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Abstract: An Iterative Learning Observer (ILO) updated successively and iteratively
by immediate past system output error and ILO input is proposed for a class of
time-delay nonlinear systems for the purpose of robust fault diagnosis. The proposed
observer can estimate the system state as well as disturbances and actuator faults so
that ILO can still track the post-fault system. In addition, the observer can attenuate
slow varying output measurement disturbances. The ILO fault detection approach is
then applied to automotive engine fault detection and estimation. Simulations show
that the proposed ILO fault detection and estimation strategy is successful.

1. INTRODUCTION

Over the years, analytical redundancy approaches for
fault detection and isolation (FDI) has been a subject of
great deal of research studies (Beard 1971, Jones 1973,
Chen and Saif 2000, Chen and Patton 1996, Polycarpou
and Helmicki 1995, Saif and Guan 1993, Xiong and
Saif 2001). Many practical biological, mechanical, or
chemical processes involve delays that may cause insta-
bility or affect the performance of the control systems
(Aggoune and Darouach 1999). Research in fault diag-
nosis for this class of systems has been scarce (Kratz
and Ploix 1998, Yang and Saif 1998). In fact (Yang and
Saif 1998) is believed to be the first work that addressed
the FDI problem in time delay systems. (Yang and
Saif 1998) proposed a robust observer for state estima-
tion in a class of state delayed dynamic systems. The
existence condition of the proposed observer and the
convergence proof are derived based on the Razumikhin
type theorem and this observer is then used to detect
and isolate actuator and sensor faults in a class of time-
delay systems. An alternative parity space approach
is utilized to synthesize a residual generator for time-
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delay systems in (Kratz and Ploix 1998).
Iterative learning observer (ILO) was first proposed
for FDI in (Chen and Saif 2001). In this paper, an
ILO-based robust fault diagnosis strategy using the
immediate past output estimation error and ILO input
is presented for fault detection and estimation in a class
of time-delay nonlinear systems. This ILO approach
is then applied to fault detection and estimation of
automotive engine that is employed as an application
example. The main property of this ILO scheme is
that it can compensate for both system disturbances
and actuator faults. This allows it to follow the post-
fault model after occurrence of an actuator fault. Ad-
ditionally, any output measurement disturbance that
is usually amplified by a classical Luenberger observer
can be attenuated by ILO (Busawon and Kabore 2001).

2. PROBLEM STATEMENT

Consider a time-delay nonlinear system described by

ẋ = Ax+Φ(x, u) +Bx(t− th) + d(t)
y = Cx

(1)
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where x ∈ Rn is the state; y(t) is the measurable out-
put; d(t) is an unmeasurable disturbance; th is a fixed
known delay; and Φ(x, u) is a Lipschitz nonlinearity.
For the above system, we propose an ILO whose states
are updated by the previous system output estimation
errors and the previous ILO input v(t − τ). The pro-
posed ILO differs from a classical Luenberger observer
which is driven by the system input and output error
of the current sampling time as described below:

˙̂x(t) = Ax̂+Φ(x̂, u) +Bx̂(t− th) + Ley(t) (2)

where ey(t) = y(t)− ŷ(t). By subtracting the equation
above from the system equation (1), the estimation
error dynamics can be obtained

˙̃x = (A− LC)x̃+ [Φ(x, u)− Φ(x̂, u)] +Bx̃(t− th) + d(t)(3)

where x̃ = x− x̂.
Obviously, disturbance d(t) has an impact on error
dynamics, thereby, the main drawback of classical Lu-
enberger observers is the lack of robustness. As a result,
the ILO is designed to be robust so that the effect
of disturbance d(t) on error dynamics is compensated
by ILO input v(t). In addition, Luenberger observer
usually amplifies the effect of output disturbances on
the error dynamics. This can be illustrated by consid-
ering the time-delay nonlinear system (1) with output
disturbances as follows

ẋ = Ax+Φ(x, u) +Bx(t− th)
y = Cx+ d(t).

