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Abstract: In this paper w e study distributed position estimation for sensor
net w orks.The fundamentals of distributed position estimation algorithms are
presented. Two types of ellipsoid outer-approximation algorithms are employed
to estimate the positions of unknown sensors. P olytopeouter-approximation al-
gorithm is also investigated. Numerical experiments demonstrate the e�ectiveness
of the algorithms. It turns out that polytope type of algorithm is able to yield
position estimations more accurately and eÆciently.
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1. INTRODUCTION

Sensor net w orkhas become an area of great re-
searc h in terest recen tly.Dramatic adv ances in
MEMS, digital circuitry ,and wireless communi-
cation technology ha veenabled us to build sen-
sors with smaller size, low er costand less pow er
consumption. A massive number of these sensors
can be easily deployed in to an en vironment to
make up self-calibrating and disposable sensor
net w orks. We envision numerous applications for
suc h net w orks.Examples include w eathermon-
itoring, military surv eillance,and en vironmental
exploration. In sensor net w orks,both local and
distributed inference algorithms can be employed
to in terpret the measured data at multiple lev-
els of gran ularit y,and those in terpretations can
be circulated in response to ev en ts or queries.
With these features, sensor netw orks are ideal in
monitoring and exploring a wide range of en vi-
ronment at a reasonable cost. Current research in
this area includes SmartDust at Berkeley (Kahn
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al., 2002), and SenserWebs at JPL (JPL, 2001).

In this paper, w e dev elop distributed outer-
approximation algorithms for position estimation
in sensor net w orks.When thousands of sensors
are scattered throughout an en vironment, the
geographical distribution of the sensors will be
initially unknown and will depend on both the
scattering process and the ph ysical structure of
the en vironment. One key task is to determine
the spatial localization of the sensors. Sensors
could be equipped with Global Positioning System
(GPS) units to acquire their accurate position
information; ho w ev er,this is not appealing due
to the high cost and large pow er consumption.
One trade-o� solution is to estimate the posi-
tions of unknown sensors in a cooperative and
distributed manner. In such a netw ork, only a few
GPS-equipped sensors (beacons) know their own
positions, and all the other unknown sensors could
estimate their own positions from the kno wl-
edge about the beacons in their neighborhood. A
similar problem is the localization of distributed
robotic team, see (Kleeman, 1992), (Leonard and
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Durrant-Whyte, 1991), and (Navarro-Serment et
al., 1999).

The outline of the paper is as follows. Section 2
presents the basic idea of distributed position esti-
mation. In section 3, two types of ellipsoid outer-
approximation algorithms are given to estimate
the positions of unknown sensors. In section 4,
polytope outer-approximation algorithm is used
to accomplish the position estimation. Section 5
presents numerical experiments to demonstrate
the e�ectiveness of the algorithms. A conclusion
is given in Section 6.

2. DISTRIBUTED POSITION ESTIMATION

Suppose that each sensor in a sensor network
has an on-board communication module so that
it can establish local communication connectiv-
ity with a set of neighboring sensors. If an un-
known sensor is able to receive communication
signals from a nearby beacon, it must lie in a disc
centered at that beacon with the radius of the
maximum communication range R. Moreover, if
this sensor can receive the position information
of m beacons in its neighborhood, it has to lie in
the intersection of all these m discs. Therefore,
an outer-approximation of this intersection could
be used as an estimation of the position of the
unknown sensor. Every unknown sensor is capable
of performing position estimation algorithms with
its own computational power by using the received
accurate positions of its neighboring beacons, and
the estimated position can be stored in its own
memory. The position estimations of the whole
sensor network can thus be done in such a dis-
tributed fashion.

Now the main problem is to �nd algorithms to
outer-approximate the intersection of m discs.
The algorithms have to be numerically eÆcient
and tight in order to be implemented on sensors
with only limited computational ability and yet
to provide an accurate estimation. In (Doherty,
2000), the rectangular outer-approximation is ex-
plored via semide�nite programming. We develop
the ellipsoid and polytope outer-approximation
algorithms in this paper. Refer to (Kurzhanski
and V�alyi, 1996) for more details on ellipsoidal
calculus, (Tikhomirov, 1990) and (Tuy, 1998) on
convex analysis.

