for all � � 	� � � � �m.
(3) b��t� � ��t� exponentially as t � � ifn

H�t��M�

���� � 	� � � � �m
o

is uniformly com-
pletely observable, i.e., if there exist finite con-
stants � 	 �� 
 	 � such that for all � � �,

���Z
�

N�t� ��N�t� ���dt � 
 Imn� (7)

where N�t� �� � Cmn� is,

N�t� �� �

�
��

vec � U�t� ���M�U�t� �� �
T

...
vec � U�t� ���MmU�t� �� �

T

�
��(8)

with U�t� �� � C
n�n the unitary transition

matrix which solves:

ih� �U�t� �� � H�t�U�t� ��� U��� �� � In(9)

Proof Define the error state,

e� � b�� � (10)

The observer expressed in the error state satisfies,

ih� �e� � �H�t�� e�� � i
mX
���

��e�M�

e� � �tr �M�e��
(11)

Define the positive definite error measure,

V �
	



tr
�e��	 (12)



Using the fact that tr �e� �H�t�� � e�� � �, the rate of
change of V along solutions of (11) becomes,

�V � �
mX
���

��e
�
�

Since V is positive definite and �V is negative semi-
definite (in e�), it follows from Lyapunov stability
theory that e��t� � � is a globally stable solution and
hence e��t� is bounded for bounded initial states. Since
��t� is a density matrix, b��t� is therefore bounded. It
takes a few more steps to go from here to a proof of
exponential stability – see [1, Ch.2] for all of them.

4. EXAMPLE: CHAIN OF SPIN SYSTEMS

Electron spin states are promising candidates for man-
ifesting the qubits needed in a quantum computer. �

Spin states are either “up” or “down,” the direction
determined by convention (and alignment of the mea-
suring apparatus). Using the “ket” notation, the states
are denoted by j	i and j
i. Sometimes it is simpler to
write 	 and 
.

The example system we consider here is the intercon-
nected chain of N -spin systems:

Q�
���� Q�

����    �N���� QN

The Hamiltonian operator is,

H�h� �

NX
n��

gn

�
Bn�t� � �n �

N��X
n��

�n �n � �n�� (13)

where Bn�t� � �Bn�x�t��Bn�y�t��Bn�z�t�� is the
external magnetic field, �n � ��n�x��n�y��n�z� the
Pauli spin operator, fgng the gyromagnetic ratios,
and f�ng the spin couplings. The base states of each
system are �	 
� with respect to that system. Since
states of a collection of quantum systems are tensor
products, the N -spin chain has 
N -basis states formed
from the tensor products of each individual system ba-
sis. A standard model yields the 
N�
N Hamiltonian
matrix is given by,

Hh��
NX
n��

gn



�I�n�� �Rn�t�� I�N�n�

�

N��X
n��

�n �I�n�� � Sn � I�N�n���

with Rn�t� � C��� and Sn � R��� given by,

� The physics of spin systems is described in many standard texts,
see, e.g., [4, III-12], [2, IV]. Their use in quantum computers is
described in [12] and the references therein.

Rn�t� �
X

k�x�y�z

Bn�k�t� �k

�



Bn�z�t� Bn�x�t�� iBn�y�t�

Bn�x�t� � iBn�y�t� �Bn�z�t�

�

Sn �
X

k�x�y�z

�k � �k �

�
���
	 � � �
� �	 
 �
� 
 �	 �
� � � 	

�
���

The probability that Qk is in the state 	 at time t is,

p�
k
�t� � tr

�
M�

k
��t�

	

M�
k
� I�k�� �



	 �
� �

�
� I�N�k

Similarly,

p�
k
�t� � 	� p�

k
�t� � tr

�
M�

k
��t�

	

M�
k
� I�k�� �



� �
� 	

�
� I�N�k

A simulation was performed with,

N � 
� g � �	� 	�� � � �	

external fields,

Bz�t� � �	� 	�� Bx�t� � �cos t� ��� By�t� � �sin t� ��

and normalization h� � 	. Suppose only the outputs of
Q� are recorded, thus, y� � 	� y� � 
 and

M� � M� � diag�	� 	� �� ��
M� � M� � diag��� �� 	� 	�

(14)

Using the observer (6), Figure 1 shows a comparison
of the actual and estimated probabilities using ob-
server gain � � �
� 
� with initial simulation states:

���� � diag�	� �� �� ��b���� � diag��� �� �� 	�
(15)

Thus the initial state of Q� is 	 whereas the observer
state presumes the opposite, i.e., that Q� is 
.