(4)

The error dynamics can be obtained using (2) and (4)

˙̃x = (A−KC)x̃+ [Φ(x, u)− Φ(x̂, u)] +Bx̃(t− th)−Kd(t) (5)

It is seen from the above that the disturbance d(t) is
amplified by gainK. On the other hand, if the gainK is
chosen small to attenuate the effect of disturbance, then
the stability of the observer may be affected. Busawon
and Kabore (Busawon and Kabore 2001) proposed a
PI observer to deal with this problem. Though the
disturbance d(t) is not amplified by PI observer gain,
the disturbance itself still has an influence on the error
dynamics. In this paper, a simple ILO is presented to
attenuate output disturbance.

3. MAIN RESULTS

First, we construct a robust ILO with the property
of disturbance compensation and estimation, further-
more, output disturbance attenuation by this ILO is
discussed. The application of this ILO to robust fault
diagnosis issue will be further introduced in section (4).

3.1 ILO and Disturbance Estimate

In this investigation, following assumptions are re-
quired.

A1: Disturbance d(t) and its derivative ḋ(t) are
bounded with known bounds

‖d(t)‖ ≤ bd, ‖ḋ(t)‖ ≤ bdu. (6)

A2: System is bounded input bounded state stable,
and the derivative of system input u is bounded.

A3: Φ(t), ∂Φ
∂x and ∂Φ

∂u are bounded and satisfy Lipschitz
conditions as follows:

‖Φ(x, u)− Φ(x̂, u)‖ ≤ η1‖x− x̂‖, (7)

∥

∥

∥

∂Φ

∂x
(x, u)−

∂Φ

∂x
(x̂, u)

∥

∥

∥

≤ η2‖x− x̂‖, (8)

and
∥

∥

∥

∂Φ

∂u
(x, u)u̇−

∂Φ

∂u
(x̂, u)u̇

∥

∥

∥

≤ η3‖x− x̂‖ (9)

Based on system equation (1), an ILO is proposed as
follows

˙̂x = Ax̂+Φ(x̂, u) +Bx̂(t− th) + L(y − ŷ) + v(t)
v(t) = K1v(t− τ) +K2[y(t− τ)− ŷ(t− τ)]

(10)

where x̂ is estimated system state; τ is sampling time
interval; y(t − τ) is the immediate past measurable
output, i.e. the output at time t − τ ; v(t) is called
ILO input; L and K ′

is are some gain matrices to be
determined. Note that the main characteristic of this
ILO is that its states are updated by the previous
system output estimation errors and the previous ILO
input v(t− τ) as can be seen in equation (10).
Subtracting observer equation (10) from system equa-
tion (1), we have:

˙̃x = (A− LC)x̃+ [Φ(x, u)− Φ(x̂, u)] +Bx̃(t− th) + d(t)− v(t)(11)

where x̃ = x− x̂ is state estimation error, matrix (A−
LC) can be made Hurwitz by selecting an appropriate
gain L.

Remark 1. To gain an understanding of this ILO, one
can regard the nonlinear systems (1) as a reference
model, where the observer tracks the reference model
driven by the iterative input v(t).

Following lemma will be helpful for the proof of theo-
rem 1.

Lemma 1. If ILO input v(t) is defined in equation (10),
then following inequality holds

vT (t)v(t) ≤ 2vT (t− τ)KT
1 K1v(t− τ)

+2x̃T (t− τ)(K2C)
T (K2C)x̃(t− τ)

. (12)

The proof is omitted for brevity.



Theorem 1. Consider time delay nonlinear systems (1)
satisfying assumptions A1-A3, and its ILO given in
equation (10), if equations (19) and (20) and inequality
(22) hold, then the error dynamics (11) is stable.