3. ELLIPSOID OUTER-APPROXIMATION

In this section, ellipsoid is used to outer-approximate
the intersection of m discs. Position estimation
algorithms are performed in a sequential man-
ner. To be more speci�c, we �rst �nd a series of
circumscribed ellipsoids to cover the intersection

of disc i and i + 1, where i = 1, : : : , m � 1.
Then, for these m � 1 ellipsoids, we utilize a
new series of ellipsoids to outer-approximate the
intersection of the ellipsoids i and i + 1, where
i = 1, : : : , m � 2. By iterating this procedure
m�1 times, we can �nally obtain a single ellipsoid
that outer-approximates the intersection of all the
m discs. Due to the nature of the iteration, the
unknown sensor must lie in the �nal ellipsoid. The
advantage of the sequential outer-approximation
procedure is that it avoids to deal with all the m
discs simultaneously, which signi�cantly reduces
the computational loads.

An ellipsoid with center a and con�guration ma-
trix Q is denoted as

E(a;Q) = fx 2 R2 j (x� a)TQ�1(x� a) � 1g:

In this paper, all the con�guration matrices are
assumed to be non-degenerate.

3.1 Outer-approximation of the intersection of
two discs

For the position estimation algorithms based on
ellipsoid outer-approximation, we need to consider
two types of outer-approximation problems: one is
the computation for the intersection of two discs,
the other is for two ellipsoids. Theoretically these
two types of problems are the same due to the ob-
vious fact that a disc is also an ellipsoid. However,
we would rather treat them separately because
the ellipsoids obtained to outer-approximate the
intersection of two ellipsoids are usually not tight
(Kurzhanski and V�alyi, 1996), whereas a tight
ellipsoid can be calculated in a closed form to
outer-approximate the intersection of two discs.

Let us consider two discs B(b; R) and B(c; R).
There exists a unique circumscribed ellipsoid
E(a;Q) to outer-approximate their intersection
(See Figure 1), where
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�
cos � � sin �
sin � cos �

�
�

2
664

�
R�

kc� bk

2

��2

0

0

�
R2 �

kc� bk2

4

��1

3
775�

�
cos � sin �
� sin � cos �

�
;

and

(cos �; sin �)T =
c� b

kc� bk
;

a =
b+ c

2
:



Fig. 1. Ellipsoid outer-approximation of the inter-
section of two discs.

Fig. 2. Outer-approximation of the intersection of
two ellipsoids: Algorithm I.

Thus we obtain a collection of m � 1 ellipsoids
E(ai; Qi).

3.2 Outer-approximation of the intersection of
two ellipsoids: Algorithm I

Now we consider the outer-approximation of
the intersection of two ellipsoids E(a1; Q1) and
E(a2; Q2). We present two di�erent algorithms in
this paper.

De�nition 1. Given two convex compact sets H1,
H2 2 R

n , the geometrical (Minkowski) sum of H1

and H2 is de�ned as

H1 +H2 = [h12H1
[h22H2

fh1 + h2g:

Proposition 1. (Kurzhanski and V�alyi, 1996) The
intersection P of m non-degenerate ellipsoids
E(ai; Qi) satis�es the following equality

P =
\ mX

i=1

E(Miai;MiQiM
T

i
);

where
P

m

i=1
Mi = I .

In particular, when m = 2 we have

P � E1 + E2;

E1 = E(Ma1;MQ1M
T );

E2 = E((I �M)a2; (I �M)Q2(I �M)T );

where M 2 R
2�2 . Further, the geometrical sum

of E1 and E2 can be approximated externally by a
new ellipsoid, namely,

Fig. 3. Outer-approximation of the intersection of
two ellipsoids: Algorithm II.

E1 + E2 � E(a[M ]; Q[p;M ]);

where

a[M ] =Ma1 + (I �M)a2;

Q[p;M ] = (1 + p�1)MQ1M
T +

(1 + p)(I �M)Q2(I �M)T :

We then pick

M� = (Q1 +Q2)
�1Q2

to minimize the sum of trMQ1M
T and tr(I �

M)Q2(I �M)T , and

p� =

q
trM�Q1M�T =tr(I �M�)Q2(I �M�)T

to minimize

tr
�
(1 + p�1)M�Q1M

�T+
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�
:

Therefore, we have

P � E

�
M�a1 + (I �M�)a2; (1 +

1

p�
)M�Q1M

�T

+ (1 + p�)(I �M�)Q2(I �M�)T
�
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Generally this algorithm does not yield tight
outer-approximating ellipsoids as shown in Fig-
ure 2. Here a tight outer-approximating ellip-
soid means that we cannot �nd a new outer-
approximating ellipsoid with smaller area by
shrinking either of its semiaxes. For an outer-
approximating ellipsoid obtained from algorithm
I, we can usually decrease its semiaxes in order to
�nd a tight outer-approximating ellipsoid.