5. OBSERVER BASED PARAMETER
ESTIMATION

In this section the observer (6) is used for parameter
estimation with an iterative search algorithm. The
spin example is used to illustrate the efficacy of this
approach.
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Fig. 1. Plots of true and estimated outputs and errors.
Row 1: black – p��t�, red – bp��t�.
Row 2: black – tr

�e��t��	, red – jbp��t�� p��t�j.
Iterative search

To simplify the notation let p and p��� denote, respec-
tively, the probability outcomes from the data and the
model, i.e.,

p �

�
p��t�

���� � � 	 � � � �m
� � t � tf


p��� �

�
p��t� �� � tr �M�b��t� ���

���� � � 	 � m
� � t � tf

 (16)

where b��t� �� is the state of the observer (6). Consider
the model selection criterion,

minimize V ��� � ke���k�� e��� � p� p���(17)

The general form of an iterative search algorithm is,

��i��	 � ��i	 � ��i	��i	 e���i	� (18)

where ��i	 is a (typically) a small positive parameter,
and ��i	 reflects the particular method, e.g.,

Gradient search:

��i	 � �G���i	�� G��� � r� p��� (19)

Newton-Raphson search:

��i	 � �
h
G���i	�G���i	�T

i��
G���i	� (20)

Many other variants exist. The disadvantage with all of
above methods is that, in general, there is no guarantee

of global convergence to the optimum. The algorithms
typically converge to a local minimum. However, for
quantum systems, many good local minima are possi-
ble. As it is said, “Let not the best become the enemy
of the good.”

6. EXAMPLE: GRADIENT ALGORITHM

Suppose the parameters to be estimated are:

� � ��� �� (21)

with � as previously defined (spin coupling in (13))
and � defined via:

g�B� � �� cos�t� sin�t� �� (22)

(The choice here is illustrative.) Suppose, further, that
the data is generated from the system,

ih��� �H�t� ���� ��� �� � ���� ��� � �	� ��
�

p� � tr �M��� � � � 	� 

with Q� intially measured in the 	 state. The ini-
tial state of the complete system, ����, is randomly
selected to satisfy tr �M������ � 	. (We return to
this assumption later). The observer with parameter
estimate b� is,

ih�b�� �H�t� b��� b�� � i
X
�

��e�M�

b���� � �	� 	� �� ��T
p



e� � p� � tr �M�b�� � �� � 	

For comparison, suppose we are able to measure all
the states, i.e., Q� and Q� are both observed. Hence,
y� � 		� y� � 	
� y� � 
	� y� � 

 from which it
follows that,

M� � M�� � diag�	� �� �� ��
M� � M�� � diag��� 	� �� ��
M� � M�� � diag��� �� 	� ��
M� � M�� � diag��� �� �� 	�

(23)

For purposes of distinction, we refer to these mea-
surements as full information and to the measurements
(14) as partial information.

The first set of results using the gradient search al-
gorithm (19) are shown in Figure 2 for various ini-
tial values and adaptation gains – � in (19). The
algorithm is modified with a projection scheme so
that if the parameters get outside a prescribed re-
gion, the new parameter is randomly located nearby,
but inside the region. The initial values of the es-
timates all start from the four corners of the box
f��	 � b� � �� �� � b� � 	��g. The true parameter
(shown in the big black dot) is ���� ��� � ���
� 	�. The
full information case (23) shows convergence from all



corners. The more realistic case with partial informa-
tion shows no global convergence to the true value. In
fact, the best results only converge to a neighborhood
of the true value. The trajectories clearly depend on
the starting value of the iteration. In one case the
algorithm heads to a “blob” just inside the boundary
due to the projection scheme. Without this projection
the estimates would move outside the box, possibly
becoming negative which is not physical in this case.
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Fig. 2. Gradient algorithm with observer