Proof. Consider the following Lyapunov function can-
didate:

V = x̃TP x̃+

t
∫

t−τ

x̃T (θ)Rx̃(θ)dθ +

t
∫

t−th

x̃T (β)Γx̃(β)dβ

+

t
∫

t−τ

vT (α)v(α)dα

(13)

where P,R and Γ are symmetric positive definite matri-
ces. Substituting estimate error equation (11) into the
derivative of Lyapunov function candidate V , we have

V̇ = ˙̃x
T
Px̃+ x̃

T
P ˙̃x+ x̃

T
(t)Rx̃(t)− x̃

T
(t− τ)Rx̃(t− τ)

−x̃
T
(t− th)Γx̃(t− th) + x̃

T
(t)Γx̃(t)

+v
T
(t)v(t)− v

T
(t− τ)v(t− τ)

= x̃
T
((A− LC)

T
P + P (A− LC) + R + Γ)x̃+ 2x̃

T
Pd(t)

+2x̃
T
PBx̃(t− th) + 2x̃

T
P (Φ(x, u)− Φ(x̂, u))

−2x̃
T
Pv(t) + v

T
(t)v(t)− x̃

T
(t− τ)Rx̃(t− τ)

−x̃
T
(t− th)Γx̃(t− th)− v

T
(t− τ)v(t− τ).

(14)

Combining inequalities

2‖x̃TP‖‖v(t)‖ ≤ x̃TPP x̃+ vT (t)v(t) (15)

2x̃TPBx̃(t− th) ≤ x̃TPP x̃+ x̃T (t− th)B
TBx̃(t− th)(16)

into equation (14) yields

V̇ ≤ x̃
T
((A− LC)

T
P + P (A− LC) + R + Γ + 2PP )x̃

+2x̃
T
P (Φ(x, u)− Φ(x̂, u)) + x̃

T
(t− th)B

T
Bx̃(t− th)

+2v
T
(t)v(t) + 2bd‖P‖‖x̃‖ − x̃

T
(t− τ)Rx̃(t− τ)

−x̃
T
(t− th)Γx̃(t− th)− v

T
(t− τ)v(t− τ).

(17)

Considering equation (7) of assumption A3) and lemma
1, equation (17) can be further extended as:

V̇ ≤ x̃
T
((A− LC)

T
P + P (A− LC) + R + Γ + 2PP )x̃

+x̃
T
(t− th)B

T
Bx̃(t− th) + 4v

T
(t− τ)K

T

1
K1v(t− τ)

−x̃
T
(t− τ)Rx̃(t− τ)− x̃

T
(t− th)Γx̃(t− th)

+4x̃
T
(t− τ)(K2C)

T
(K2C)x̃(t− τ) + 2bd‖P‖‖x̃‖

+2η1‖P‖‖x̃‖
2
− v

T
(t− τ)v(t− τ)

≤ x̃
T
((A− LC)

T
P + P (A− LC) + R + Γ + 2PP )x̃

+2η1λmax(P )‖x̃‖
2
+ x̃

T
(t− th)(B

T
B − Γ)x̃(t− th)

+v
T
(t− τ)(4K

T

1
K1 − I)v(t− τ) + 2bdλmax(P )‖x̃‖

+x̃
T
(t− τ)(4(K2C)

T
(K2C)− R)x̃(t− τ)

(18)

where I ∈ Rn×n is an identity matrix. For a Q = QT >
0, there exists a unique P = P T > 0 satisfying following
equation

(A− LC)TP + P (A− LC) +R+ Γ + 2PP = −Q, (19)

and let

BTB ≤ Γ, 4KT
1 K1 ≤ I, 4(K2C)

T (K2C) ≤ R, (20)

according to (Khalil 1996), then equation (18) can be
simplified as

V̇ ≤ −λmin(Q)‖x̃‖
2 + 2η1λmax(P )‖x̃‖

2 + 2bdλmax(P )‖x̃‖

= −µ‖x̃‖2 + 2bdλmax(P )‖x̃‖

= −(1− θ)µ‖x̃‖2 − θµ‖x̃‖2 + 2bdλmax(P )‖x̃‖, 0 < θ < 1

≤ −(1− θ)µ‖x̃‖2, ∀ ‖x̃‖ ≥ (2bdλmax(P ))/(θµ),

(21)

where

µ = λmin(Q)− 2η1λmax(P ) > 0, (22)

This concludes the proof.