3.3 Outer-approximation of the intersection of
two ellipsoids: Algorithm II

We present another algorithm to outer-approximate
the intersection of two ellipsoids in this subsec-
tion. De�ne

A =
�
� 2 R2

���1 + �2 = 1; �1 � 0; �2 � 0
	
;



and notice the inequality
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2
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It is not diÆcult to observe that for a given � 2 A
the above inequality de�nes an ellipsoid
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By using Cauchy-Schwartz inequality, we can
prove that h[�] 2 [0; 1]. Therefore, we have that

E(�) = E(a[�]; (1� h[�])Q[�]):

It is straightforward to prove the following asser-
tion:

P =
\
�2A

E(�)

The intersection of two ellipsoids is now outer-
approximated by a parameterized family of ellip-
soids fE(�) j � 2 Ag. We want to �nd an �� 2 A
such that E(��) contains the minimum area. This
can be done by a standard nonlinear optimization
solver. Note that E(�) actually de�nes a homo-
topy which continuously deforms E(a1; Q1) into
E(a2; Q2): when � = (1; 0)T , E(�) = E(a1; Q1);
and when � = (0; 1)T , E(�) = E(a2; Q2).

Algorithm I can yield a tight outer-approximating
ellipsoid when two ellipsoids intersect at four
points. However, when two ellipsoids intersect at
only two or three points, usually the resulting
ellipsoid is not tight. Algorithm II usually yields
a better outer-approximation solution than Algo-
rithm I in this case, but it also demands more
computational power since it needs to solve a
nonlinear optimization problem. The advantage of
Algorithm I is that it has a closed form solution,
hence it is much more numerical eÆcient.

4. POLYTOPE OUTER-APPROXIMATION

In this section we use polytope to outer-approximate
the intersection of m discs. The procedure is also
accomplished in a sequential manner, which is

similar to that in the ellipsoid outer-approximation
algorithms.

A convex set is said to be polyhedron if it is the
intersection of a �nite family of closed half-spaces.
In other words, a polyhedron is the solution set of
a �nite number of linear inequalities in the form

(ai; x) � bi; i = 1; : : : ;m; (1)

where ai, x 2 R
n , and bi 2 R. It can also be

represented in a matrix form

Ax � b;

where A is a m � n matrix of rows ai and b =
(b1; : : : ; bm)

T . An inequality (ak; x) � bk is said
to be redundant if the removal of this inequality
from (1) does not a�ect the polyhedron, i.e., if the
system (1) is equivalent to

(ai; x) � bi; i 2 f1; : : : ;mg n fkg:

A bounded polyhedron is called a polytope.

The intersection of two discs can be outer-
approximated by a polytope as in Figure 4. As
in the ellipsoid case, assume that in the neighbor-
hood of an unknown sensor there are m beacons,
we can thus obtain m � 1 outer-approximating
polytopes. Now we compute the intersection of
these polytopes. Consider two polytopes

D1 = fx 2 R2
��A1x � b1g;

D2 = fx 2 R2
��A2x � b2g;

their intersection is simply a new polytope

P =

�
x 2 R2

�� �A1

A2

�
x �

�
b1
b2

��
: (2)

Since the unknown sensor lies in the intersection
of polytopes D1 and D2, polytope P is obviously
non-empty. System (2) may contain redundancy,
hence we need to remove it from the system. For
any inequality (ak; x) � bk in (2), if there exist
exactly two adjacent vertices of polytope P on
the line fx 2 R

2 j (ak; x) = bkg, then it is not
redundant; otherwise, it has to be removed from
the system. Technical details on how to �nd the
vertices of a polytope are omitted here.

