

���������		
������	��
	����������	��	�	
�������������������	

����	��������	��	�����������	����	��	��	���� �����	��	���!����	��	
��"#����	

�������������	�
�����	

�����������������������
������
�����������������
�������������	�
�����	��	�����������������������
������������������

�������������	�
�����	

�����������������������
��������	������������
�	�����������
 ��!�	�������"� �	���#�����	�

����$%
�
 ��#�%���
#��

	�&'�������������
���������
��'���	����������
������
��	��'������������

Abstract: Management, control, monitoring and detecting errors in distributed industrial
systems is strongly dependent on the physical and functional topology. This paper
describes a solution to this problem by monitoring the event channel instead of
monitoring the nodes. Multi-agent architecture is an appropriate framework to this kind
of systems because it optimizes the complete yard management and uses an event-
oriented channel to support the communication between agents. �
�����(�)�*++,��-���

Keywords:	 Distributed computer control systems, transportation control, monitored
control systems.

1 This work has been supported by grant 1FD97-2158-C04-03. CICYT Spanish Government.

1. INTRODUCTION

The operations performed in a containers terminal
involve one of the most complex environment within
the transport industry. Its automatization makes it
necessary to develop a series of independent systems,
but decisions made in each one of the systems may
directly affect to the operation of the others (fig 1.).

Due to the complexity of the individual systems, it is
very difficult to create a single application able to
integrate all requirements. Therefore, it is more
advisable to approach each task independently.
Distributing tasks makes the relationship among them
an important issue to optimize the global operation of
the terminal.

Multi-agent paradigm (Wooldridge and Jennings,
1995) is suited to approach the design and later
development of a set of flexible, adaptable, versatile
and robust applications which global goal is to
effectively manage a container terminal.

 CONTAINERS
MOVEMENT

SYSTEM

CONTAINERS
 INPUT / OUTPUT

SYSTEM

CONTAINERS
STORAGE
SYSTEM

Fig. 1. Functional division in a container terminal.

Communication between agents, and the knowledge
about system states and the important events are a
fundamental issue for solving errors and keeping the
system control.

 Monitoring is essential to obtain the required
information about the operation of distributed
systems in order to make management decisions and
control the behavior.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

��������	
����
	
�

�����	
����
	
�

���
�����	
�������

����
	
�

�����	
����	
����
����
	� ����
���
����
����
	
�

Fig. 2. System agents distribution.

The problem of monitoring a container terminal has
not been dealt with depth until the moment. This
paper describes a method for monitoring the system
by watching the communication event channel and
the messages prepared for the purpose. The section 2,
introduces the agents system that must be monitoring,
section 3 describes the monitoring model used,
section 4 presents the procedure to generate the plans
and to control the temporary impact in the global
system. Conclusions are presented in section 5.

2. AGENT SYSTEM ARCHITECTURE.

*�,����	������

����

To design the architecture, the system has been
divided according to its main tasks. In this way, a
different kind of agent for each one of the main tasks
has been developed (fig. 2.). The communication
between agents is done by means of a reliable and
secure communication channel (De La Fuente et al,
2001).

�
	���	���� �	���./������ ������. Containers input /
output system consists of two kind of gate agents:
marine and ground. The marine-gate agents have to
manage containers load movements and containers
unload movements corresponding to the ships that
berth in the terminal. Ground-gate agents must inform
the appropriate container service agent of the arrival
of new containers and the arrival of trucks to remove
containers from the terminal.

�
	���	���� 0
����	�� ������. It consists of
machinery agents and ship agents. Machinery agents
obtain the most accurate sequence for the container
movement to/from its correct position in the yard
optimizing the use of the machinery resources within
the terminal, and minimising empty movements and
trucks delay time in the yard.

Ship agents face a scheduling problem where a set of
resources (the cranes) must be assigned to the
different operations (container load/unload)
establishing a resource use time (container
load/unload time). Their objective is to decrease the

Black Board

Group of
tasks of

the agent.

SC

Agent 1

 ...

...

SC

 ...

...

SC

 ...

...

Network

...

