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Abstract: This paper reviews some of the techniques and measures used in control loop
performance monitoring systems. Basic tools are briefly reviewed. The Harris index,
which for a single-input, single-output loop quantifies the distance from minimum
variance, requires knowledge of the process dead time. Recently developed techniques
for dead time estimation from operating data are discussed. A novel model invalidation
technique is illustrated via an industrial example. Finally, issues of data quality are
touched upon. Copyright c©2002 IFAC
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1. INTRODUCTION

The last ten years have seen the emergence and
rapid adoption of control loop performance moni-
toring techniques, (Harris (1988), Åström (1991),
Perrier and Roche (1992), Kozub (1996), Huang
and Shah (1999)). The purpose of on-line mon-
itoring of control loops is to obtain information
on the performance of a plant under control while
it is operating with minimal disturbances to its
normal operation. Various studies indicate that
the half-life of control loop performance is about
six months, Bialkowski (1992). Typically it takes
two hours to manually audit the performance
of a control loop. The typical process plant has
between 2000 and 4000 loops and many plants
do not have personnel with required skills. Be-
cause the average process engineer is responsible
for 400 loops the availability of a set of tools to
automatically estimate the performance of control
loops is of great importance. For regulatory loops,

minimum variance provides a benchmark. Har-
ris (1988) showed that it is possible to estimate
the minimum variance from closed-loop operating
data without knowledge of the plant dynamics.
After reviewing basic control loop performance
monitoring methods, a recently developed model
invalidation technique and its industrial applica-
tion will be described. Finally, some important
implementation issues will be discussed.

2. THE BASIC TOOLS

Figure 1 shows the components of a typical per-
formance monitoring system.

2.1 The Harris Index

Consider the system

y(t) =
B(q−1)
A1(q−1)

q−ku(t) +
C(q−1)

A2(q−1)∆d
e(t)
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Fig. 1. A typical performance monitoring system

If the process is minimum phase, the minimum
variance controller is

u(t) = − A1(q−1)G(q−1)
B(q−1)F (q−1)A2(q−1)∆d

y(t)

with

C(q−1) = F (q−1)A2(q−1)∆d + q−kG(q−1)

The minimum variance is then

σ2
mv = E[y2(t + k)] = E{[F (q−1)e(t + k)]2}

= σ2
e(1 + f2

1 + f2
2 + . . . + f2

k−1)

When the system is under feedback control with
the controller

u(t) =
N(q−1)
D(q−1)

y(t)

he closed-loop system is described by

y(t) =
CA1D

∆d[A1A2D −BNA2q−k]
e(t) ∆= H(q−1)e(t)

Using the Diophantine equation, one can write

y(t) = Fe(t) + q−k BNA2∆dF + GA1D

(A1A2D −BNA2q−k)∆d
e(t)

Note that the first k terms of H, represented
by F are unaffected by the controller, i.e. are
feedback invariant and allow the computation of
the system’s minimum variance. Estimating H in
y(t) = He(t) from closed-loop data, it is then easy
to compute the minimum variance σ2

mv from the
first k terms of the impulse response of H. The
performance of the regulatory loop can then be
measured by the ratio of the actual variance to
the minimum one:

P =
σ2

y

σ2
mv

Thus, one only needs identifying the output of
the process as a time-series and computes the
first k terms of its impulse response to find F .
This does not require perturbating the plant and
does not present any closed-loop identifiability
problem. Many different structures can be chosen
for H(q), e.g. an AR model, an ARMA model or
a Laguerre model. For example with the latter,
the time series used to represent the closed-loop
system can be modelled as white noise e(t) filtered
through a Laguerre network, Lynch and Dumont
(1996):

l(t + 1) = Al(t) + be(t)

y(t) = cT l(t) + e(t)

The vector c is easily estimated from closed-loop
data using least-squares, and the F -polynomial
coefficients are computed as:
f0 = 1, f1 = cT b, f2 = cT Ab, f3 = cT A2b, · · ·
Generally, a comparison to minimum variance
control is overly pessimistic. It does not take
into account the existence of input constraints
or the presence of non-minimum phase zeros.
Most importantly, it does not take into account
the structure of the present controller. Various
researchers have proposed a performance index
that allows the closed-loop response to a load
disturbance to decay exponentially after the dead
time. For example, Horch (2000) proposes to place
one pole q = µ in which case the benchmark
variance σ2

bench becomes

σ2
bench = σ2

mv + f2
k−1

µ2σ2
e

1 − µ2
= σ2

mv + σ2
µ

Various ways to choose µ are possible, but accord-
ing to Horch (2000) µ = 0.5 is reasonable in most
situations. Other simply propose to extend the
moving average used to compute the benchmark
variance beyond the dead time of the process.
Note that the terms beyond the dead-time are
then not feedback-invariant.