Part of the reason for the difference in the convergence
behavior of two cases is due to differences between the
initial state of the “true” system and of the estimator.
With full information (23), the initial state is known
because it is measured. As previously mentioned, the
system is therefore known to start in the state 		, i.e.,

���� � b���� �
�
���
	
�
�
�

�
���

With partial information (14), the system state of Q�

reads 	 but the state ofQ� is random, i.e.,

���� �



	
�

�
� b

with b � C� randomly chosen such that kbk � 	. The
estimator state is chosen to nominally reflect the fact
that 	 is read fromQ�, i.e.,

b����T � �	 	 � �� 
p



With partial information, the discrepancy in the initial
states of the system and estimator causes the gradient
algorithm to be slightly incorrect even when the esti-
mated parameters are close to the true values. Because
the data length is finite, the observer states may not
have yet converged to the true state, and in fact, they
may never if there is not sufficient excitation. With full
information there is no initial condition error to cause
a bias in the algorithm, assuming it converges.

In our example with partial information, c � a � b,
with a � Cm� kak � 	 known because it is measured
from Q�, whereas the state b � C�� kbk � 	 is not
known (in our example m � � � 
). If it is assumed
that b be a random variable, then

���� � aa� � hbb�i

In most cases hbb�i can be determined from the un-
derlying physics. For example, if the spins of Q�

weakly interact with the applied field, and the inter-
action is smaller than the thermal energy, the thermal
limit forms a statistical population which is reason-
ably approximated by hbb�i � I��. (This also gives
hkbk�i � 	.) This random population limit corre-
sponds to the high temperature limit in a thermal bath.
Mathematically, this approximation is exact when b is
given by b � xkxk with each element of x drawn
from an independent zero mean gaussian or uniform
distribution with equal variance.

If we make the assumption that hbb�i is known, or
can be reasonably approximated, then we know the
initial state. In our simulation we set hbb�i � I��.
The gradient algorithm applied to the full information
case is shown in Figure 3. The parameter estimate
trajectories converge to the true value. The partial
information case is shown in Figure 4. Comparing 4
with 3 shows that convergence is more rapid with full
information as might be expected.

7. CONCLUDING REMARKS

Despite some of the positive simulation results shown
here, it is not clear if a gradient model based algo-
rithm will work, i.e., provide global convergence to
the optimum for quantum system identification in the
laboratory. Perhaps this is asking too much. Certainly
if a parametric physics based model is posed, nominal
parameter values may also be available. If these are
not far from the “true” values, then gradient algo-
rithms will most likely be adequate. The question then,
is are there better approaches to identification of these
physics based models? Or are we facing a fundamental
problem as for example in output error identification,
which is known to have many local minima, [11].

Although the latter unhappy possibility is persuasive,
there are other methods available for identification.
For example, recent efforts in subspace identification
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Fig. 3. Trajectories of parameter estimate with full
information. Upper: in parameter space. Lower:
per iteration.

of bilinear systems holds promise, e.g., [3]. In this ap-
proach a canonical bilinear system is identified from
the data. The particular state which is identified has no
physical meaning except as a vehicle for matching the
input/output data. A topic of our current research is to
see if it is possible to add constraints consistent with
quantum mechanics. Even if this is possible, the use
of such a canonical model would likely be for control
design rather than system design or physical under-
standing as would be accrued from the Hamiltonian
identification methods examined here.

Another class of approaches is based on learning al-
gorithms. For example, data directed selection of the
gain matrix, �, in (18) can be accomplished using the
unfalsified control adaptive concept [9]. The method
of closed-loop laboratory learning control [7] can be
modified to become an identification algorithm. Both
of these require further development. However, these
approaches can take advantage of a number of unique
special features: (i) the quantum system solves its own
Schrödinger equation in real time, (ii) the high-duty
cycle of pulse shaping is a rapidly evolving practi-
cal technology, and (iii) in favorable cases (e.g., laser
fields) literally millions of experiments can be per-
formed under full automation in a short period of time
(e.g., an hour or less).
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