SC
Channel
(Events)

ODBC
Channel
(Data) Interface

ODBC

Network

Interface
ODBC

Interface
ODBC

Agent 2 Agent n

Fig. 3. The two system communications channels.

cranes inactivity time, to maximize the cranes using
time, and to reduce the container load/unload time.

�
	���	���� �������� ���	��. The Terminal has been
divided according to the different services (shipping
routes involving a number of ships). Each service has
assigned some specific stacking ranges. The main
goal of this kind of agent is to determine the
appropriate allocation for the arriving containers in
the terminal from a specific service (allocation
problem)

���
���	�����
	���������1��2��	����	����

The communication between agents and the
corresponding data warehouse is made by means of a
number of content-oriented communication channels.
For this reason, two types of channels can be
distinguished in the system: event-oriented and data-
oriented channels. (fig.3).

The event-oriented channels includes several
different communication system. For example, a
serial port and a radio channel is used to
communicate with the machinery agents, whereas a
socket connection is used to communicate events
from the database server. Using different
heterogeneous systems makes it necessary to adapt
the internal messages at the concrete communication
system and to make use of different communication
protocols. The three main components of the agent
communication system are exposed next.

3��	�� �(�		� . This level offers an event-oriented
communication to broadcast the events produced in
the terminal. This task is made through a
communication server called “Servidor de
Comunicaciones” (SC), based on sharing data
through a distributed blackboard (Penny, 1989). The
SC system has been developed and tested previously
in the context of distributed systems and mobile
robots (Posadas, et al., 2000). In order to
communicate the SC with the systems that cannot be
connected directly specific gateways to each different
system are needed.

4���2���. In order to communicate several
heterogeneous systems machines, gateways that adapt
both communication channels are required. In normal
system operation, the gateways must open, maintain
and close the communication channels by means of
TCP, UDP sockets or by the system serial COM ports
that communicate with the radio systems.

������(�		� . This channel is the operating system
support to the communication with the database,
because the agents need to obtain data stored in
different platforms. The communication between
applications and databases is usually made by means
of operating system ODBC drivers.

3. MONITORING MODEL

Monitoring can be defined as the dynamic collection
process, interpretation and presentation of
information concerning objects or software processes
under scrutiny. It is needed for various purposes such
as debugging, testing, program visualization and
animation. It may also be used for general
management activities which have a more permanent
and continuous nature (performance management,
configuration management, fault management,
security management, etc.) (Sloman 87). In this case
the behaviour of the system is observed and
monitoring information is gathered. This information
is used to make management decisions and perform
the appropriate control actions on the system

5�,�3��	����
	��
 ��

In order to know the system state and to handle the
sequence of messages that are sent, the event channel
must be controlled, because each message between
agents is an event itself. Events captured can be made
at three levels depending on its importance: state,
errors and alarms. The system events that are not
important can be considered as a fourth level with
minimum priority in the monitoring.

In the capture state level, the monitor is connected to
all the data shared by the applications and, after a
previous filtrate, the activity in each node of the
system is visualized.

Relevant data

Error data

Data type

No relevant data

Event oriented
Channel

Agent 1 ���� Agent n

MONITOR

Level 3

Level 2

Level 1

Level 0 Alarm data

Priority
Level

Fig. 4. Agents connection and the communication
channel monitor.

The state visualization can be done by constant
sampling or event-based. When visualization is made
by sampling, a copy of the current situation in the
communication channel can be obtained, which is not
the habitual method. When visualization is event-
based, a sequential registry of the channel activity is
obtained, and thus the messages route through
different nodes of the system can be followed. The
state visualization is important to take a control of
normal system activity, to verify the corresponding
changes of state and similar tasks. Nevertheless, it
adds a not desirable load level in the monitoring
channel, although it has been stated that its effect is
almost null on the normal operation.

At non-critical error verification level, error-oriented
events in the communication channel are monitored.
Distributed applications inform of errors, such as a
message timeout, parse errors, message replication or
similar. This level of monitoring is used to verify
communication coherence.

Alarms are errors detected by applications and are
significant for the global system operation. Errors as
the absence of a basic node, a gateway breakout, or
critical situations as a possible accident in the yard
justifies this high-priority channel.

5�*�0���������6��	����
	��
 ��

From any source, if an event happens, it follows a
route of channels that communicate the applications.
Each element in the system can be seen as an
interconnected node. Connections among nodes are
based on the route the message follows.