2.2 Estimation of Time Delay

The original Harris index relies on an estimate of
the process time delay. Although in practice a very
accurate knowledge of the delay is not crucial,
an automated way of estimating it is necessary
to facilitate the commissioning of a performance
monitoring system. Keeping in mind the non-
intrusive nature of performance monitoring tools,
it is of interest to have a reliable method for
closed-loop estimation of time delay using normal
operating data. A method that has proven reliable
in practice is described in Isaksson et al. (2001).To
ensure proper excitation, it uses transient data
following a setpoint change. A discrete Laguerre
model of the plant is then estimated. The time
delay can then be calculated directly from the
zeros of the discrete Laguerre model.

The Laguerre model of the plant can be factored
as

G(z) = Gmp(z)Gap(z)
where Gmp(z) is minimum phase and Gap(z) is all-
pass. Let ϕ = arg(Gap). The dead-time estimate
is then given as

T̂d = lim
ω→0

(
−ϕ(ω)

ω

)

For the sampled system, if T is the sampling
interval, the dead time in number of samples is

k̂ = 1 +
T̂d

T



2.3 Oscillation Detection

Oscillations occur in many control loops. The
presence of oscillation renders the Harris index
invalid, and so there is a need to detect oscillations
before proceeding to the computation of the Har-
ris index. Furthermore, oscillations are very detri-
mental and need to be diagnosed. Major causes for
loop oscillations are i) Load disturbances near the
ultimate frequency that are too fast to be treated
by the controller and too slow to be filtered out,
ii) Poor controller tuning, especially on nonlinear
systems, iii) Valve friction resulting in stick-slip
motion and a limit cycle which is often far from
sinusoidal. Hägglund (1994) has proposed a simple
yet elegant way of detecting oscillations in control
loops. Once a loop has been flagged as oscillatory,
finding the cause of oscillation can be a challenge.
To detect the presence of stiction in control valves,
Horch (1999) has proposed a simple method based
on cross-correlation between control input and
process output.

2.4 Multivariate Extensions

Various research groups have developed multi-
variable extensions to the original Harris in-
dex, see Huang and Shah (1999) and the ref-
erences therein. The performance assessment of
constrained model predictive controllers has been
looked at in Ko and Edgar (2001). In the process
industries, such controllers typically use propri-
etary model-based predictive control algorithms.
A fundamental question with such systems, be-
yond the suitability of a minimum-variance based
benchmark, is whether in case of poor perfor-
mance the controller tuning or the model used
to design the controller is at fault. A recently
developed technique that attempts to answer this
question will now be reviewed and illustrated by
means of an application to an industrial lime kiln.

3. MODEL INVALIDATION FOR
MODEL-BASED PREDICTIVE

CONTROLLERS

Suppose a multivariable closed-loop system suf-
fers an upset that causes some signal variances
to increase and remain at a higher level from
that point onwards. It is important to know
whether the problem is due to an increase in the
noise/disturbance level, process-model mismatch
or controller tuning. It is usual to put some control
loops in manual (off the cascade control), and see
if the process variables settle down. For model-
based controllers, the problems are possibly re-
lated to bad models. These problems could be
fixed by re-identifying the whole multivariable
model and re-tuning the controller, but this is an
expensive procedure.

The model-invalidation mechanism, recently de-
veloped by Kammer et al. (2001), deals with the
scenario described above and reveals if the model
embedded in the controller is no longer valid. That
mechanism indicates which part of the multivari-
able model is wrong, so that only part of the model
needs to be re-identified. We assume that the only
signals available from the system are collected
after the problem is detected and no measurable
external excitation occurs during data collection,
that is, the only excitation driving the loop comes
from stationary noise. Moreover, the actual con-
trol law is not used by the mechanism since for
most of the commercially available model-based
predictive controllers the details of the controller
design are unavailable to the plant personnel.

The model-invalidation mechanism compares two
time series associated with each output: the model
output error (y(t)− ŷ(t)), collected during normal
operation, and the open-loop output, collected
when the controller is put in manual. If the pro-
cess model is correct, then those two time series
present the same behaviour. In order to compare
these signals, a certain “distance” is measured be-
tween the two independent time series. All devel-
opments are made on a probabilistic framework,
therefore there is a significance level associated
with acceptance/rejection of the hypothesis that
a particular part of the model is correct. Given
that uncertainties are always present in models
identified from measured data, the mechanism for
comparison of time series also includes a provi-
sion for accommodating model uncertainties, or
more accurately, uncertainties in the closed-loop
response.