Recall that in the ellipsoid case, we need to
�nd a new ellipsoid to outer-approximate the
intersection of two existing ellipsoids. However,
we don't need to do that in the polytope case.
The intersection of two polytopes is just another
new polytope, and it can be eÆciently computed.
There is no new approximation errors introduced
in the iteration procedure. One potential problem
for polytope outer-approximation could be that
as the iteration evolves, the numbers of edges and
vertices of the outer-approximating polytope may



Fig. 4. Polytope outer-approximation of the inter-
section of two discs.

increase to a large number, which may impose a
burden to the limited local memory on the sensors.

Note that by now we have only made use of
the position information from beacons. After an
unknown sensor acquires an estimation of its
own position, this information can be used to
re�ne the initial estimations for all the other
unknown sensors in its neighborhood. To be more
speci�c, consider two unknown sensors S1 and
S2. Suppose that S1 lies within the maximum
communication range of S2, and both of the
sensors have initial estimation polytopes denoted
as D1 and D2 respectively. We know that S1

must lie in a disc centered at S2 with the radius
R. Since S2 can lie anywhere in polytope D2,
we expand D2 omnidirectionally by R to a new
polytope D0

2. Given the estimation polytope D2

of S2, D
0
2
is actually a polytope which contains

all the possible positions of the unknown sensor
S1. Therefore, if we intersect D0

2 with the initial
estimation polytope D1 of S1, a more precise
estimation polytope can be obtained for S1. The
same procedure can be applied to all the unknown
sensors in the network.

5. NUMERICAL EXPERIMENTS

In this section, we present some numerical ex-
periments on the distributed position estimation
algorithms aforementioned. We use the centers of
the �nal approximation ellipsoids or polytopes as
the position estimations of unknown sensors.

Consider a randomly generated sensor network
with 200 sensors, and suppose that 100 randomly
picked sensors know their own positions. Our task
is to estimate the positions of the remaining 100
unknown sensors. The sensors are deployed in the
area [0; 10]� [0; 10] with the maximum communi-
cation range 1. We apply both ellipsoid and poly-
tope outer-approximation algorithms to estimate
the positions of unknown sensors. The results from
ellipsoid algorithm and polytope algorithm are
shown in Figure 5.

Now we compare the performance of ellipsoid and
polytope algorithms. The performance index is
de�ned as:
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Fig. 5. Ellipsoid and polytope outer-
approximation result. Legend: encircled
star: beacon; dashed circle: communication
range of beacon; plus sign: unknown
sensor; encircled plus sign: estimation of
unknown sensor; solid ellipsoid: outer-
approximation ellipsoid; solid polytope:
outer-approximation polytope.

err =
1

M

MX
i=1

kxi
est
� xi

real
k2; (3)

whereM is the number of the sensors whose posi-
tion can be estimated. To evaluate the algorithms
accurately, we disregard the data from those sen-
sors with no nearby beacons. Take 100 randomly
generated sensor networks, each of which consists
of 200 sensors, including 20 randomly picked bea-
cons. Compute the performance index for each
sensor network, and then average it over all the
100 networks. Increasing the number of beacons,
we �nally obtain the comparison result as shown
in Figure 6. It is clear that the mean square er-
ror decreases as the number of beacons increases,
which is consistent with the intuition. Moreover,
the performance of polytope approximation is bet-
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Fig. 6. Performance comparison between el-
lipsoid and polytope outer-approximations:
Plus sign: average mean square error of
polytope approximation; circle: average mean
square error of ellipsoid approximation. x
axis: number of beacons; y axis: mean square
error.

ter than that of ellipsoid approximation. There-
fore, we would prefer polytope type of position
estimation algorithm since it provides more accu-
rate estimations and is more numerically eÆcient.

6. CONCLUSION

Distributed position estimation algorithms in sen-
sor networks have been presented. Both ellip-
soid and polytope approaches are used to outer-
approximate the intersection of a �nite number
of discs, which in turn yield position estimations
for unknown sensors in the network. Numerical
experiments demonstrate the e�ectiveness of the
algorithms, and polytope type of position estima-
tion algorithm turns out to be a more accurate
and eÆcient approach. We only consider the pla-
nar sensor networks in this paper; however, the
algorithms here can be readily extended to three
dimensional case. We expect to implement the
algorithms on the real sensor networks in the near
future.
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