When the route followed by a message is being
monitored it can be abstracted as a sub-graph of the
system graph (fig. 5.). To assure coherence in the
sequence of events produced by an action when
processing the message a graph analysis tool is used.

Time spent by an event travelling trough the system is
parameterized with the equation (1), where Tevent is
the total time that an event remains in the system,
taking into account differences in the time
measurements depending on the transmission media
used. For each event, different machines (�), different
communications channels (6) and different
applications (�) can be involved in the calculation of
the total time.

∑∑∑
===

++=
�

�

�

�

�

�

�

�

������
7�7�707

111

 (1)

...

Machine 1

Machine 2

Machine p

...

Channel 1

Channel 2

Channel q

...

Agent 1

Agent 2

Agent r

Channel j

Channel k

Agent i

Agent l

(1)

(2)

(3)

(4)

(5)

Channel j Agent i Channel k Agent l Channel j

(1) (2) (3) (4)

Agent i

(5)

(a)

(b)

Fig. 5. Generic node graph of the system (a) and node

sub-graph of a specific message and his message
sequence (b).

Mathematical methods using patterns of event
sequences can be used to calculate the time of any
sequence of messages. Another method is to
accumulate the individual times of each message in
the sequence.

4. TRACE GENERATION.

A trace is an actual description of the system
temporary evolution. The trace generation has
generally been executed by means of libraries or
dedicated units, just as it is presented in (Ohlenroth,
1996). These units should be combined with the
program code or application to monitor and can be
made by means of a connection to the communication
channel or the system hardware. Anyway, the trace
will maintain the corresponding coherence and
homogeneity in its creation.

8�,�4�	�����
	�

��
	��
��	���	

�����
	��

Monitoring a distributed system implies generating
the state log system in a concrete moment (snapshot)
or the events log or a system event sequence
(Mansouri-Samari and Sloman, 1992). System state
monitoring implies that each node sends information
to the monitoring agent (Magee, et al. 1989), which
can be executed periodically or under demand. Event
monitoring is a more complex task which consists of
three phases: location of event detection, time of
event detection and event report format (Mansouri-
Samari and Sloman, 1992). The previous levels are
detailed following.

This is an
example of a
trace.
This is an
example of a
trace.
This is an

NODE 2

This is an
example of a
trace.
This is an
example of a
trace.
This is an

NODE 1

This is an
example of a
trace.
This is an
example of a
trace.
This is an

NODE n

...

...

...

Log 1 Log 2 Log n

COMMUNICATIONS CHANEL

TRACE
ANALYSER

NODE 2 NODE 1

This is an
example of a
trace.
This is an
example of a
trace.
This is an

NODE i

...

Common log

COMMUNICATIONS CHANEL

TRACE
ANALYSER

NODE n

...

����

����

Tevent

Tnetwork

T analysis

Tevent

T analysis

Ttrace

Ttrace

Fig. 6. Distributed node monitoring (a) and

communications channel monitoring (b).

9
����
	�

� ���	�� �������
	� There are two ways of
detecting events in the distributed system. One is to
detect individually on the part of each node the
important events, to store this information and to
send it to the node that executed the analysis (fig.
6.a). This approach has several problems. The main
one is the temporary overload of the nodes due to the
necessity of generating the traces. The other big
problem is the overload of communication channel
due to the necessity of transporting tracing among
nodes through the communication channel. The time
consumed to generate a simple event is obtained by
the equation (2). Ttrace is obtained with the control

time method described in the section 4.2. Tnetwork is
the time of crossing a TCP channel, which is very
studied and depends on the amount of data and the
network components. Tanalysis is the time consumed
in the trace analysis and depends on the algorithms
used and it is not the proposal of this study, although
currently this algorithms are being developed.

�����������	
�����
������ 77777 +++= (2)

As the total trace is distributed in n nodes, the total
time to monitor the system is obtained by the
equation (3).