3.1 Model Output Error

Although the full process dynamics could encom-
pass sources of measurable disturbance, the sce-
nario analyzed here is restricted to unmeasurable
sources of stochastic noise. Therefore the process
dynamics is given by

y(t) = G(q)u(t) + H(q) e(t), (1)

where y(t) is the vector of ny output signals
(controlled variables), u(t) is the vector of nu

input signals (manipulated variables) and {e(t)}
is a vector of ne independent zero-mean Gaussian
white-noise processes. The transfer-function ma-
trices G(q) and H(q) are stable and have dimen-
sions ny × nu and ny × ne, respectively.

The reference signal is kept at a constant value
(taken as zero without loss of generality) so the
control action is described as:

u(t) = −C(q) y(t), (2)

where C(q) is an unknown operator designed from
a known model of the process:

ŷ(t) = Ĝ(q)u(t). (3)



From (1) and (3) we define the model output error
as

ε(t) � y(t) − ŷ(t)

= [G(q) − Ĝ(q)]u(t) + H(q) e(t) (4)

= [I + Ĝ(q)C(q)][I + G(q)C(q)]−1H(q) e(t).

This shows that if the model is perfect (Ĝ(q) ≡
G(q)) then the model output error presents the
same dynamics as the process noise, H(q)e(t).
This fact is essential to the model-invalidation
mechanism, as it compares the model output
error, ε(t), and the open-loop output signal,

yo(t) = H(q) e(t). (5)

The need for collecting open-loop data implies
that the plants are open-loop stable. This is a
minor issue since for unstable processes the com-
mon industrial practice is to form an inner loop
with a stabilizing feedback controller and have the
model predictive controller at the outer loop. It
is imperative that the noise dynamics, H(q), be
time invariant, at least for the duration of the
experiment. The invalidation test thus becomes
a trial of the assumption that, for each process
output j = 1, . . . , ny, the independent time series
{εj(t)} and {yo

j (t)} are realizations of the same
stationary process. The outcome of this test is
probabilistic in nature since there are no hard
bounds assumed on {e(t)}. The highest sensitivity
to mismatches between G(q) and Ĝ(q) occurs in
the direction and frequency range where G(q)C(q)
is closest to −I. Therefore the invalidation test is
increasingly more robust to uncertainties in Ĝ(q)
as these uncertainties are less relevant for control
purposes.

3.2 Comparison of Two Time Series

The invalidation test addresses the following prob-
lem statement: Given two independent time se-
ries, {z1(t)} and {z2(t)}, test the assumption that
they are realizations of the same stationary pro-
cess.

The solution developed by Kammer et al. (2001)
computes the “distance” between smoothed pe-
riodograms of the time series. A very important
characteristic of that “distance” is that if {z1(t)}
and {z2(t)} are realizations of the same stationary
process, then its (cumulative) distribution func-
tion depends only on the number of samples in
the time series. From this particular situation it
is possible to derive a threshold level for testing
the null hypothesis with a given significance level.

From a mathematical point of view, the hypothe-
sis that {z1(t)} and {z2(t)} are realizations of the
same stationary process is not rejected as long as
the “distance” between smoothed periodograms
is less than the threshold level. This test has a
given probability of committing a Type I error

(false alarm). Since this type of error should be
avoided at all costs, the significance level is typi-
cally a small value, e.g. 1%. Hence any violations
of the threshold are attributed to model uncer-
tainty and/or model mismatch. A complete de-
scription of the invalidation test and the analysis
of the model uncertainty is contained in the orig-
inal paper where this mechanism was developed
(Kammer et al., 2001).

3.3 Industrial Example—Lime Kiln

The model-invalidation mechanism was employed
in the analysis of an industrial lime kiln under
model-based predictive control. The process under
evaluation comprises two inputs, amount of fuel
(F ) and fan speed (S), and two outputs, cold-
end temperature (Tc) and percentage of oxygen
(O2). A third output, the hot-end temperature,
is not included in this analysis due to the special
structure of the controller implementation.

The data used in the analysis are shown in Fig-
ure 2. Observe that the open-loop control actions
are not held constant at all times, as an opera-
tor was keeping the controlled variables within a
specified range. This implies that the test is going
to contrast pairs of model output errors: one time
series obtained with the model-based predictive
controller, {εj(t)}, and the second one obtained
with manual control, {εo

j(t)}. The model used in
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Fig. 2. Lime kiln data: closed loop (solid lines) and
open loop (dotted lines)

the controller design is provided in its continuous-
time form:

Tc(s) =
0.16

140s + 1
F (s) +

0.21
10s + 1

S(s)

O2(s) = − 0.013
6.1s + 1

F (s) +
0.026

3.5s + 1
S(s)

where all time constants are in minutes and the
sampling time for all variables is 10 seconds. The
ratio between the smallest time constant and the
sampling time suggests that only a limited range
of frequencies needs attention. This conclusion
is also enforced by the spectral analysis of the
open-loop signals, Figure 3, which shows a very
strong concentration of energy at low frequencies.