Remark 2. In fact, ˙̃x can be proved bounded, to this
end, let z = ˙̃x, and differentiate state estimation error
(11) to obtain

ż = (A− LC)z + s+Bz(t− th) + ḋ(t)− v̇(t) (23)

where v̇(t) = K1v̇(t − τ) + K2Cz(t − τ) and s = d

dt
(Φ(x, u) −

Φ(x̂, u)) = ( ∂Φ
∂x
(x, u)ẋ− ∂Φ

∂x
(x̂, u) ˙̂x) + ( ∂Φ

∂u
(x, u)u̇− ∂Φ

∂u
(x̂, u)u̇).

Assumptions A1, A2 and A3 can guarantee the bound-
edness of ẋ and

‖s‖ ≤ ‖(
∂Φ

∂x
(x, u)ẋ−

∂Φ

∂x
(x̂, u) ˙̂x)‖+ ‖

∂Φ

∂u
(x, u)u̇−

∂Φ

∂u
(x̂, u)u̇‖

≤ ‖
∂Φ

∂x
(x, u)−

∂Φ

∂x
(x̂, u)‖‖ẋ‖+ ‖

∂Φ

∂x
(x̂, u)‖‖z‖+ η3‖x̃‖

≤ r1 + r2‖z‖

(24)

where r1 and r2 are two positive constants.
Using an analysis similar to that used in the analysis of
the estimation error dynamics, one can conclude that
‖z‖ is bounded.

Remark 3. If (11) is stable, then the estimation error x̃
is bounded, and thus from remark 2 ˙̃x is also bounded.
Accordingly, −v(t)+ d(t) is bounded, thereby, the ILO
input v(t) can estimate or reconstruct the disturbance
signal d(t). This will be illustrated in the simulation
study. On the other hand, the boundedness of −v(t) +
d(t) also explains that the robustness of ILO results
from ILO input v(t). It is v(t) that compensates the
effect of disturbance d(t) on estimate error dynamics.

3.2 Output Disturbance Attenuation by ILO

In this subsection, we discuss output disturbance atten-
uation issue by considering equation (4). To this end,
we have the following assumptions:

A4: The variation of d(t) is bounded with a known
bound

‖d(t)− d(t− τ)‖ ≤ ld (25)

where τ is the sampling interval in a sampled-data
system. Apparently, that ld ¿ bd.



A5: Consider that W (x̃) = x̃T (t)Px̃(t) is a positive
definite function, where P = P T > 0 satisfies
equation (37) and x̃(t) = x(t) − x̂(t). Assume that
W (x̃(t − τ)) ≤ q2W (x̃(t)), q > 1, then ‖x̃(t − τ)‖ ≤
qρ‖x̃(t)‖, where τ > 0, the sampling time interval
and ρ = (λmax(P )/λmin(P ))

1/2.

Remark 4. Assumption A5 is based on the stability
theorem of Razumikhin (Hale 1977).

Assumption 4 is a key assumption in output distur-
bance attenuation, because if d(t) varies slowly, its
variation would be very small, or ld ¿ dmax. We
will use this property to attenuate the effect of output
disturbances on observer’s error dynamics.
To cope with the output disturbance, consider the
following ILO

˙̂x = Ax̂+Φ(x̂, u) +Bx̂(t− th) +K1(y − ŷ) + v(t)
v(t) = K2v(t− τ)−K1[y(t− τ)− ŷ(t− τ)].