�����������	
�����
�

�

�

7777 ++= ∑
=

)(
1

 (3)

The alternative to event monitoring in the nodes is to
locate events in the same communication channel
(fig. 6.b). Accordingly, some advantages on the
nodes monitoring method are obtained. Nodes
overload is avoided, because these should execute

additional work, only in the marked of messages or
the time control. Also, the communications channel
overload is decreased since the traces does not need
to go through the channel. The time consumed by this
method is obtained from the equation (4). For each
value of 	, the time is lower that the one obtained by
monitoring the distributed method.

�����������	

�
�� 7777 ++= (4)

7���� /
� 3��	�� �������
	. In order to characterize
temporarily the time consumed in the route from a
message through the system, the Time Firewall
method (Kopetz, 1998) is used by each application
maintaining a registry of the time consumed by a
message while it remains in the application.

When the message arrives, the application compares
its Time Field with the corresponding internal table
where temporary characteristics of the message are
specified. Based on this comparison, the message will
be dealt accordingly. When the message leaves the
application, the time that has remained in the
application is added to the Time Field. A table to
maintain the time intervals exists for every node. By
means of this table, the communications state can be
temporarily characterized at any moment.

This temporary characterization is very interesting
because it allows to know whether the system is tuned
and works in a synchronous way any moment. In the
event of arriving messages with a high value time
field, it is possible to make an inspection in the route
of nodes towards the origin of the bottleneck and take
measures to solve it (Poza, et al., 2000).

3��	�� :��
��� -
����. The information a trace file
contains makes it important or not. Standard XML
has been used as a trace file in the developed system.
XML documents are also known as self-describing.
That is, each document contains the set of rules
which data must be conformed to. Because any set of
rules can be reused in another document, other
authors can easily create the same class of document,
if necessary. XML as trace format language has many
advantages: it is not necessary to parse the message
when the application does not take part in the
monitoring, only the applications taking part in the
monitoring will treat the corresponding tag. Another
advantage is that applications are backwards and
forewards compatible with the message, because a
change in the message format does not make it
necessary to change the applications.

The internal format of the message has the “trace” tag
to store the trace information about this event. The
TTP attribute is used to maintain the time control of
the message with the TTP protocol and the “path”
attribute is used to store progressively the sequence
of nodes that are crossed by the message.

 Event

Td Tm Tp

Event process

Memory access

Disk access

Te

Tdi Tde Tdf

Te

Tp

Tm

Td

Total time of process of the event.
Time of processing of the event.
Time of storage in memory of the trace.
Time of storage in disc of the trace

Tdi Time of initial disc (opening and position in the file).
Tde Access time to the stored disc for of trace.
Tdf Time of final disc (it closes of the file).

Fig. 7. Tasks envolved in the trace generation for a

simple event.

8�*�7�����4�	�����
	��

The trace generation is made in the monitoring node.
Tasks implied in an event that must be observed are
described following (fig. 7.). Event management: it is
composed by the associated computes and the trace
characters chain creation. Memory access: it consists
of processor memory storage of chain trace generated
previously. Access to disk:�in this task, the characters
chain corresponding to the monitoring are stored in a
disk file (trace). The time control is handled by
monitoring software connected to the corresponding
node. Currently, a dedicated class implemented in
MFC 4.0 is being used.

Times involved on the trace generation of a efficient
model are present in (5). Considering a number 	 of
events are required to obtain an efficient trace,
calculating the time of a trace of a path message
implies to consider the number of times that it is
executed. The total time of a trace is on the equation
(6).

�����������	� �����7 ++++= (5)

)(�����������	� �����	7 ++++= (6)

The hybrid monitoring is an interesting model that
can implemented. This system joins the philosophies
described in the last two sections, that is, it must
avoid the excessive memory use for the log chain and
it must not slow down the normal execution of the
system caused by writing the file in disk (fig. 8.).
This diagram implies creating a messages buffer that
it is stored in the file when it reaches a certain size. In
this way we make sure that maximum log chain is not
oversize and time in opening up, consenting or
closing is not spent. Besides, the log file is updated.
The times involved on the trace generation of a
efficient model are present in (7).

Event 1

Tp

Process of event

Memory access

Disk access

Tdi
Tdf

Tl
Tl

Ttrace

Event 2 Evento n

Mi

Mf

...

...

Tde

...