In principle this concentration of energy should
not be a problem, but the whitening of such sig-
nals causes a huge relative amplification of low-
amplitude high-frequency noise. Therefore we per-
form our test exclusively in the frequency range
between 0 rad/s and the frequency corresponding
to half of the smallest time constant, that is, 0.06
rad/s.
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Fig. 3. Frequency spectra of the open-loop signals

Figure 4 shows the results of the test for each
output. Notice that there is not enough evidence
in these results to invalidate the model in use.
The main reason for that is the high degree of
conservativeness adopted in the control design. If
one were to demand more performance from the
control action, simple models would be invalidated
more frequently.
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Fig. 4. Smoothed periodograms and their “dis-
tance”, for each output

4. IMPLEMENTATION ISSUES

All previously described methods require raw data
collected at a proper sampling frequency. Al-
though availability of data suitable for control
loop performance monitoring is usually taken for
granted, accessing such data is not always a trivial
task in an industrial setting. Our experience in
the pulp and paper industry shows that there
are indeed many limitations to obtaining useful
operating data. Thornhill et al. (1999) discuss
the implementation of a control loop performance
assessment in a refinery, touching on the same
issues at greater length.

Physical limitations: Old equipment abounds
in the process industries. Some distributed control
systems (DCS) were never updated and use pro-
prietary communication protocols, making them

hard to interface with or network and, in many
cases, unable to provide high frequency time se-
ries.

Lack of standardization: Lack of standardiza-
tion between instrument manufacturers and con-
trol software manufacturers is a major obstacle
when collecting and transferring data to different
users. In an attempt to avoid writing custom
drivers for every supplier, a new standard for
hardware and software was created, called OPC
(OLE for Process Control). OPC may facilitate
data collection and transfer. Today, in many pro-
cess plants, acquiring an archival system seems to
be the preferred solution to centralizing data.

Data storage: Some plants are equipped with
the latest process equipments and information
technology. Not only can they retrieve operating
data but also store it in databases called archiving
systems or sometime process information systems.
These systems communicate with DCS from dif-
ferent vendors through OPC standards or some-
times through specially designed drivers and act
as a central bank for all operating data. However,
due to the large number of loops and tags often
involved, to the limited archiving capacity and to
the limited bandwidth of the plant network, data
is often manipulated before archival. Because of
that, archived data suffers from two major prob-
lems:

Scan frequency: Archival systems communicate
and receive data from different DCS system ac-
cording to a certain specific scan frequency. This
frequency is different from the frequency at which
the DCS computes the control action. The scan
frequency is set by the user. It takes into account
the network structure and the time constant of
the process variables involved. A scan rate that is
not properly chosen may induce aliasing, making
it unsuitable for most of the techniques previously
described.

Data manipulations: Typically, data is archived if
it satisfies exception reporting and compression
conditions. In the report by exception method,
only values that have changed by a user-defined
amount from their last archived values will be
passed to the next test. Data that successfully
passes the exception-reporting specifications is
subject to another test to determine whether
there exist a certain linear relationship between
data previously stored and the newly received.
In case of such a linear relationship, only two
coordinates are stored and all other coordinates
are to be determined from the linear relationship.
Otherwise the received data is archived. This
process is to ensure that only significant data
are written to the archive. These manipulations
introduce some filtering therefore the archived
data loses its raw data form. If the parameters
for exception reporting and compression are set



too high then the data stored is not suitable for
control loop performance monitoring.

Example: Data shown in Figure (5) is from an
inner cascaded loop. That figure shows raw data
for process variable (pv) and set-point (sp) while
Figure (6) shows the compressed data where the
report by exception parameter is set to 2% and the
compression parameter set to 4% Although no sig-
nificant difference is apparent, the actual variance
of pv-sp for the raw data is σ2

pv−sp = 32.15 while
for the compressed data it is σ2

(pv−sp)comp
= 53.85.

The increase in variance has nothing to do with
the performance of this loop, it simply results
from archiving manipulations. Such archival sys-
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Fig. 5. Raw data (non-compressed).

tems may soon become the only source of operat-
ing data. For successful control loop performance
monitoring it is important to ensure quality data
by properly setting the parameters involved in
data manipulations. This may also grant the de-
velopment of more efficient data compression al-
gorithms that result in less data distortion.
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Fig. 6. Compressed data.

5. CONCLUSIONS

We have seen the basic tools of control perfor-
mance monitoring. A simple technique for inval-
idating models in model based predictive control
was proposed and tested on industrial data. Fi-
nally, some implementation issues, which tend to

be overlooked and sometimes dismissed as trivial
were touched upon.
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