(26)

The observer’s error dynamics is then given by

˙̃x = (A−K1C)x̃+ [Φ(x, u)− Φ(x̂, u)] +Bx̃(t− th)+

K1Cx̃(t− τ)−K1[d(t)− d(t− τ)]−K2v(t− τ).
(27)

Remark 5. Observing the error dynamics (27), we can
see that the effect of disturbance d(t) is attenuated by
its immediate past sampling value that results from
measurable output y(t − τ) in ILO input v(t). Since
it is assumed that the d(t) varies slowly, d(t)− d(t− τ)
is guaranteed to be very small. Therefore, even if it
is multiplied by a high gain K, its effect on the error
dynamics will be negligable. In addition,K1(d(t)−d(t−
τ)) can be further compensated by v(t) if the error
dynamics (27) is stable.

Remark 6. In (Busawon and Kabore 2001), the ob-
server gain K is guaranteed not to amplify the effect of
d(t), but the disturbance d(t) itself still effects the error
dynamics. In this ILO approach, the effect of distur-
bance d(t) on error dynamics is further reduced. This
is important in FDI applications, because minimizing
the effect of the disturbance can improve the robustness
of the fault detection scheme.

Before stating the main theorem of this section, con-
sider the following lemma and the subsequent develop-
ment.

Lemma 2. Consider ILO update law v(t) = K2v(t −
τ) − K1(y(t − τ) − ŷ(t − τ)), if assumption A5 holds,
then ‖v(t)‖ ≤ ln‖x̃(t − τ)‖ + bn, where ln and bn are
two positive constants.

proof. Omitted for brevity.

To derive the stability condition of estimation error
equation (27), we choose a Lyapunov function candi-
date as follows

V = x̃
T
Px̃+

t
∫

t−τ

x̃
T
(θ)Rx̃(θ)dθ +

t
∫

t−2τ

x̃
T
(γ)Sx̃(γ)dγ

+

t
∫

t−th

x̃
T
(β)Γx̃(β)dβ

(28)

where P,R, S and Γ are symmetric positive definite
matrices. Substituting estimate error equation (27) into
the derivative of Lyapunov function V , we have

V̇ = ˙̃x
T
Px̃+ x̃

T
P ˙̃x+ x̃

T
(t)Rx̃(t)− x̃

T
(t− τ)Rx̃(t− τ)

+x̃
T
(t)Γx̃(t)− x̃

T
(t− th)Γx̃(t− th) + x̃

T
(t)Sx̃(t)

−x̃
T
(t− 2τ)Sx̃(t− 2τ)

= x̃
T
((A−K1C)

T
P + P (A−K1C) + R + Γ + S)x̃

+2x̃
T
P (Φ(x, u)− Φ(x̂, u)) + 2x̃

T
PBx̃(t− th)

+2x̃
T
PK1Cx̃(t− τ)− 2x̃

T
PK2v(t− τ)

−2x̃
T
PK1(d(t)− d(t− τ))− x̃

T
(t− τ)Rx̃(t− τ)

−x̃
T
(t− 2τ)Sx̃(t− 2τ)− x̃

T
(t− th)Γx̃(t− th).

(29)

Considering following inequalities

2x̃
T
PK1Cx̃(t− τ) ≤ x̃

T
PPx̃+ x̃

T
(t− τ)(K1C)

T
(K1C)x̃(t− τ), (30)

2x̃
T
PBx̃(t− th) ≤ x̃

T
PPx̃+ x̃

T
(t− th)B

T
Bx̃(t− th). (31)

and equation (7) of assumption A3, equation (29) can
be further extended as

V̇ ≤ x̃
T
((A−K1C)

T
P + P (A−K1C) + R + Γ + S + 2PP )x̃

+2η1‖P‖‖x̃‖
2
+ x̃

T
(t− th)(B

T
B − Γ)x̃(t− th)

+x̃
T
(t− τ)((K1C)

T
(K1C)− R)x̃(t− τ)