Tm

Trf

Ttrace

Tp

Tm

Td

Total time of process all the event.
Time of processing a simple event.
Time of storage in memory of the trace.
Time of storage in disc of the trace

Tdi Time of initial disc (opening and position in the file).
Tde Access time to the stored disc for of trace.
Tdf Time of final disc (it closes of the file).

Total time of process n events. Trf

Mi

Mi

Minimal memory consumption.
Maximal memory consumption

Tl Free time to another task.

Fig. 8. Efficient model to generate traces.

)()(
1

�

�

�

��������	
�� �	���7 +++= ∑
=

 (7)

In this model, two parameters determine the
monitoring efficiency: the first is the size of log chain
buffer, and the second is the file update frequency.
The balance of each parameter can determine the
optimum way to generate a log, without the
conditions of real time system being interfered.

5. CONCLUSIONS

If the method used to monitor the system is the
distributed node monitoring method (fig 6.a), the
analysis consists of several phases as merging traces,
validation of monitoring information, database
updating, combination of monitoring information,
filtering of monitoring information and finally the
analysis of monitoring information (Mansouri-Samari
and Sloman, 1992). As our system uses the
communication channel monitoring method (fig 6.b)
it is only necessary to do the filtering phase and the
analysis phase.

Table 1. The four different modes of monitoring.

Mode Number of
SC data.

Interval of
events.

������� ����	��� 1 1
�	���(
��� n 1
0����������(� 1 n
�������3�
 ���
	� n n

The system allows a flexible events monitoring,
because it is possible to watch out for different
control levels (table 1). With this method, a way to
monitor a distributed system only by means of an
event-oriented communication channel has been
obtained.

The system overload that monitoring introduces is
minimum, because the connection of the monitoring
agents is carried out in a separate machine. This
implies that the rest of the agents do not perceive the
effect of the monitoring node. Any agent can switch
from a normal work mode to a monitoring work
mode, by reading or writing the trace field in the
XML message.

Nowadays, this monitoring system is being used to
control the sequences of messages generated in a
multi-agent system implemented to automatise the
container terminal of the Port of Valencia, Spain.

REFERENCES

De La Fuente Anuarbe, M. A., J.M. Figueroa García,

V.J. Botti Navarro and C. Ricolfe Viala. (2001).
Arquitectura Multi-Agente Para La Gestión De
Operaciones Terrestres En Terminales De
Contendores. In: ;;���<
�	�����������
������.
Barcelona, Spain.

Magee, J., J. Kramer, and M. Sloman (1989).
Constructing Distributed Systems in Conic. In:
�333� 7��	�����
	��
	� �

�2���� 3	��	����	�,
15($):663--675.

Kopetz H. (1998). The Time-Triggered Model of
Computation. 0-8186-9212-X/98 �333.

Mansouri-Samari, M. and M. Sloman (1992).
“Monitoring Distributed Systems (A Survey)”,
In: ������� � �
 ���� :������(� :��
��� =
��
�/�>*.*5..

Ohlenroth, M. (1996). Application Oriented
Monitoring. In: 7��?�.�:�@7:@>A@+>.

Penny, H. (1989). Blackboard Architectures and
Applications. Edited by V. Jagannathan,
Rajendra Dodhiawala, Lawrence S. Baum.

Posadas, J.L., P. Pérez, J.E. Simó, G. Benet and F.
Blanes (2000). Communications Structure for
Sensor Fusion in Distributed Real Time
Systems�� In:�A��� �-���B
�C�(
��
	�� �
���(���
�	�� ���(����������

�� :�� @7���� �
	��
 .
��:7�D*+++. Mallorca.

Poza, J.L., J.L. Posadas, J.E. Simó and A. Crespo,
(2001). Data And Event Management In A
Maritime Terminal Of Containers� In:� �-���
�
	
���	���
	�=�2�7��(

�����

���
�������
�
	��
 . =7��D*++,. Hong Kong.

Sloman, M. (1987). Distributed Systems
Management. In: ������� � �
 ���� :������(�
:��
��#��/��EF.A.

Wooldridge, M. and N.R. Jennings (1995). Intelligent
Agents --- Theories, Architectures, and
Languages. In: 9������� =
���� �	� ����
���� �
�	�� ���	�� vol. 890.