+2‖K2‖‖x̃
T
P‖‖v(t− τ)‖+ 2ld‖K1‖‖P‖‖x̃‖

−x̃
T
(t− 2τ)Sx̃(t− 2τ)

(32)

Applying lemma 2 to the equation above, we obtain

V̇ ≤ x̃
T
((A−K1C)

T
P + P (A−K1C) + R + Γ + S + 2PP )x̃

+2η1λmax(P )‖x̃‖
2
+ x̃

T
(t− th)(B

T
B − Γ)x̃(t− th)

+x̃
T
(t− τ)((K1C)

T
(K1C)− R)x̃(t− τ)

+2ln−1‖K2‖‖x̃
T
P‖‖x̃(t− 2τ)‖+ 2bn−1λmax(P )‖K2‖‖x̃‖

+2ldλmax(P )‖K1‖‖x̃‖ − x̃
T
(t− 2τ)Sx̃(t− 2τ)

(33)

Since

2‖x̃TP‖‖x̃(t− 2τ)‖ ≤ x̃TPP x̃+ x̃T (t− 2τ)x̃(t− 2τ) (34)

then

V̇ ≤ x̃
T
((A−K1C)

T
P + P (A−K1C) + R + Γ + S + 2PP

+2ln−1‖K2‖PP )x̃+ 2η1λmax(P )‖x̃‖
2

+x̃
T
(t− th)(B

T
B − Γ)x̃(t− th)

+x̃
T
(t− τ)((K1C)

T
(K1C)− R)x̃(t− τ)

+2bn−1λmax(P )‖K2‖‖x̃‖+ 2ldλmax(P )‖K1‖‖x̃‖

+x̃
T
(t− 2τ)(2ln−1‖K2‖I − S)x̃(t− 2τ)

(35)

Let

(K1C)
T (K1C)−R ≤ 0, (B)T (B)− Γ ≤ 0,



2ln−1‖K2‖I − S ≤ 0, (36)

and for a positive definite symmetric matrix Q there
exists a positive definite symmetric matrix P in

(A−K1C)
T
P + P (A−K1C) + R + Γ + S + 2PP

+2ln−1‖K2‖PP = −Q, (37)

then

V̇ ≤ −λmin(Q)‖x̃‖
2 + 2λmax(P )‖K1‖ld‖x̃‖

+2η1λmax(P )‖x̃‖
2 + 2bn−1λmax(P )‖K2‖‖x̃‖

≤ −(λmin(Q)− 2η1λmax(P ))‖x̃‖
2

+2(λmax(P )‖K1‖ld + bn−1λmax(P )‖K2‖)‖x̃‖

(38)

where λmin(Q) > 2η1λmax(P ).

Therefore, if ‖x̃‖ ≥ 2λmax(P )‖K1‖ld+2bn−1λmax(P )‖K2‖
λmin(Q)−2η1λmax(P )

,

then V̇ ≤ 0.

Theorem 2. Consider equation (4) and assumptions
A3, A4 and A5. If equations (36) and (37) hold, then,
estimate error dynamics (27) is stable.

Remark 7. From theorem 2, we could say that−K1(d(t)−
d(t−τ))−K2v(t−τ) is bounded because equation (27)
is stable and similarly, one can prove that ˙̃x is also
bounded. The boundedness of −K1(d(t) − d(t − τ)) −
K2v(t− τ) implies that ILO input v(t) can compensate
the effect of (d(t)− d(t− τ)) on error dynamics, which
demonstrates the effectiveness of output disturbance
attenuation by this ILO.

4. APPLICATION EXAMPLE

In this section, we apply the above proposed ILO to
detect and estimate actuator faults in an automotive
engine described by a second-order nonlinear engine
model that involves intake to torque production de-
lay and unmeasurable time varying disturbances. The
model is that of (Stotsky A. and Eriksson 2000):

Jeẇ = a2k
p(t− th)

p0

(cos(−b+ u2))
2.875−

Tf − Td − Tp
ṗ

p0

= k1(a1pru1 − kw
p

p0

).

(39)

where p is the manifold pressure and w is the engine
speed. u1 is the throttle input, whereas u2 controls
the spark influence. For the definition of the remaining
engine parameters, consult (Stotsky A. and Eriksson
2000). For convenience, letting x1(t) = w, x2(t) = p, in
the model of (Stotsky A. and Eriksson 2000), we get
the following model

ẋ1 = 576.65x2(t− th)− 76− 0.112x1 − 2.148× 10
−4x2

1

−7.84× 10−4(1− x2) + factuator
ẋ2 = 69.498pru1 − 3.114× 10

−2x1x2

y = [x1 x2]
T .

(40)

Based on the equation above, the ILO is constructed
according to equation (10) as follows:

˙̂x1 = 576.65x̂2(t− th)− 76− 0.112x̂1

−2.148× 10−4x̂2
1 − 7.84× 10

−4(1− x̂2)

+2ey1(t)− 0.0001ey2(t) + v(t)
˙̂x2 = 69.498p̂ru1 − 3.114× 10

−2x̂1x̂2−

0.0001ey1(t) + 3ey2(t)

v(t) = v(t− τ) + 0.4ey1(t− τ)− 0.0001ey2(t− τ)

y = [x̂1 x̂2]
T .

(41)

The ILO will detect and estimate actuator fault
factuator. We assume in the following fault detection
that the healthy system has a fault factuator = 0. In
the following simulation study, sampling time interval
τ = 0.01 and th ' τ . Also assume d(t) = 0.15sin(5t).

Figures 1 and 2 show system and observer trajecto-
ries without actuator faults. Here ILO input v(t) can
compensate and estimate system disturbance d(t) in
equation (1). In Figure 1, ILO states asymptotically
converge to system states. Figure 2 demonstrates the
system disturbance estimate by ILO input v(t). We can
see from the zoomed plot of v(t) and d(t) that after
some transients in v(t), it can reconstruct d(t) very
accurately.
Figures 3 and 4 indicate system and observer trajec-
tories with an actuator fault. An actuator fault occurs
at t = 15, however, observing engine speed diagram in
Figure 3 we see that ILO state can still track the varied
engine speed. In Figure 4, it can be seen that the ILO
input v(t) can be chosen as a residual because it can
estimate actuator fault very accurately. Actually, v(t)
has been estimating system disturbance d(t), after the
occurrence of an actuator fault, v(t) jump to a higher
value, which is the real fault value. Meanwhile, v(t)
varies according to disturbance d(t), therefore, v(t) can
estimate both actuator fault and system disturbance at
the same time (see Figure 5). This is the key reason for
the ILO ability to track post-fault system model.
Figures 6 and 7 describe output disturbance attenua-
tion. Figure 6 describes state errors between the state
of the actual system and the Luenberger observer esti-
mate. Figure 7 describes state errors between the state
of the actual system and ILO. Clearly the estimation
errors in Figure 7 are much smaller than those in Figure
6. This demonstrates the effectiveness of ILO-based
disturbance attenuation.

5. CONCLUSIONS

An Iterative Learning Observer was presented for fault
detection and estimation applications. It was shown
that the proposed ILO can not only compensate the
effect of disturbances and actuator faults, but also
attenuates slow varying measurement disturbances. In
addition, it can successfully estimate the disturbance
and fault, allowing the ILO to follow the post-fault
system model.
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Fig. 1. System states and

their estimates.
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Fig. 2. Disturbance estimate
by V(t).
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Fig. 3. Post-fault system

states.
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Fig. 4. Fault and its esti-

mate.
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Fig. 5. Fault and its esti-

mate.
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Fig. 6. Error dynamics be-
tween system and Luen-

berger observer.
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Fig. 7. Error dynamics be-
tween system and ILO.


